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Foreword 

Ecological communities can lose their permanence if a predator or a competitor is re- 
moved: the remaining species no linger coexist. This well known phenomenon is analyzed 
for some low dimensional examples of Lotka-Volterra type, with special attention paid to 
the occurrence of heteroclinic cycles. 
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A favourite theme in theoretical ecology is the relationship between complexity and stabil- 

ity (see e.g., May (1973) and Svirezhev and Logofet (1983)). An interesting aspect of this 

is the role of a top predator in an ecosystem. Paine (1966) has shown that after removal of 

the top predator from an intertidal commtinity consisting of 16 species, the niimher of sur- 

viving species dropped to 8 within a couple of years. Thus the occurence of parasites may 

increase the diversity of a community. (This seems to have a parallel in human societies). 

Mathematical analyses have to stick to lower dimensional models of such phenomena. 

Their prototype was introduced by Parish and Saila (1970). These authors showed by 

computer simulation that in a two-prey , one-predator model of Lotka-Volterra type, the 



absence of the predator may shorten the time of coexistence of the two prey species. A local 

stability analysis of the two-prey , one-predator equilibrium was performed by Cramer and 

May (1972) and, in a more general setup, by Fujii (1977), Vance (1978) and Hsu (1981). 

This showed that the three species may coexist in stable equilibrium while the two-prey 

subsystem admits no equilibrium. But the stable coexistence of species is not necessarily 

related to the existence of an asymptotically stable equilibrium. This was pointed out in 

Hutson and Vickers (1983) where the two-prey , one-predator model was fully analysed 

from the point of view of permanence (see section 2). We shall adopt this approach and 

investigate some four-dimensional ecological equations in the same spirit. In particular, 

we shall study the joint effect of two supplementary competing specice ( or one competing 

and one predating species) upon a bistable community, thus complementing Kirlingers 

(1986) work on two-prey , two- predator systems. We shall also investigate the effect of 

a predator (or a competitor) upon an ecological community consisting of three cyclically 

competing species which was originally studied by May and Leonard (1975). This yields 

examples where the removal of the top predator turns a four-species system into a one- 

species system, and where it is completely impossible to predict which species will be the 

survivor. Before turning to these examples, we shall briefly sketch some recent results on 

permanence for Lotka-Volterra equations. One point of this note is to show how these 

results facilitate the analysis of three- and four-dimensional systems considerably. 

2.Permanence for Lotka-Volterra models 

Like the authors mentioned above, we shall describe the ecological models by Lotka.- 

Volterra equations, being more interested in general properties of the interaction networks 

than in specific biological situations. If X I ,  ..., z, describe the species densities, their evo- 

lution is described by 



This is a dynamical system on the positive orthant leaving the boundary faces invariant. 

Such a system is said to be permanent if there exists a compact set K in the interior of 

R 3  such that if x;(O) > 0 for all i, then :(t) E K for all t sufficiently large. Thus no 

species will tend to extinction. If (1) is permanent, there exists a unique fixed point in 

the interior of the orthant , but this equilibrium need not be stable. We refer to Hofbauer 

and Sigmund (1988) for a survey on permanence. Here, we shall only use two results, both 

related to the notion of a saturated rest point. 

A fixed point g of (1) is said to be saturated if r; 5 (At)i for all a for which t i  = 0. 

(If zi = 0, then the fixed point g must satisfy r; = (At)i). The expression - 

which we shall sloppily denote by $ , is a transversal eigenvalue of the Jacobian of (1) 

a t  g, in the sense that the corresponding eigenvector is transversal to the boundary face 

(g E R 3  : x j  = 0 whenever t, = 0) containing 4 (it lies in the span of this face and gi, 

the i-th unit vector of the standard basis). If g were not saturated, there would exist a 

missing species whose rate of increase $ is positive if it is introduced in a small amount. 

A fixed point in in tR3 is trivially saturated. 

Let us examine transversal eigenvalues in some low dimensional cases. For two competing 

species, (1) reduces without restriction of generality to 

with r;, cij > 0. There are three rest points on bdR:, namely Q,gl and g2. The origin 

has two positive transversal eigenvalues, namely rl and r2, and is never saturated. The 

rest point gl has the transversal eigenvalue r2(l - cZl) (= 2) and has the transversal 

eigenvalue r l ( l  - c12). We may distinguish three generic cases : 

(a) if both transversal eigenvalues are positive, (2) has a globally stable equilibrium in 

intR:. This is the case of coexistence. 

(b) if both eigenvalues are negative, i.e. both el and g2 are saturated, then there exists a 

saddle equilibrium in intR: whose stable manifold separates the basins of attraction of g, 



and g2. This is the case of bistability. 

(c) if one eigenvalue is positive and the other negative, then all orbits in intR: converge 

to the saturated fixed point. This is the case of dominance. 

In the same way, the predator-prey model is completely specified by the transversal eigen- 

value of the equilibrium consisting of prey alone, without predator. 

But with t hree-species systems, the transversal eigenvalues of the boundary fixed points 

are no longer sufficient to classify the behaviour in the interior of the state space. Thia 

is best seen with the model of three cyclically competing species (see May and Leonard 

(1975)): 

x1 = x l r l ( l  - x1 - a2xz - P3xs) 

x2 = x2r2(1 - Plxl - 2 2  - asxs) 

x3 = x3f3(1 - a121 - P2x2 - ~ 3 )  

with r; > 0 and 0 < p; < 1 < a;. The fixed points on the boundary are Q (with eigenvalues 

rl, r 2 ,  r3 > 0) and the unit vectors. The transversal eigenvalues of e; are r;+,(l - Pi) > 0 

and r;-l (1 - a;) < 0 (indices counted mod 3). In the face x; = 0, the 

subsystem describes competition with dominance of gil. Thus 1 is dominated by 2, 2 by 

3 and 3 by 1. The three saddles e; are connected by orbits Q; lying in the face x; = 0 and 

with w-limit gi-, and a-limit gi+, (see fig.1). As shown in Hofbauer and Sigmund (1988), 

there are two generic cases : 

(a)  if n ( a ;  - 1) > n ( l  -pi ) ,  then (3) is permanent; 

(b) if the reverse inequality holds, (3) is not permanent. 

In this case, the heteroclinic cycle consisting of the saddles gi and the connecting orbits 9; 

is an attractor for the neighbouring orbits. In the former case, it is a repeller. 

We shall use two main results in the sequel: 



(a) the index theorem of Hofbauer (see Hofbauer and Sigmund (1987 )), or more precisely , 
its corollary stating that in the generic case when all boundary fixed points are hyperbolic, 

the number of saturated fixed points is odd; 

(b) the permanence condition of Jansen (1986): if the orbits of (1) are uniformly bounded 

(in the sense that for some K > 0, all orbits satisfy zi(t) < K for all i and for all t 

sufficiently large), then (1) is permanent provided there exists a solution p - E intRI; of the 

system of inequalities 

C pi(ri - ( A z ) ~ )  > 0 (4) 

where g runs through all fixed points on bdRn+.The boundedness condition will be trivially 

satisfied for the following examples. 

We shall always make the genericity assumption that no eigenvalues are zero. 

3. Stabilizing bistable communities 

The general Lotka-Volterra equation for one predator and two competing prey is of the 

form 

il = x l r l ( l  - xl - c12x2 - kl y) 

i2 = x2r2(l  - ~21x1 - x2 - k2y) (5) 

y = yr(-l + l l ~ l  + 12x2 - gy) 

with nonnegat,ivc parameters. Hi~t~son a.nd Vickers ( 1  983) Iiave shown that, i f  the (rl, r2)- 

subsystem describes competition with dominance, the 3-species system is permanent for 

some values of k;, 1; and g. In this case, a predator may 'stabilize' a system of two competing 

prey. IIutson and Vickers (1983) have also shown that if the (xl , x2)-subsystem is bistable, 

then (5) is never permanent. Kirlinger (1986) has shown, however, that the introduction 

of two suitable   red at or species can lead to a permanent 4-species model. 



A similar situation holds if supplementary competing species are added to a system of 

three competing species. The general Lotka-Volterra model for three competing species is 

Let us assume first that the (xl ,  x2)-system describes competition with dominance : say 

c2l > 1 and cl2 < 1. Then species 1 dominates 2. It is easy to choose cts,cel E (0 , l )  and 

cle,cez > 1 such that 

This is a system of type (3) which is permanent. 

On the other hand, (6) can never be permanent if the ( z l ,  x2)-subsystem is bistable. In this 

case, c12 > 1 and czl > 1. In order to be permanent, the system can admit no saturated 

fixed point on the boundary. The two transversal eigenvalues of e3 are 1 - c23 and 1 - cl3. 

Without restricting generality, we may assume ~ 2 3  > c13.Since 9 is not saturated, at least 

its larger eigenvalue 1 - cl3 must be positive. Since el cannot be saturated, but $(el) < 0, 

we must have $(el) = 1 - c3l > 0. Now c31 < 1 and cl3 < 1 imply the existence of an 

equilibrium F13 = (il, 0, 53) in the face x2 = 0. Its transversal eigenvalue is 

This expression is smaller than 1 - il - c13i3. But this last expression is 0, since F13 is a 

fixed point. Hence Fls is a saturated boundary fixed point, a contradiction to permanence. 

Theorem 1: A bistable competition can be stabilized by the introduction of two suitable 

competitors. 

Proof: If x3 and x4 denote the frequencies of the two supplementary competitors, then the 



system is of the form 

The positive parameters rl,rz,clz and c2l are given (with 1 5 c12,c21 since they de- 

scribe bistable competition). The other (nonnegative) parametere will be chosen in such 

a way that the species 1 and 4 can coexist, as well as the species 2 and 3, while 4 is 

dominated by 2 and 3, and 3 is dominated by 1. There will be a heteroclinic cycle 

Fl 4 F14 + F2 - F23 - Fl ; species 1 will be invaded by 4, the resulting equilib- 

rium F14 superseded by species 2, which in turn is invaded by 3, leading to an equilibrium 

F23 which is superseded by 1. For suitable parameter values, this cycle will be repelling 

and the full system permanent. 

We shall choose cls = C24 = c32 = ~ 4 1  = 0 and c13 = 2. The equilibria of (7) are then 

O,Fl,Fz,Fs,F~,Flz = (Zl,Z2,0,O),F23 = (0,l - ~ 2 3 , 1 , 0 )  and F14 = (1 - cir,O,O, 1)- We 

shall check later that these are the only fixed points on b d ~ : .  The transversal eigenvalues 

are given by Table A. 

Since 1 - Z1 = c12Z2 > 0, we obtain 1 - cslzl > 0 if csl is only slightly larger than 1. 

Similarly, we have 1 - cr2Z2 > 0 if ~ 4 2  is only slightly larger than 1. Then the Jansen 

inequalities for F12 will be trivially satisfied. Furthermore, we choose cs4 < l,c14 < 1 and 

c2s < 1 such that 0 < 1 - C23 < cl2-l a.nd 0 < 1 - cl4 < czl-'. Then all the signs of the 

transversal eigenvalues are as in Table A, except for the sign of $ at F14 which will be 

specified later. 

We shall now satisfy the Jansen inequalities by setting pl = 2,p2 = $(czl - l),p3 = 

3(c12 - 1) and p4 = (czl - I)~. The inequalities for Q,F3 and F4 are obviously satisfied. 

For F2, the inequality is satisfied if C42 > 1 is sufficiently close to 1, and for Fl if cal > 1 



is sufficiently close to 1. The inequality corresponding to F23 is satisfied if ~ 2 3  < 1 is 

sufficiently close to 1. There remains the inequality for F14. We choose csl > 1 so close to 

1 that 1 - cS1(l - c14) > 0, and then cs4 < 1 slightly larger than this number, so that 2 
is a small negative number and 

There remains to check that there are no other fixed points. The only possible candidates 

are interior fixed points of three species systems. But as Fig.2 shows, each three-system 

has exactly one saturated fixed point on the boundary and hence no fixed point in the 

interior. For 2 4  = 0 it is Fly for 0 3  = 0 it is F2, for 0 2  = 0 it is F14 and for xl = 0 it is 

F 2 3  - 

Theorem 2: A bistable competition can be stabilized by the introduction of a suitable pair 

of a predator and a competitor. 

Proof: Let x3 denote the supplementary competitor and y the predator. We shall show 

that for any ~ 1 2 ,  c21 > 1, the system 

is permanent, if the positive constants C31,  C23, l3 and dl are suitably chosen. We shall 

produce again a replicating heteroclinic cycle Fl --, Fly --, F2 -+ F23 -' Flr where 

F23 = (0 , l  - C23,1, 0) is the equilibrium of species 2 and 3 and Fly = (d;' , 0, O , 1  - d;' ) 

the equilibrium of species 1 and the predator . The other fixed points will be Q , Fly F2,  F3 

and F12 = (2) , Z2,  0,O). The transversal eigenvalues are given by Table B. 

If c31 is chosen slightly larger than 1, then 1 - calZl > 0. Parameter dl will be chosen 

larger than c21 and c31 and so that dlZl + f i2 > 1. Furthermore, one can choose c23 so 



that 1 - c;: < c23 < 1. Then the signs of the transversal eigenvalues are as in Table B, 

except that 5 for Fly is not yet specified. 

d -1 With pl = 2 ,p2 = 2(c:,-l), p3 = 2c12 - 1 and p4 = 1, the Jansen inequalities can be 

satisfied. For Q,F12, F 2  and Fs this is obvious. The inequality for FZS is satisfied if czr < 1 

is sufficiently close to 1. For Fl it is satisfied if crl > 1 is sufficiently close to 1. Finally, we 

note that 1 - 2 > 0, so that we can choose ls such that 1 - 2 - b(l - f;) is a negative 

number which is so small that the Jansen inequality for Fly is satisfied. 

It remains to check that there are no other fixed points on the boundary. This can be done 

just as in the previous proof. 

4.Stabilizing heteroclinic repellors 

Theorem 3: A three competitors system with a hetemlinie attruetor can be stabilized by 

the introduction of a suitable predator. 

Proof: We may assume that the three cyclically dominating competitors are described by 

(3). Including the predator, whose density is given by y, yields 

y = y ~ ( - l  -k 11x1 -k 12x2 -k 1 s t ~  - $ 7 ~ ) .  

The nonnegative parameters k;, 1; and g  can be suitably chosen. We shall use k2 = k3 = 1 ,g = 

0, and specify kl and the 1; in such a way that the only fixed points on the boundary are 

Fl ,F2 ,Fs, the three-species equilibrium F123 = (zl,  2 2 , Z ~ ,  0) and the equilibrium Fly be- 

tween the predator and the prey 1. Thus we have to take ll > 1 and 12,13 < 1. 

Fly has the coordinates ( l ~ ' ,  0,0, (kl ll )-' (Il - 1)). The transversal eigenvalues are given 

by Table C, where B; = 1 - P; and A; = a; - 1. Since we have a heteroclinic attractor, 



we may assume (without restricting generality) that a.ll A; and B; are positive and that 

AlA2A3 > B1B2B3. Since a l f l  + Pzzz + Z3 = 1, we have a l E l  + E2 + Es > 1 and hence 

if a1 - l1 ,1 - 12 and 1 - l3 are in (0, e) for some suitable e. We choose furthermore ll such 

that 

and kl > 1 so large that 

AlAzA3 - BiBzB3 < k l l  (11 - l)(kl - 1) 
A2A3 + B2B3 

' B,'A~ and plp = 1 + pa + p; we obtain With pa = A ~ ~ B S ,  pg = 

(this follows from the left hand side of (11)) and 

(this is just (12)). 

In (14), the coefficient of pa is positive and that of p; negative (this last fact is a consequence 

of the rightmost inequality in (11)). We now set p2 = pi - q,ps = pi + q and p4 = plp - 7. 

For 77 > 0 small enough, the inequalities (13) and (14) are still valid with p, instead of 

They correspond to the Jansen inequalities for Fl and Fly (see Table C). Furthermore 



which is (with pl = 1) the Jansen inequality for 0. By the definition of pk, we have 

-Az + pg Bz = 0, hence -Az + p3B2 > 0 and thus 

-A2 + ~ 3 B 2  +~4(12 - 1 )  > 0 

if l2 < 1 is suitably close to 1, and similarly 

B3 -PzAs +~4(13  - 1)  > 0 

if l3 < 1 is sufficiently close to 1. The Jansen inequalities for F2,Fs and F l 2 S  are just 

(16),(17) and (10). 

It remains to check that there are no other fixed points on the boundary. In fig. 3, we sketch 

the boundary faces x l  = 0, 2 2  = 0 and xs = 0. The points s,FIY and g,, respectively, 

are the only saturated fixed points on the boundary of the resulting three-dimensional 

system. By the odd number theorem, there can be no fixed point in the interior of the 

corresponding three-space. Hence we have dealt with all boundary points. 

Theorem 4: A three competitors aystem with a heteroclinic attractor can be dtabilized by 

the introduction of a suitable fourth competitor. 

We only sketch the proof. Let us consider a system of the form 

where kl and the li are to be suitably chosen. We shall obtain the same pattern of fixed 

points and transversal eigenvalues (with the addition of Fy = g4 ) as in the proof of theorem 

3, by letting kl < 1,11 < 1,12 > 1,13 > 1. The transversal eigenvalues of the two species 

equilibrium Fly = ((1 - klll)- l( l  - kl),O,O,(l - kill)-'(1 - 11)) are given by Table D. 



From 1 -plZl - 5 2  - a 3 Z 3  = 0 follows that 1 -LIZl -12Z2 -13Z3 > 0 if l1 is close to < 1, 

12 close to 1 and 13 close to 1(< as). Now we take pl = l,p2 < A;' B1, and p3 > BC'AZ 

and choose p* > 0 sufficiently large, so that the Jansen inequality for Fl is satisfied. Next 

we pick 12 and 13 smaller than 1, but so close to 1 that the inequalities for FZ and F3 are 

satisfied. Finally, we can find kl < 1 such that 1 - klll - al(l  - kl )  is negative, but so 

close to 0 that the Jansen inequality for Fly holds. The inequalities for 0, Fy and FIz3 are 

trivial. As in the previous proof one checks that there are no other fixed points. 

6. Discussion 

The examples discussed above are obviously meant as thought experiments rather than 

as descriptions of real ecological communities. It need not be stressed that a 'suitable 

predator' cannot be constructed at will. Real ecosystems are the result of a long history and 

the interaction terms are modelled by coevolution. Nevertheless, the models considered 

here show that even for very simple ecological systems, the removal of a predator or a 

competitor can have drastic effects (namely reduce the system to one species). These 

examples also point out the possibly important role of heteroclinic cycles in ecosystems. 

It is extremely difficult, of course, to conceive empirical studies which support the idea 

that a few extra competitors or predators can ensure a large increase in the diversity of an 

ecosystem, or that heteroclinic cycles can occur in "real life". On the other hand, it seems 

unjustified to dismiss these phenomena ofhand as artificial spinoffs from oversimplified 

equations. Their biological possibility, if not plausibility, should be kept in mind. 

Ma.t.hema.tlically, several qnest,ions concerning J,ntka.-\rolterra. eqllations emerge in this cnn- 

text. It seems, for example, that there is a kind of equivalence between predator and prey: 

if a predating species stabilizes a community, then a competing species can also do the job, 

and vice versa. We know so far no explanation for this (except that the number of free 

parameters is the same). More generally, it would be interesting to find rules specifying 

the minimal number of additional predator species needed to stabilize a given ecosystem. 



In spite of recent progress (see Kirlinger (1988)), even the four-dimensional Lotka-Volterra 

equation is not completely understood from the viewpoint of permanence and invadabil- 

ity of subsystems. Recently developped tools, in particular the theorem of Jansen, seem 

to offer new opportunities for progress, however. An interesting question in this context 

concerns ecologicel networks with "random interactionsV(eee Ginzburg et al.(1988) for a 

recent aurvey).So far, most authors seem to have adreaaed the question by looking for 

asymptotically stable fixed points in the interior of the state space. It aeems more natural 

to check whether the permanence conditions are satisfied. 
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Fig.1 : The heteroclinic cycle for (3). 



Fig.2 : The three-dimensional boundary faces for (7). 
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Fig.3 : Three three-dimensional boundary faces for (9). 
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