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Foreword 

This paper deals with the conventional problem of identifying a matrix parameter on 
the basis of observations corrupted by an uncertainty in the measurements. Recalling 
two basic approaches to  this problem - the stochastic scheme when the error in observa- 
tion is treated as a gaussian noise and the deterministic approach with only a set- 
membership description of the unknown variables, the paper indicates the connections 
and interactions in the techniques involved in the respective solutions. 
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1. INTRODUCTION 

The applications of elementary identification theory have indicated the relevance of 

two basic approaches to the problem: the conventional statistical approach with meas- 

urement noise modelled by probabilistic techniques such as gaussian or other types of 

noise [I-61 and the approach based on guaranteed estimates with undefined parameters 

taken to be unknown but bounded and with a set-membership description of the estimates 

[7- 1 21. 

The first problem is resolved by conventional statistical techniques while the second 

model formally requires the application of elementary set-valued calculus and nonlinear 

analysis [13, 141. It is shown however that the solutions to  these problems may be treated 

within a common framework - the problem of identification under statistical uncertainty 

with measurement noise taken for example to be gaussian with unknown but bounded 

mean values [15, 161. The statistical solution (with an additional extremal procedure) 

may then be used to  solve the deterministic problem ( § § 8,9) [16, 171. On the other 

hand, the deterministic solution will be consistent if applied to  certain types of statistical 

models ( § 5) [17-191. A sequential and a multistage ellipsoidal approximation scheme 

may then be formally applied for ensuring numerical results. 

The problems under discussion are related in general to  nonquadratic constraints on 

the unknowns. 

2. NOTATION 

Here we list some conventional notations adopted in this paper: 

R n  will stand for the n-dimensional vector space, while Rm - for the space of m x n - 

dimensional matrices, In will be the unit matrix of dimension n, A @ B - the Kronecker 

product of matrices A , B, so that (A @ B) will be the matrix of the form 



The prime will stand for the transpose and - for an mn - dimensional vector 

obtained by stacking the matrix A = {a(') ,.. ., a(")), with columns a(i) E R m  

( a i  = a )  so that  a - + = a , ( i  = 1 . n) ,  ( j  = 1 . m),  or in other ' I  ' 

terms 

n 
K = C (e(') 8 (A e(i))) 

i= 1 

where e(i) is a unit orth within R n  (eji) = sij, with 6,, the Kronecker delta : bij = 1 for 

. . 
a = 1,  = 0 for i # j). 

If C = {C) is a set of (m x n)-matrices C,  then E will stand for the respective set of 

mn-vectors C : C = {C). 

The few basic operations used in this paper are as follows: 

If <A , B >  = tr AB' is the inner product of matrices A , B E R m  " and (p , q) - 

the inner product of vectors p , q E R n ,  then for z E R n  , y E R m  we have 

~ @ z ' = ~ z ' E R ~ ~ ~  

< A , y @ z ' > = ( A z , y )  

Other matrix equalities used here are 

(A @ B)-' = A-' @ B-' 

( A  , B are n x n dimensional and their determinants I A I # 0 , I B I # 0) 

(A @ B)' = A' €3 B' 

( A @ B ) R = B T  

A sequence of integers i = k , . . . , s will be [k , s]. A finite sequence of vectors 

{c(i) : i = k ,.. .,s) will be denoted as [ [k , s], while an  infinite one {c(i) , i = s ,. .., w) 

as e [s ; - 1  with c [I  , - 1  = € [ . I .  Similar notations will be used for sequences of sets. For 

example R[k , s] will stand for a sequence of sets R( i )  , k 5 i 5 s. 

Symbols conv R n  and co R n  will denote the varieties of all convez compact and 

closed convez subsets of R n  respectively, and 



will be the support function of set Q Rn. 

With Q E conv Rn the operation of sup in the definition of p ( t  I Q )  may be substi- 

tuted for maz. 

Sr ( zO)  = {z: 1 )  z - z0 1 1  5 r ; 2 ,  z0E R n )  

will denote the Euclidean ball with center z0 and radius r ,  ( I I z I I = ( z  , z ) ' l2 ) ,  while 

h ( P  , Q )  will stand for the Hausdorfl distance between sets P , Q E conv Rn. Namely 

h ( P ,  Q )  =min { r : P C  Q + S,(O) , Q C P + S,(O) ) . 

The "time interval" is denoted as ( 1  , . . ., N) = TN 

3. THE I D E N T I F I C A T I O N  P R O B L E M :  A D E T E R M I N I S T I C  M O D E L  

Consider a system 

where y(k )  is the available measurement, p ( k )  is a given input, C is the matriz parameter 

to be identified and v ( k )  is the unknown disturbance. We further assume 

p E Rn , y E Rm, hence v E Rm , C E Rm n. 

The available additional information on C ,  [ I  , s] is given through geometrical res- 

trictions on these values which are taken to be specified in advance. These are 

c E C O  , ~ ( k )  E Q ( k )  (3.2) 

where C o  , Q ( k )  are assumed to be convex and compact in Rm " and Rm respectively. 

With measurement y [ l  , s] given, the aim of the solution will be to find the set of all 

pairs $ [ I  , a ]  = { C , v [ l , s ] )  consistent with (3.1), (3.2) and with given y [ l  , s] .  More pre- 

cisely the solution will be given through the notion of the informational domain. 

Definition 3.1. The informational domain C [ s ]  consistent with measurement y [ l  , s] 

and restriction (9.2) will be defined as the set of all matrices C for each of which there 

ezists a corresponding sequence v [ l  , s] such that the pair $ [ I  , s] = { C  , v [ l  , a ] )  satisfies 



both restriction (3.2) and  equation (3.1) (for the given y [ l  , s] ). 

The idea of the solution of the estimation problem is to find the set C[s] of all the 

possible values of C each of which (together with an adequate v [ l  , s]) could generate the 

given measurement sequence y[l , s]. 

It is obvious that set C[s] now contains the unknown actual value C = C O  which is 

to  be estimated. 

If s varies and even s -, oo it makes sense to consider the evolution of C[s] and its 

asymptotic behaviour in which case the estimation process may turn to  be consistent, i.e. 

lim C[s] = {C") 
S + 03 

The convergence here is understood in the sense that 

lim h (C[s]  , C") = 0 
S -+ 00 

where C"  is a singleton in R m  ". 

In some particular cases the equality (3.3) may be achieved in a finite number so of 

stages s when for example 

C[s,] = C", so> 1 . 

4. THE INFORMATIONAL DOMAIN 

Returning to  equation (3.1) the informational domain C[s]. Using standard tech- 

niques of convex analysis and matrix algebra we come to the following sequence of opera- 

tions. 

The system equations (3.1), (3.2) may be transformed into 

~ ( k )  E ( ~ ' ( k )  8 I,)C + Q(k) 

since I, C p = (P' 8 I,) C according to  (2.2). 

The set C[s] will then consist of all matrices C such that for every k E [l , s] we 

have 



together with 

( A  , 6) 5 P ( A  I CO) 

for any $(k )  E R m  , A E R m n  . This leads to the inequality 

for any +(k )  E R m  , A E Rmn.  Therefore, with A E R m n  given we have 

For an element C E C [ s ]  it is necessary and sufficient that relation (4.3)  is true for any 

G ( k )  E R m ,  k E [l , s ] .  

Hence we come to the following assertion. 

Lemma 4.1. The informational domain C [ s ]  consistent with measurement y [ l  , s ]  and 

with restrictions (9.1), (9.2) is  defined by the following support function. 

where 

The proof of Lemma 4.1 follows from (4.3)  and from the fact that f ( ~ )  is a convex, 

positively homogeneous function, [14]. 

A special case arrives when there is no information on C at  all and therefore 

Co = R m  ". Following the previous schemes we come to 



Lemma 4.2 .  Under restrictions (3.2), C o  = Rm ", the set C [ s ]  is given b y  the sup- 

port junction 

over all vectors +(k)  that satisfy 

A question may however arise whether in the last case the set C [ s ]  is bounded. 

Lemma 4.3 .  Suppose Co = Rm " and rank P ( s )  = n for the matriz 

P ( s ) = { p ( l )  , . . ., ~ ( 8 ) ) .  Then the set C [ s ]  is bounded. 

Taking equation (4.6) it is possible to solve it in the form 

+(k)  = ( ~ ' ( k )  @ 1,) ( W [ s ]  @ 

where 

Indeed (4.6) may be transposed into 

and the solution may be sought for in the form 

+(k) = ( ~ ' ( k )  @ 

In view of (4.6) this yields equation 

( W [ S ]  @ ~,)e = K (4.10) 

where the matrix W [ s ]  is invertible (the latter condition is ensured by the condition of 

P ( s )  . Equations (4.8)-(4.10) produce the solution (4.7). 

Substituting +(k)  of (4.7) into (4.5) it is possible to observe that the support func- 

tion p ( h  ( C [ s ] )  is equibounded in K over all K E SFn ( 0 )  where S r n ( 0 )  is a unit ball in 



R mn. This proves the boundedness of C [ s ] .  

5. R E C U R R E N C E  E Q U A T I O N S  AND C O N S I S T E N C Y  C O N D I T I O N S  

The next step will be to  derive recurrence evolution equations of the set C [ s ] .  

Starting with relation (4.3) ,  substitute 

l,b'(k) = 77 M ( k )  

where M ( k )  E Rmn , l < k < s .  

Then (4.3) will be transformed into the following inequality 

Denote the sequence of matrices M ( k )  E Rmn , k E [1, ..., s] as M [ l  , s ] .  

Lemma 5.1 In order that C E C [ s ]  it  is necessary and suficient that (5.1) would hold 

for any 7i E Rmn, and any sequence M [ l  , s] E M [ l  , s ] .  

The proof is obvious from (4.3), (5.1) and Lemma 4.1. Hence in view of the proper- 

ties of support functions for convex sets we come to  the following assertion. 

Lemma 5.2 In order that the inclusion 

c E C [ s ]  

would be true it is necessary and suficient that 

E C ( s  , co , M [ l  , s ] )  

for any sequence M [ l  , s] E M [ 1  , s] where 

From Lemma 5.2 it now follows 



Lemma 5.3. The set C [ s ]  may be defined through the equality 

C[sl  = n { c ( 3  , Go , ~ [ 1  , 8 1 )  I ~ [ 1  ,s] E ~ : [ 1  , 91 1 
In a similar way, assuming the process starts from set C [ s ]  at instant s ,  we have 

and that we have 

C [ s  + 11 C C ( s  + 1 , C [ s )  , M ( s  + 1) ) 

for any M ( s  + 1)  E Rmn rn and further on 

C [ s + l ] = n { c ( ~ + l , C [ ~ ] , ~ )  I M e R m n X m  1 
This allows us to  formulate 

Theorem 5.1 The set C [ s ]  satisfies the recurrence inclusion 

C [ s  + 11 c C ( s  + 1 , C [ s ]  , M ) ,  C [ O ]  = C o  

- whatever is the matriz M E Rmn rn - and also the recurrence equation (5.3). 

The relations of the above allow to construct numerical schemes for approximating 

the solutions to  the guaranteed identification problem. 

Particularly, (5.4) may be decoupled into a variety of systems 

C M  [a + 11 c C ( s  + 1 , c M [ s ]  , M ( 8 ) )  , C[O] = C o  (5.5) 

each of which depends upon a given sequence M [ l  , s] of "decoupling parameters". It 

therefore makes sense to consider 

cu 181 = <n C M I S I  I ~ [ l  , 8 1 1  

Obviously C [s]  E C U  [s]  

From the linearity of the right-hand side of (5.2) and the convexity of sets C o  , Q ( s )  

it follows that actually C [ s ]  = C U [ s ] .  

Lemma 5.4 The set C [ s ]  = C U [ s ]  may be calculated through an intersection (5.6) of 

solutions CM[8]  to a variety of independent inclusions (5.5) parametrized by sequences 

M [ 1  , 81. 



This fact indicates that  C [ s ]  may be reached by parallel computations due to  equa- 

tions ( 5 . 5 ) .  The solution to  each of these equations may further be substituted by 

approximative set-valued solutions with ellipsoidal or polyhedral values. 

An important question to  be studied is whether the estimation procedures given here 

may be consistent. It will be shown in the sequel that  there exist certain classes of 

identification problems for which the answer to  this question is affirmative. 

We will discuss this problem assuming C o  = Rm ". Then the support function 

p(A  1 C [ s ] )  for set C I S ]  is given by ( 4 . 5 ) )  ( 4 . 6 ) .  

The measurement y ( k )  may be presented as 

y ( k )  = (p'  ( k ) @  I,) C * +  v * ( k ) ,  ( k =  1, ..., s )  ( 5 . 7 )  

where C *  is the actual vector t o  be identified, v * ( k )  is the unknown actual value of the 

disturbance. 

Substituting ( 5 . 7 )  into ( 4 . 5 ) ,  ( 4 . 6 )  we come t o  

P ( A  I ~ [ s l )  = i n f  p (+(k )  I v * ( k )  - ~ ( k ) )  + f: + ' ( k ) ( p ' ( k )  @ I,) C* 
k=l 

over all vectors $ ( k )  that  satisfy 

where 

This is equivalent to 

where 



In other terms 

C [ s ]  C C* + R * [ s ]  

where R*  [a ]  is the error set for the estimation process. The support function for R *  [s ]  is 

given by (5.9). 

Since v * ( k )  E Q ( k )  we have 

p ( K  I R * [ s ] )  2 0 , V T E  Rmn 

Hence every sequence t,bO [ l  , s] E \k (s  , A) that  yields 

will be a minimizing element for problem (5.9). 

The estimation process will be consistent within the interval [ l  , s] if 

R * [ s ]  = ( 0 )  

or, in other terms, if 

p(K I R * [ s ] )  = 0 ,  V X E  Rmn . (5.10) 

The proof of the following assertions may be found in [17] (see also [16, 181). We 

will now indicate particular classes of problems when the inputs and the disturbances are 

such that  they ensure the conditions for consistency t o  be fulfilled. 

Condition 5.A 

(i) The disturbances v * ( k )  are such that they satisfy the equalities 

( v * ( k )  , t,b*(k)) = ~ ( t , b * ( k )  I Q ( k ) )  

for a certain r-periodic funct ion t,b*(k) ( r  2 m )  that yields 

Rank {$*(I) , . . . ,  t,b*(r)) = m . 

(ii) The input  funct ion p ( k )  is  q-periodic q 2 n + 1 

Among the vectors p ( k )  , ( k  = 1 , . . . ,  q) one may select a simplicia1 basis i n  RnJ i.e. 

for any z E R n  there ezists an array of numbers ak 2 0 such that 



(iii) Numbers r and q are relative prime. 

Lemma 5.5 Under Condition 5.A the error set R * [ s ]  = 0 for s 2 rq. 

Condition 5.B 

(i) function p ( k )  , k = 1 , ..., w, i s  periodic with period q _< n ;  the matriz  W [ q ]  i s  non-  

singular. 

(ii) the sequence v ( i )  i s  formed of jointly independent random variables with identical 

nondegenerate probabilistic densities, concentrated on the set 

Q ( k )  = Q , Q E comp Rm , int  Q # 6 

Condition (ii) means in particular that for every convex compact subset 

Q ,  G Q  , ( Q E  E comp Rm) of measure 6 > 0 the probability 

P { v ( k )  E Q,) = S > 0 , V k E [1 , w] 

At the same time it will not be necessary for values of the distribution densities of 

the variables v ( i )  to be known. 

Lemma 5.6 Under Condition 5.B the relation 

h ( R * [ s ] ,  ( 0 ) )  - 0 ,  s - w 

holds with probability 1 .  

The examples indicate two important classes of disturbances v ( k )  where one consists 

of periodic functions and the other of a sequence of equidistributed independent random 

variables. In both cases one may ensure consistency of the identification process. However 

this requires some additional assumptions on the inputs p ( k ) .  Basically this means that 

function p ( k )  should be periodic and its "informational matrix" should be nondegenerate 

as indicated in the precise formulations, (see also [18, 191). We shall now pass to the dis- 

cussion of some statistical estimation schemes. 



6. THE STANDARD STOCHASTIC MODEL WITH GIVEN STATISTICS 

Consider a linear regression model 

Y ( ~ )  = C* ~ ( k )  + E ( k )  k E  T~ (6-1)  

where C ,  E R m X n  , E E Rm and C, , ( ( k )  are random gaussian variables. Following 

(2.2) we have 

~ ( k )  = ( ~ ' ( k )  @ Im) c* + E(k) 

where the stacked vector c, E Rmn. The mean values for c, , ( ( k )  are taken to be 

C , v ( k ) :  

E C ,  = C , E E(k) = v ( k )  (6.2) 

and the respective covariance matrices to be L-' and 

N - l ( k ) ( ~  E R~~~ m n ,  ~ ( k )  E R ~ ~ ~ ) .  

For a one-stage process 

Y = (P' 8 Im) ct + E 

with measurement y, mean values C,v and covariance9 L , N being given, a standard cal- 

culation yields 

E ( c ,  I Y , C , v )  = c + IP-'(p 8 I,) N ( y  - Cp - v )  (6.3) 

where 

IP = L + ( P  8 Im)N ( ~ ' 8  I,) 

If one denotes 

then the formula (6.3) will lead to a recurrence equation 



where the matrices P ( s )  , ~ - ' ( s )  follow the equations 

It is well known that C[s]  gives the beat quadratic estimate for C,. Namely 

E{ ) I  C ,  - C [ s ]  [ I 2  1 ~ [ 1 , 8 ]  , c , v [ l , s ] )  l ~ { l l  6, - x / I 2  1 Y [ ~ , s ]  I C , ~ [ l , s ] }  

whatever is the vector x E Rmn. In other words we come to 

Lemma 6.1 The conditional mean value C[s]  for the estimate of C ,  due to the 

linear-gaussian-quadratic model (6.1), (6.2) is given b y  relations (6.4), (6.5). 

The given well-known relations may be used as a complementary tool for some 

further problems. 

7. U N C E R T A I N T I E S  I N  T H E  M E A N  V A L U E S  

Assume that in the standard model (6.1) the mean values C , v ( k )  are unknown in 

advance and the only information on these is given by a set-membership constraint (3.2), 

namely 

c E C O  , v ( k )  E Q ( k )  

with C o  , Q(k )  convex and compact. 

Assuming 

C,[S]  = {U C [ s ]  I C E C O  ; v ( k )  E Q(k )  , k = 1 ,..., s )  

we come to a recurrent equation with set-valued variable C,[s] .  This is 

' * [ , I  = (Imn - P- ' (8)  P ( s ) )  C,[S - I ]  + 
+ ~ - ' ( s )  G ( s )  N ( s )  ( ~ ( 8 )  - Q ( s ) )  , 

G*[o] = Co 

with P ( s )  , P ( s )  , G ( s )  as in (6.5). 

Lemma 7.1 The set C , [s]  of conditional mean values of the estimates of C ,  after s 

measurements satisfies equation (7.2). 



Substituting 

into (7.2) we obtain 

where 

C,(s  + 1 , C,[s]  , R ( s  + 1) )  = (I,, - R ( s  + 1)N(s  + l ) G a ( s  + 1) )  c * [ s ]  + 
+ R ( s  + 1) N(s  + l ) ( y ( s  + 1) - Q ( 8  + 1 ) )  

with support function 

~ ( t  I C , [ S  + 11) = ~ ( t  I (I,, - R ( S  + 1) N ( S  + I ) G , ( S  + 1 ) )  e,rsl) + 
+ ~ ( t  I R ( s  + 1) N( s  + 1) ( Y ( S  + 1) - Q ( s  + 1 ) ) )  

Due to a conventional matrix transformation given in (6.5), relation (7.4) may be 

also rewritten as 

or, taking the notation 

8. S T O C H A S T I C  V E R S U S  D E T E R M I N I S T I C  S C H E M E S  ( T H E  ONE-  

S T A G E  C A S E )  

Let us compare the results of the identification procedure within the models (3.1) 

and (6.1). Suppose that in s stages the measurement y [ l  , s] is the same for both models 

and the restrictions (3.2), (7.1) are also the same. We recall however that in (3.1) the 

problem is deterministic with set-membership bounds (3.2) on the unknown values of 

C , v ( k ) ,  while in (7.1) it is stochastic with C , v (k )  being the unknown mean values for 

C ,  , ( ( k ) .  The set-membership bound (7.2) on the latter is however the same as in (3.1). 



Comparing (7.4) with (5.2) and taking M ( s  + 1 )  = R ( s  + 1 )  we observe that 

C [ S  + 11 2 c , ( s  + 1 , c [ s ]  , R ( s  + 1 ) )  

for any L , N [ l  , s + 11 provided 

C*[s]  2 T:[8]  

Since C o  = C[O] = C,[O] the latter inclusion holds for any s , K ( s )  

Therefore the following assertion is true. 

Lemma 8.1 Assume that in  the models (8.1)) (6.1) the measurement y[1 , s] is the 

same and the restrictions (8.2)) (7.1) do coincide. Then the set 

C [ ~ I  2 C * [ S I  (8.2) 

whatever i s  the realization C , [ s ]  generated b y  equation (7.4) uith any L , N [ l  , s ] .  

As it was indicated in (5.3), with s e t C [ s ] = W  given, the set 

C [ s  + 11 = C ( s  + 1 , s , W )  for the system 

y ( s  + 1 ) ~  ( p f ( s  + 1)  8 I,) c + Q ( s  + 1) , c E  

may be given as 

C [ B  + I ]  = C ( B  + 1 , , W )  = {n C ( S  + 1 , w , M )  1 M E R m n x m )  (8.3) 

On the other hand, due to (5.2) (8.1) we have 

C [ s  + 11 C C , ( s  + 1 ,  W , R )  (8-4)  

for any R E  R where R is the set of matrices of the special structure given in (7.3) or due 

to (5.2), (8.1), (7.6). 

C [ s  + 11 C C * ( s +  1 ,  W ,  S )  (8.5) 

for any S E S where S is the set of matrices of structure (7.5). Then a question does arise 

whether (8.4), (8.5) may be transformed into equalities 

C [ S  + I ]  ={n c,(s+ 1 ,  W ,  M )  I M )  (8.6) 

over all M E R or over all M E S. The structure of the problem will be shown to be such 

that relation (8.6) would be already true with the intersection taken only over the sub- 

class R or S rather than over the whole space Rmnxm. 



We shall prove that (8.6) is true with the intersection taken over all M E  S. 

Assume C [ B ]  for the model (3.1), (3.2) to be given. 

Let us consider a complementary model taken in the form 

y(s  + 1)  = ( p y a  + 1) 8 I,) C + € ( a  + 1)  + ~ ( 8  + 1)  (8.7) 

with unknown deterministic variable 

v(8 + 1)  E Q ( 8  + 1)  

and with 

With y ( ~  + 1)  being given, consider a one-stage process due to 

E * [ s  + 11 = E * ( s  + 1 ,  C [ 8 ]  , S )  

with set S consisting of all the matrices S of the form 

S = L - ~  G ( s  + l ) (N- '  + G'(s  + 1) L-' G ( s  + I ) ) - '  

and with N , L arbitrary. 

Lemma 8.2. The following equality is true 

C [ s  + 11 = {n C,(8 + 1 , C [ 8 ]  , S )  1 S E S) . (8.8) 

Before proving this assertion we introduce several additional propositions. 

Lemma 8.3. With L = I,, , N-'(s + 1) = a I ,  , a > 0 , p ( 8  + 1)  # 0 we have 

( ~ ' ( 8  + 1)  8 I,) L-l(p(8 + 1) 8 I,) K - ~ ( B  + 1) + I,  , ( a  + 0 )  (a) 

K-'(8 + 1) + o ( a  + oo) (b) 

Indeed, taking the given values for L , N-'(s  + 1) and seeing that 

( ~ ' ( 8  + 1) 8 Im) ( ~ ( 8  + 1)  8 I,) = P ' ( B  + 1) ~ ( 8  + 1) Im , 
we come to the relation 



{lim p ( a )  1 a + 0 )  = I ,  

this proves the assertion (a) of the Lemma. The proof of assertion (b) is obvious. 

Lemma 8.4. In order that 

C E C [ s  + 11 
it  is necessary and suficient  that the inequality 

( e ,  c) 5 P ( e  I C * [ 8  + 11) = (8.10) 

= ~ ( e  I prnn - S ( S +  I )  G ' ( s+  1 ) )  C , [S] )  +p(e  I S ( S +  ~ ) ( Y ( s +  1 )  - Q ( 8  + 1 ) ) )  = 

= u(e, S ( S  + 1 ) )  

would be true for any values of P ( s )  = L > 0 , N ( s  + 1 )  = N > 0.  

In order t o  prove Lemma 8.4, recall that  

CIS+ I ]  =CIS]  n C J S  + 11 
where C y [ s  + 11 is the set of matrices C that  satisfy the inclusion 

y(s  + 1)  E C p(s + 1 )  + Q ( s  + 1)  

for the given value of ~ ( s  + 1) .  

If C E C [ s  + 11 then (8.10) is always true due to  (8.5) .  Let us therefore prove that  if 

(8.10) is true then (8.9) does hold. Suppose that  (8.10) is true for L , N but (8.9) is false. 

Then there exists a vector C* that  satisfies (8.10) for any L , N but either C* E C [ s ]  or 

C* E C , [ a  + 11. 

-* - - 
If C E C y [ s  + 11, then one can specify a vector q* such that  

(-q* , Y )  + (q* , P ' ( S  + 1) 8 1,) 6 2. ~ ( q *  I - Q )  + E 

for a certain c > 0.  Taking 

e* = ( ~ ( 8  + 1) 8 Im)q* 

and calculating the support function of 

C , [ S  + 11 = C, (S  + 1 , e,rsl , scs + 1 ) )  

in (7.6) (with P ( s )  substituted for an arbitrary L > 0 )  we have 

(e* , C*)  r p(e* I C , [ s  + 11) = 



= p(q* 1 ( ~ ' ( 3  + 1 )  B Im)  - ( ~ ' ( 3  + 1 )  B Im) L-' ( P ( S  + 1) B Im)  K - l ( s  + 1 )  x 

x ( ~ ' ( 8  + 1 )  @ Im) )  C * [ s I )  + 
+ p(q* I ( ~ ' ( 3  + 1 )  8 Im) L- ' (P(s+ 1 )  B Im)  ~ - ' ( s +  l ) ( ~ ( s  + I )  - Q ( s +  1 ) ) )  

= @ ( L  , N )  

Take 

L = I,, , N-'(s + 1 )  = a I m  , (8.13) 

Substituting (8.13) into (8.12) and using the result of Lemma 8.3 (a) we come to  the 

assertion that  there exists for a given c > 0 a number a. > 0 such that  for a < ao, we 

have 

- 
I ( C) - ((9' , ~ ( 3  + 1 ) )  + ~ ( q *  l - Q ( s  + 1))) I 5 t 

Hence, with substitution (8.13) ,  for a 5 a. and for t* = ( p ( s  + 1 )  @ Im)q* we have 

(q* , P ' ( S  + 1 ) B  Im) C 2 ~ ( q *  I y ( s  + 1 )  - Q ( 8  + 1 ) )  + $ 
This contradicts with (8.11).  Therefore C* E c y [ s  + 11. 

Let us now suppose that  c* E c [ s ] .  Then there exists an @ E Rmn and a 6 > 0 

such that  

(@ I C*) 1 p(@ I q s ] )  + 6 (8.14) 

Taking L = I,, , N-'(s  + 1 )  = a I m  we observe from Lemma 8.3(b) that  

S ( s  + I)  - 0 , a - oo and therefore from (7.5), (8.10) i t  follows that  there exists an al 

such that  with cr > al we have 

6 
(@ , C*) 5 P(@ I C*lsI) + 3- 

This contradicts with (8.14).  

Hence if (8.10) is fulfilled for any L > 0 , N > 0 then the inclusion (8.9) will also be 

true. Lemma 8.4 is therefore verified. Lemma 8.2 is now a direct consequence of Lemma 

8.4. The result given by Lemma 8.4 may be used for sequential estimates in the 

identification process. 



9. S T O C H A S T I C  V E R S U S  D E T E R M I N I S T I C  S C H E M E S  (THE M U L T I -  

S T A G E  C A S E )  

It was shown in the previous section that in each stage of the identification process 

one may use a relation between the solution to the deterministic estimation problem and 

the solution to  a related stochastic estimation scheme. This allows some sequential esti- 

mation procedures. 

A similar property is however true for a multistage scheme. Namely, consider the 

model (3.1), (3.2) and the related complementary model (8.7). These could be reshaped to  

the form 

y(s) = T ( s )  c + V ( s )  

for the deterministic system (3.1), (3.2) and 

y ( s )  = T(s) + V ( s )  + E(s) 

for the stochastic model (8.7). 

Here 

and the covariances are 

E - 6 )  (6 - E 6)' = L , E E(s) E'(s) = IN-l(s) 

where L > 0, and the m s x  ms matrix N(s) > 0 is diagonal 

Y(.) = 

~ ' ( 1 )  @ Im 

i 
~ ' ( 8 )  @ Im 

Y (1) 
! , T ( s )  = , 

.y(s) 

- , Z(8)  = 
'€(1)' 
i 

.€(s)* 
The set-membership constraint is 



(the variables <(l), . . . ,<(s) are taken to  be non correlated) 

The result of Lemma 5.3 may now be reformulated in a form that  corresponds to a 

one-stage problem (similar t o  (5.2)). 

Lemma 9.1. The following inclusion is true 

C[s] C (I,, - M(s)  T(s)) Co + M(s)(Y(') - Q(s)) = R(M(s)) (9.3) 

for any mn x ms-matriz 

M(s)  = (M(l), ..., M(s)) . 
The equality 

C [ ~ I  = {n R ( ~ ( 8 ) )  I ~ ( s ) )  

is true. 

It is clear that  (9.3) now coincides with the basic relation for Lemma 5.2. 

On the other hand, considering the estimation of 6 through model (9.2), and apply- 

ing a formula similar to  (6.3) we come to  the equality 

E ( ~ [ s ]  I Y(s), E 6, V(s)) = (9.4) 

= (I,, - IP-' T'(s) N T(s)) E 6 + IP-' T'(s) lN (y(s) - V(s))  

with mn x mn-matrix 

IP = L + T'(s) lN T(s)  = IP-'(s) 

where IP(s) was defined by (6.5). 

Denoting 

C*[S] = {U E(C[s] I ~ ( 8 ) )  E 6, V(s))  1 E 6 E CO, V(s) E Q(s)) 

and making a transformation similar to  (6.5) we observe 

C*[S] = (I,, - S ~ ( 8 ) ) C o  + S(Y(S) - Q(s)) (9.5) 

where 

S = L-' TO(s) K-'(8) , 
K(s)  = lN-l(s) + T(s) L-' T'(s) . 

Clearly from (9.3)) (9.5) we have 



for any S derived through any pair L > 0 ,  N ( s )  > 0.  Assuming that the sequence 

N [ l , s ]  = { N ( l )  , .. ., N ( s ) )  is generated by the diagonal elements of N ( s )  and applying 

Lemma 8.2 to system (9.5)) (9.6) we come to the assertion: 

Lemma 9.2. Provided y ( s )  is the same for both (9.1) and (9.2), the deterministic set 

C [a] G C * [s]  

for any pair { L ,  N [ l , s ] )  that generates C t [ s ] .  Moreover 

C [ S ]  ={n C t [ s ]  I L > O ,  N [ l  , s ]  > 0 ) .  (9.7) 

Finally, a direct calculation shows that C t [ s ]  may also be achieved through the 

equation 

where 

Q ( s  , s + 1)  = I 

( s  , i )  = ( s  , i + 1 ( I  - S ( ) G ' ( ) )  i = s , s - 1 ,..., 1 . 

Lemma 9.8. The ezpressions (9.5) and (9.8) are equivalent. 

Proof. Starting with (9.4) we have 

Suppose (9.9) and (9.8) are equivalent a t  stage k ,  i.e. 

Then from the relations (6.4)) (6.5) and definition of 9, 



and 

@(k + 1, i + l)S(i) = (Imn - I P - ' ( ~  + l)P(k + l))@(k,i+l)S(i) 

= ~ - ' ( k  + l)G(i)N(i) . 

This completes the proof. 

In order to ensure numerical results one may apply an approximation technique. A 

convenient scheme is based on ellipsoidal approximations [ll, 20, 211. 

10. UNCERTAINTY IN MEAN VALUES: ELLIPSOIDAL APPROXIMA- 

TIONS (THE ONE-STAGE CASE) 

With covariances L, N [I ,-I given, the recursion (7.6) 

c t[s+l] = (Imn - ~ ( s + l )  G ' ( s + I ) ) ~  *[s] + S(s+l)(y(s+l) - Q(8-I-1)) 

allows to be computed. 

Assume that c t[s], Q(s+l) are ellipsoids expressed by 

c t[s] = {ct(s)  I (ct(s)  - c 9 ( s ) ) ' ~ ~ ~ ( s ) ( c t ( s )  - cO(s)) 5 1 ,  c t(s)  E Rmn) (10.1) 

Q(s) = {v(s) I (v(s)  - vO(s))' C F ~  (s)(v(s) - vO(s)) 5 1, V(S) E Rm)  . (10.2) 

Then it is well known that the support functions of these sets are given by 

p(el I i2 ,[,I) = (e1,CP(s)) + ( ~ , ( ~ ) e , , e , ) ~ / ~  el E R~~ (10.3) 

~ ( 4  1 Q(3)) = (e2,v0(3)) + (~2(~)4 ,4) ' /~  4 E R m  (10.4) 

And from (7.6), 

p(t I C *[S+II) = ( e , ~  ( 8 ~ 1 )  C ~ ( S ) )  + (A ( s + ~ ) c ~ ( s ) A ~ ( s + ~ ) ~ , ~ ) ~ / ~  + (10.5) 

+ (e,S(s+l)(y(s+l) - vO(s+l))) + 
+ (s(~+i)c~(~+i)s'(~+i)e,e)~~~ 

where 

A(s+l) = I,, - S(s+l)Gf(s+l) . 
Clearly the set c t[s+l] is not an ellipsoid. 

We could then observe from relation (6.5), that A(s+l) is nonsingular, and therefore 

that A(s+l)Cl(s)A'(s+l) > 0, if Cl(s) > 0. 



On the other hand, S(s+l)C2(s)S ' (s+l)  turns to  be singular due to  the dimension of 

the respective matrices ( m  < n ) .  Therefore, we would have to  consider the approximation 

of the Minkowski-sum of a nondegenerate and a degenerate ellipsoids. 

For two given ellipsoids E1(al ,R l ) ,  E2(a2,R2)  with support functions 

~ ( f  I E,(a,,R,)) = (f,a1) + ( ~ l f , f ) ' / ~ ,  Rl > 0 

P ( f  I E2("2,R2)) = (f,a2) + ( ~ , f , f ) ' / ~ ,  R2 2 0 

define a new ellipsoid E[zl ,z2]  with support function 

~ ( f  I E[z1,221) = ( f , ~ ,  + a,) + ( ~ ( 2 1 , z 2 ) f , f ) ' / ~  

where zl,z2 E (0,oo) and 

Then we can find that  E[zl,z2] has the following properties: 

Lemma 10.1. For any zl,z2 E (O,oo), 

El(a1,Rl)  + E,(a,,R,) G E[z,,z,l . 
This follows from 

Lemma 10.2. The equality 

~ ( e  I E ~ ( ~ I , R I )  + E ~ ( ~ ~ , R ~ ) )  = ~ ( f  I n E [ z I , z ~ I )  = inf ~ ( f  I E[z1,z21) 
Z l r %  21 r Z 2  

holds for any f 2  E Rmn. 

Proof. From Lemma 10.1 and an obvious inequality, i t  follows 

p(f2 I E ~ ( ~ , , R , )  + E ~ ( ~ ~ , R ~ ) )  I ~ ( f 2  I n I inf ~ ( f 2  I E[zl,z21) . 
2 1  9% 219% 

Therefore i t  suffices to  prove that  this relation turns to  an equality for any f 2 .  



Since R1 is nondegenerate, (Rlt , l)  # 0 for Ill # 0. If (R21,1) # 0, the inequality in 

the proof of Lemma 10.1 turns to  an equality with z, = (Ril,l), i = 1,2 while with 

(R21,1) = 0 we have 

lim (R(z1,z2)l,t) = (Rll , l )  . 
%+O 

This completes the proof. 

The assertion of Lemma 10.2 means that the exact set 

E = E,(a,,R,) + Ez(a2,Rz) = { o q ~ 1 , ~ 2 )  I 21 > 0, 22  > 0) 

could be obtained by the intersection of the bounding ellipsoids of the form E[z1,z2], each 

of which contains no other ellipsoid that contains IE and therefore is one of the minimal 

ellipsoids with respect t o  inclusion (or in other words, each is a Pareto-ellipsoid). 

Hence we could 'select' one of the E[zl,z2] which has a given optimality property 

while the optimal criterion cp should satisfy 

cp(C1) I cp(C2) if El(0,Cl) c Ez(O,C,) - 
A simple example occurs with cp(C) = Tr[C] where Tr[C] is the trace of C (the sum of 

semi-axes) . 

Lemma 10.3. The ellipsoid E[Z f ,zzf] that minimizes the function 

f(z1,zz) = Tr[R(z1,z2)1 

is generated by the values 

a Note that -f(zl,z2) = 0, i = 1,2, yields a zi 

and therefore 

z; = T,'/'[R~] . 
(The cpoptimal ellipsoid is tangential to  the true set.) 



Returning to (10.5)) we obtain 

Lemma 10.4. Suppose c t [ s ] ,  Q(s+ l )  are defined by (10.1), (10.2). Then the bound- 

ing ellipsoid T: ![s+l] of t[s+3.] with a minimal sum of semi-azes (TrR(z1,z2)) is given by 

p(L I C i[s+l]) = (l,CP(s+l)) + ( C ~ ( S + ~ ) L ) L ) ~ ~ ~  (10.10) 

where 

CP(s+l) = A (s+l)Cl)(s) + S ( S + ~ ) ( ~ ( S + ~ )  - vO(S+~)) (10.11) 

1 
C,b(s+l) = (zl + z2)(-A(s+l)C1(s)A'(s+l) + (10.12) = 1 

1 + -S(s+1)C2(s+l)S'(s+1)) 
=2 

z1 = T ~ ' / ~ [ A  (s+l)Cl(s)A '(s+l)] (10.13) 

z2 = ~ r ' / ~ [ S ( s + l ) C ~ ( s + l )  Ss(s+l) ]  (10.14) 

We can obtain a recursive scheme by defining Cl(s+l)  = C,b(s+l), but it should be 

noted that the error between the bounding ellipsoid and the true set would accumulate 

with the number of steps so that the obtained ellipsoid would be larger than a bounding 

ellipsoid of the true set after many recursions. 

11. U N C E R T A I N T Y  IN M E A N  V A L U E S :  E L L I P S O I D A L  A P P R O X I M A -  

T I O N S  ( T H E  M U L T I S T A G E  C A S E )  

The recursive scheme of the previous section is convenient to update the set, but the 

recursive approximation would yield a set estimate which may clearly be larger than the 

true set in p-optimal sense. Here, we would consider the nonrecursive case when C is to 

be estimated at  a certain fixed time s. 

Denoting T: t[s] with Go and Q [ l  , s] where Go , Q [ l  , s] are ellipsoids defined by 

Go = Eo(? , Co) , Q(k) = Ek(vo(k) , C2(k)) , k = 1 ,. .. , s, we obtain from (7.6) 

where 



@ ( s  , i )  = @ ( s  , a' + 1) (Imn - S ( i ) G ' ( i ) )  i = s , s - 1 ,..., 1 . 

Then (11.1) is a Minkowski-sum of s + 1 ellipsoids, among which @(s , 1) Go is a nonde- 

generate ellipsoid. Consider the approximation of G * [ a ]  by a bounding ellipsoid. 

The case of the sum of two ellipsoids may now be extended to  the sum of a + 1- 

ellipsoids. 

Lemma 11.1. Define E[zo , . . ., z,] as an ellipsoid with support function 

P ( ~ I E [ Z  0 , . . . , ~ 8 ] ) = ( t , ~ ( s  ) l ) ~ + ~ @ ( s , i + l ) S ( i ) ( y ( i ) - v O ( i ) ) ) +  (11.2) 
i= 1 

+ ( R ( z ~  ,..., z , )e ,  !) ' I2 
where zo ,..., z, E (0  , oo), and 

6 1 
R ( z o  ,..., z,) = C zj(- @ ( s  , 1) Co @'(a , 1) 

j=O ' 0  

1 + C - @(s , i + 1) S ( i )  C,(i) S t ( ; )  @'(s , i + 1 ) )  . 
i = l  =i 

Then for any sequence z[0 , s] 

E[zo  , ..., z,] > G*[S]  . 

Lemma 11.2. The equality 

inf p(.f I E [zo , . . . , z,]) = p(.f I T: * [ a ] )  
20 r . . . ,  28 

holds for any .f E Rmn. Therefore, 

The proof is similar to that of Lemma 10.2. 

Lemma 11.3. The bounding ellipsoid which is tangential to G,[s] to the direction ! is 

given b y  E[zo(!) ,..., z,( t)]  where 

~ ~ ( e )  = (a(s  , 1) C ,  @ y s  , 1) e , !) ' I2 (1  1.6) 

~ ~ ( e )  = , i + 1) s(i) z2(i) syi) qs , i + 1) e , e ) l / 2  i = i ,. .., (11.7) 

ezcept for t* which yields zi( t*) = 0 . 



Lemma 11.4. The bounding ellipsoid for c t . [ s ]  which has the minimal sum of the 

semi-azes i s  given by E[Z;  , . .., Z J  where 

12. A P P R O X I M A T I O N  O F  T H E  D E T E R M I N I S T I C  S O L U T I O N  

In order to approximate the deterministic solution C [ s ]  one may apply formula (9.6) 

so that 

C I S ]  = { n c g  ( 8  I L , ~ [ 1  , 8 1 )  I L , N [ I  , 81)  

where 

c9 ( S  1 L , N [ I  , ~ 1 )  = C ~ [ S ]  

is the set given by (11.1) for a fixed pair L , N [ 1  , s ] .  

On the other hand each of the latter sets may be approximated by ellipsoids as in 

(11.5) so that 

c 4 s I  = { n ~ ( z [ o  , 81 I L , ~ [ 1  , 8 1 )  I z [o  , 81)  (12.2) 

where 

E(z[O , 81 I L , N[1  , 81) = E[zo  , . a  ., zal 

is the ellipsoid of (11.2) calculated for a fixed pair L , N [ 1  , s ] .  

Combining (12.1))  (12.2) we have 

el81 = { n { n ~ ( z [ o  , 81 I L , ~ [ 1  , 8 1 )  I 4 0  , 81) I L , ~ [ 1  , 81)  (12.3) 

and obviously 

~ [ S I  G { n ~ ( ~ ' [ o  , 8 1  I L , ~ [ 1  , 81 )  I L , ~ [ 1  , s I ) )  (12.4) 

where r *LO , s] = { z i  , . . ., za3 is calculated due to (11.8)) (11.9). 

Formulae (12.3)) (12.4) allow to decouple the estimation process into independent 

"parallel" procedures. 



13. C O M P U T E R  S I M U L A T I O N  

We will now give an example following assertions of this paper. The scalar observa- 

tion y (k )  is generated by the deterministic model 

where c i  = 10 , c; = 5. The uncertainty is defined by 

eo = { c  I (c - F ) ,  c t 1  ( c  - F )  I 11 

Q ( k )  = { v ( k )  I v ' ( k )  C z l ( k )  v ( k )  l 1)  = { v ( k )  I I v ( k )  I I P I  
where 

Figure 1  shows the informational domain C [ 1 ]  after observation y ( l ) ,  where 

p(1) = (-0.94 , 0.22) and the noise value v ( 1 )  = 1.31. Figures 2-4 show 

In ~ ( ~ 1 0 ,  11 I L , ~ ( 1 ) )  I z [ o  , 111 = s I L - ~  , ~ - l ( l ) l  

with L  = I  and N - l ( l )  = , 1  , 10 respectively. It can be seen that  the intersection 

of the sets tends to  the informational domain 

lim S [ I , a ]  n S[I ,p]  = C [ l ]  . 
a++O 
B-- 00 

Figure 5  shows the bounding ellipsoids of minimum semi-axes with 

L  = I ,  N-l = 0 ,  lo', i = 4,-3.5,. . - ,2,  and the shaded portion expresses the set given by 

the right hand side of (12.4). From here it can be seen that  in this case (12.4) is a strict 

inclusion. 

We shall pass to  the multi-stage case. The informational domain C [ 3 ]  is shown in 

Figure 6, where p ( k ) ,  v ( k ) ,  k  = 1, ..., 3  are selected randomly. Figure 7 shows the e l l ip  

soids tangential to C t [ 3 )  and henceforth approximately expresses C t [ 3 ]  when 

L = I ,  ~ - ' ( k )  = k  = 1,. . .,3. It can be seen that  in this case we would not obtain 

the true set by simply taking the extreme value N = al, a-tO. Figure 8 shows the 

trace-minimal ellipsoids obtained by the recursive scheme (R)  and the multi-stage scheme 



( M )  with L = I  and N- ' ( k )  = k  = 1,. . .,3. The informational domain C [ 3 ]  can be 

obtained in the following way. Consider the estimate C # [ s ]  of the form yielded by (9.4) 

c # [ s ]  = ( I ~ ,  - P - ~ ( S ) T ' ( S ) N T ( S ) ) C ~  + P - ~ ( ~ ) T ' ( S ) I N ( ~ ( S )  - Q ( s ) )  . (13.1) 

Taking N-' (k)  = a k I ,  ak -+ 00, k  # j ,  we obtain 

c * [ a ]  = (I,, - (L + P ( j ) ) - ' P ( j ) )  C 0  + (L + P(j1l- l  G ( j ) N ( j )  ( Y  ( j )  - Q ( j ) )  (13.2) 

which is the same form as (7.2) ,  and therefore the discussion of the one-stage problem can 

be applied. That  is, by varying L and N - ' ( j ) ,  we would obtain a set which is the inter- 

section of C o  and C Y [ j ]  where 

c,b] = { C  I C P ( ~ )  E ~ ( j )  - Q ( j ) )  . 
The shaded portions of Figures 9-11 show the sets obtained by taking 

L = I ,  N - ' ( j )  = N-'(k)  = lo2, k  # j ,  j  = 1  ,..., 3,  respectively. 

14. C O N C L U S I O N  

This paper indicates a unified framework for the treatment of the standard 

identification problem under uncertainty in the measurements which could be modelled by 

both stochastic and set-membership techniques. It is shown that  the deterministic tech- 

niques could be used t o  prove consistency for some probabilistic models while the stochas- 

tic identification scheme may be relevant for approximating the deterministic solution. 

Ellipsoidal approximations may be appropriate for numerical simulations although the 

consistency of approximate solutions should be a separate theme for investigation. It is 

important to  underline that  the topic of this paper is also closely linked to  the issues dis- 

cussed in (22, 231. 
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Figure 1 Informational domain C [I] 

Figure 2 Stochastic solution C *[I] when L = I, ~ - ' ( 1 )  = 



Figure 3 Stochastic solution C*[l]  when L = I, ~ - l ( l )  = 1 

Figure 4 Stochastic solution C*[1] when L = I, ~ ~ ' ( 1 )  = 10 



Figure 5 Intersection of bounding ellipsoids of minimal semi-axes 

Figure 6 Informational domain C[3] 



Figure 7 Stochastic solution C *[3] 

when L = I, ~ - l ( k )  = k  = 1 ,.., 3. 

Figure 8 Trace-minimal ellipsoids by the recursive scheme (R) 

and the multi-stage &heme (M) 



Figure 9 Stochastic solution C *[3] 

when L = I ,  N - ' ( l )  = N - l ( k )  = l o 2 ,  k  * 1.  

Figure 10 Stochastic solution C *[3] 

when L = I ,  N - l ( 2 )  = N - l ( k )  = l o 2 ,  k  + 2.  



Figure 11 Stochastic solution C t [ 3 ]  

when L = I, ~ - ' ( 3 )  = lo-', N - l ( k )  = lo2, k  * 3 .  


