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To justify the use of probability distributions based on a (necessarily) limited num- 

ber of samples to calculate estimates for the optimal solutions of stochastic optimization 

problems, or to obtain consistency results for statistical estimators that may have to be 

chosen under constraints, DupaCov6 and Wets [3] showed that when the probability mea- 

sures derived from the samples converge narrowly (weakly), the problems epi-converge (in 

a probabilistic sense); in turn, this implies, in a sens that can be made precise, the con- 

vergence of optimal solutions or statistical estimators. The technique requires proving the 

epi-convergence of integral functionals. This is also the concern of this paper, but in a 

more general setting. 

The results of DupaEovd and Wets [3, theorems 3.7 and 3.91 are for expectation 

functionals defined on finite dimensional spaces, and the conditions they use to obtain 

epi-consistency (almost sure epi-convergence), in particular a Lipschitz-like continuity con- 

dition on the integrand (criterion function), does not suit well the infinite dimensional set- 

ting. This excludes application of their results to certain dynamic optimization probleins, 

in particular continuous-time stochastic control problems and to nonparametric estimation 

in statistics. In [s], King and Wets obtain an epi-consistency result that is valid for re- 

flexive Banach spaces but only for convergent sequences of empirical probability measures; 

their proof relies on the law of large numbers for random sets. 

In this paper, we introduce a totally different technique that relies on substa.ntially 

different assumptions than those in [3, 4, 91. Even in the finite dimensional case, our 

results are not included in those of DupaEov6 and Wets [3]. 

1. Framework and general results. 

We work with the following framework: let (S,A,p) be a measure space with (S,d) a 

Polish (complete separable metric) space, d the metric, A the Bore1 field on S and 11 a 

bounded (nonnegative) measure; without loss of generality, we may as well assume that all 

measures have been appropriately scaled so that we can restrict our attention henceforth 

to the case when all measures are probability measures. We are also given a sequence of 

probability measures {pY, v E IN}, also defined on (S, A), that converge narrowly (weakly) 

to p. 

The integral functionals E f and EY f defined on the separable reflexive Banach space 

X, are constructed as follows: 



where the integrand f is a proper extended real-valued function defined on X x S; proper 

means that f > -co and the effective domain of f is nonempty: 

dom f := {(x,s) E X  x SI f (x , s )  < co) # 0. 

The integrand f corresponds to the essential objective function of an optimal control 

problem, of a stochastic optimization problem, or to the criterion function (maximum 

likelihood function, for example) in statistical estimation problems; in both cases f takes 

the value +m when (x, s) is a pair that fails to satisfy the (implicit) constraints. 

We are looking for a theorem that would tell us that 

epi-lim E" f = E f 
"-+a3 

from which would follow that the solutions and optimal values converge, see [I,  31 for 

further motivation. We begin with a list of our conditions. 

Condition 1. f is a normal integrand such that dom f = D x S with D a nonempty 

weakly closed subset of X  . 

Recall that a closed-valued set-valued mapping r with domain S and with values 

in the subsets of X, s H r ( s )  : S =t X is measurable, if for any open set G c S, 
r- '(G) = {s E S 1 r ( s )  n G # 0)  E A. A normal integrand f defined on X  x S is an 

extended real-valued function whose epigraphical set-valued mapping, 

is a closed-valued measurable set-valued mapping; recall epi g = {(I, a )  I g(x) 5 o } ;  this 

concept is due to Rockafellar [lo]. Because an extended real-valued function is lsc if and 

only if its epigraph is closed, it follows that 

(i) for all s E S, the function x H f (x, S )  is lower semicontinuous. 

If in addition to (i), 

(ii) (x, s )  H f (x, S) is 23 8 A-measurable, 

then, it is easy to verify that f is a normal integrand. In fact, if (S, A,p)  is coml>lcte, 

conditions (i) and (ii) are not just sufficient, but also necessary, for f to be a normal 

integrand. In a probabilistic context, normal integrands are called random lsc ( lou~er  

semicontinuous) functions. 

The condition on the domain of f ,  means that s H dom f(.,  s) is constant. This 

condition does not restrict in any way the practical applicability of the results. If don1 f (.. s) 



depends on s ,  as would be the case in general, we would have to define the integra.1 to 

accommodate an integrand that takes on the value m .  The natural convention used in 

such a situation (minimization) is to define E{f(x, .)) = m whenever p[f(x, s)  = m ]  > 0. 

Thus, if S is the support of the measure p and as long as s I-+ dom f ( - , s )  satisfies some 

"natural" assumptions [16]; if, for example, for all s E S, dom f ( . , s )  is closed, tlien 

D = nsEs dom f (., s), provided that f (x, -) is summable for all x E D. Having d o n  f 

closed is consistent with our next condition, although not implied by it. 

Condition 2. For all cr E IR, the (inf-)level sets off :  

levm f = {(x, s )  I f (x, s)  5 a) c ( D  x S), 

are sequentially closed with respect to the product of the weak topology on X and the 

metric topology on S .  

This is a lower semicontinuity condition on f .  

Condition 3. f is bounded on bounded subsets of D x S, more precisely, I f I is bounded 

on every product set H x K, where H C D and K C S are bounded sets. 

Let IBx be the unit ball in X. Note that condition 3 implies that for all r E IR+ and 

all s E S, 

w ~ ( s )  := inf{ f (x, s) I x E r Ex) 

is finite. 

Like conditions 1 and 3, the next condition is mostly technical in nature. 

Condition 4. There exists a family 

usc = upper semicon tinuous. There exists a measurable function h : S -t such that for 

d s ,  h s u ,  a n d J s h d p > - m .  

Note that condition 4 implies that f (x, s )  2 h(s) for all x E X. Also, observe that in 

most situations the functions u, can be chosen to be w,. If it is known in advance that f 

admits a lower bound, such as f 2 y, y E IR, we simply set u, - y for all r in IR+. 

Note that it does not follow from this condition that h is bounded below on bounded 

subsets of S. 

The remaining conditions are concerned with the interplay between f and the proba- 

bility measures p and p". 



Condition 5. The strict (inf-)level sets o f  the functions { f ( x ,  .), x E D) 

are @-continuity sets, i.e., their boundaries are @-null sets. 

In the derivation of the main results, for a number of technical reasons, it is possible 

to substitute for this latter condition, the following one that could be easier to verify, but 

does not necessarily hold in many interesting applications. 

Condition 5(alt). The functions { f (x, a )  : S + IR, x E X )  are continuous. 

The last condition is a combination of a tightness-like condition, involving bounded 

rather than compact sets, and a uniform integrability condition. 

Condition 6. Let 

W := { f ( x , - ) , x  E D).  

We assume that the probability measures 

M := {@; p", V E IN), 

are W-tight ,  by which one means that given any function w E W ,  to  every E > 0 there 

corresponds a bounded set BE such that for all Q in M ,  

The desired epi-convergence result will follow from these conditions. We begin by a. 

number of preliminary lemmas. 

Lemma 7. Let g : S ---t (0 , l )  be an A-measurable function. Let k E IN and for i = 

0,.  . . , k ,  let 
i 

Ai = { s  E S I g(s )  > -) 
k 

Then 



Proof. The proof is reminiscent of the one used to obtain the Portemanteau theorem. 

And this completes the proof. (Note that because Ai c B;,  the inequalities remain valid 

with Ai or B; on both sides.) 

Theorem 8. Let g : S ---t IR be measurable and bounded on a bounded measurable 

subset E o f  S .  Suppose that the upper level sets o f  the restriction o f  g to  E are / I -  

continuity sets, i.e., for all o E IR, the boundaries o f  the sets 

carry no p-measure. Then, provided the probability measures { p " ,  v E IN) nai*i.orrl~. 

converge to  p, 

Proof. Without loss of generality we can assume that g(E) c (0, l ) .  Pick a (large) 

integer k, and observe that from lemma 7 it follows that 

where, as in lemma 7, 
i 

Bi = {s E E 1 g(s) > h}. 



Moreover, lim,,, pv(Bi) = p(Bi) since by assumption, the sets {B;, i  = 0, .  . . , k )  it1.c 

p-continuity sets. Hence for v sufficiently large, pv(Bi) < p(B;) + k- ' ,  and thus 

From which it follows that 

lim SUP JE 9(S) Pv(dS) 5 JE 9(S) P(dS)- 
v-+w 

Interchanging the role of pv and p in the preceding relations, yields the desired result. 

Theorem 8'. Let g : S + IR be continuous and bounded on a bounded p-continuity 

subset E of S and suppose the probability measures {pv,  v E IN) narrowly converge to /L. 

Then, 

Proof. Because bdy(c1 E) C bdyE, and thus cl E is also a p-continuity set, we may 

as well assume that E is closed. Define B; as in the proof of theorem 8 and note that 

these sets are thus also closed. Now appeal to the classical Portemanteau theorem giving 

lim sup, pv (B;) 5 p(Bi) to conclude 

Now apply lemma 7, with int E the underlying space (instead of S) and the collection of 

open sets A;.  Again appeal to the Portemanteau theorem, using the fact that the sets -4; 

are open, obtains 
r r 

lim inf J g(s) pv(ds) 2 J g(s) ~ ( d s )  
v4M int E int  E 

which completes the proof (noticing that p(bdyE) = 0). 

The next result is well known for the case when the integrand g is a continuous 

bounded function; again refer to  the Portemanteau theorem (for a version that fits our 

needs, cf. [6]) .  

Lemma 9. Suppose g : S -+ IR is measurable and bounded on bounded subsets of S 

such that the strict level sets lev,< of g are p-continuity sets. Suppose, that the pr~babi l i t~ :  

measures pv  converge narrowly to the measure p, and that M = {p; pv ,  v E lN) are 

W-tight with W = {g). Then 



Proof. For fixed a > 0, we choose a ball B, with the following properties: for all Q E M ,  

a 

L \ B €  
1g(s)l Q(ds) < 3 and B, is a p-continuity set.  

This is possible because of the W-tightness condition and the fact that the function r I+ B, 

can only have a countable number of discontinuities. From theorem 8, using the formula 

bdry(A n B )  c bdry A u bdry B, for u sufficiently large, we obtain: 

The proof is completed by letting a tend to 0. 

The (topological) limit superior of a sequence {CV c S, v E IN) is as usual defined h\.: 

k k Limsup,,, C Y  := {x = lim x I Vk, x E CYk; {vk} C IN) 
k + m  

= n{cl C I Vx E E, d(x, C )  < lim inf d(x, CY)) .  
V+OO 

Note that the limit superior of a sequence is always closed. For more about set limits, 

consult [I, 111. 

Lemma 10. Suppose {C; C V  c S, v E IN) are A-measurable and C > Lim sup,  C U .  Then 

Iim inf, pV(S \ CV)  2 p(S  \ C). 

Proof. Let EA = {s 1 d(s, A) < a). It is easy to see that if A > Lim sup,+, A', 

then Limsup,,,(AU \ &A) = 0 for all a > 0, cf. [ll, theorem 2.21 for example. Hence 

Lim sup,,,(CV \ EC) = 0 for all a > 0. This implies [6], 

lim sup pV(CV) I p(C). 
v--00 

Taking complements yields the desired result. 

Lemma 11. Suppose {g; gV : S + (0, oo]) such that for all s and any sequence {sV, v E hY) 

converging to s, 

lim inf gV(su) 2 g(s), 
,+, 



equivalently g 5 epi-lim gY. Suppose moreover that these functions are equi-bounded on 
Y'W 

bounded subsets of S. Then 

lim Y'W inf Js gY(s) PY(dS) t Is g(s) P(dS). 

Proof .  Let E be an arbitrary bounded subset of S. Without loss of generality, we can 

assume that on E the range of the functions {g; gu, v E IN) is included in (0 , l ) .  Applying 

lemma 7, we obtain the following inequalities: 

and 

with the sets A; and A: as in lemma 7. 

Observe that by assumption, 

Lim sup,,,(S \ A:) C ( S  \ A;). 

We can appeal to lemma 10 to claim that liminf,,, pu(Ar)  2 p(.4;), which with the 

preceding inequalities proves the assertion on the bounded set E .  Thus, for all bounded 

sets E, 
r 

and hence 
r r 

Taking the supremum over all sets E completes the proof. 

Lemma 11 provides immediately the following result when the functions { g u ,  v E IN} 
continuously converge to g; a special case of this theorem was proved in [8]. 

T h e o r e m  12. Let {k; k Y  : S + IR) be a family of measurable functions with the property 

that given any s E S and any sequence {sY, v E IN) converging to s ,  

lim kY(sY) = k(s). 
Y - + W  

Suppose also that there exists a measurable function g such that Ik( < g, (kYI  5 g for all 

V, and 

lim g(s) pu(ds) = g(s) p(ds)- 
Y - + W  



Then. 

Proof. Apply lemma 11 to g - kV and g + kV, in order to obtain 

and 

(g - kV)(s) pY (ds) 1 (g - k)(s) p(ds). 
Y'W 

The assertion now follows from the fact that limV+w Js g(s) pV(ds) = Js g(s) p(ds). 

Note that a sufficient condition to guarantee that lim,,, Js g pV(ds) = ~ ( d s )  is 
to have g continuous plus either g bounded or the measures { p; pV , v E IN) {g ) -tight. 

We are now ready to prove the main results. 

Theorem 13. Pointwise convergence of integral functionals. Suppose that f is an inte- 

grand that satisfies the conditions 1-6, then for all x f X: 

lim EV f (x) = Ef (x). 
Y'M 

Proof. If x 4 D then both sides are +m. If x f D, apply lemma 9 with g = f (x,  .). 

Theorem 14. Mosco-epi-convergence of integral functionals. Suppose that f is an in te- 

grand that satisfies the conditions 1-6, then 

Proof. There are two conditions that need to be checked for Mosco-epi-convergence (for 

functions defined on a reflexive Banach space)[l]: for all x in X:  

for any sequence {xu, v = 1, .  . .) converging weakly to x, lim inf E"  f (x") 2 E f (x), 
V + W  

and 

there exists {?", v = 1,.  . .) converging strongly to x such that l imsupEV f(ZV) 5 E f(x).  
V + W  

In view of theorem 13, it suffices to verify the first one of these conditions, and the onl!- 

interesting case is when both x and the sequence {xu, v f IN) lie in D. The set 

u{xV) U {x) C r IBx for some r, 



hence we can apply lemma 11 to the functions 

where the functions u, are those introduced in condition 4. The upper semicontinuity of u,  

guarantees that for any sequence {s", v E IN) converging to s ,  lim inf,,, g"(sV) > g(s). 

From lemma 11, it follows that 

[ f (xV,  s)  - ur(s)] pv(ds) 2 [f (x, S) - u,(s)] p(ds). u-m 

To conclude, it will suffice to verify that 

We simply apply lemma 11 to the functions g" = g := -u,. 

2. An optimal control problem 

We consider the following problem: 

minimize g(x(t), t )  dt 1' 
where g : IRn x [o, 11 + IR is continuous, dt is the Lebesgue measure on [0, I.] and t ++ x ( i )  

is solution of the system: 

where A E Lm([O, 11; IRn x IRn), B E Lm([O, 11; IRn x IRk), and u  : [O, 11 + IRk is a control 

function in L ~ ( [ o , ~ ] ; I R ~ )  such that for i = 1, . . . ,  k ,  Iu;(t)J 5 1 a.e . .  It is well known 

that the solution, for a fixed control function u, of the preceding dynamical system is an 

AC-function (absolutely continuous function) x with derivatives in L2 ([o, 11; IRn ). 

Now let us consider a sequence of probability measures p" that converge narrowly to 

dt; for instance, finitely supported measures that would be generated by discretization of 

the "time" interval [0, 11. In terms of the general framework introduced in section 1, we have 

S = [O, 11, and X is the Sobolev space H1 ([0, I . ] ,  IRn) (with norm l(x11& = J ,  Jx(t)IZ dt + 
J, (d(t)12 dt). With Q : X x S + IRn x S the projection mapping Q(x(.),t) = (z(t) , t) ,  the 

function f : X x S + is given by 

(9 o Q)(x(.), t )  if x satisfies (1) for some u ,  
oo otherwise . 



Let us note that the operator Q has the following compactness property: for xu 

converging to x weakly in H1 and t" t t, then Q(x",tV) converges to Q(x,t) .  This is 

essentially a direct consequence of the theorem of Kondrachev [7, theorem 2.2.31 which 

states that if xv converges weakly to x in H1 then the xu converge uniformly to x on [ O , l ] .  

From this it easily follows that xv converging weakly to x and tV -t t imply x"(tv) -+ x(t) 

from which the compactness property follows. 

In order to apply theorem 13, all what is needed is to check the conditions 1-6. It is 

easy to check that f is a normal integrand, cf. [lo]. Let 

D := {x E H' 1 3 u such that x solves (1) } 

and dom f = D x [O, 11. To show that D is weakly closed let us consider a sequence 3." 

converging weakly to 3 with the xu in D. Let u" be a sequence of admissible controls 

that generate the trajectories xu .  The sequence u" lies in the unit ball in L 2 ,  and thus 

admits a subsequence converging weakly to a control t?. Weak convergence in L2 implies 

a.e.-pointwise convergence, hence iii(t) < 1 a.e., i.e. ii is admissible. Passing to the limit 

(for the Cauchy problem) shows that 3 is the solution of (1) for the control 6. This takes 

care of condition 1. 

Condition 2 follows from the continuity of g and the fact that weak convergence of a 

sequence xu to x and t" t t implies Q(xV,t")  t Q(x,t). 

For condition 3 we need only to observe that for all i in D, J i , ( t )  - xo; I < p a.e. for 

some p E Kt+. That and the continuity of g is all what is needed. 

The same argument shows that both conditions 4 and 6 are satisfied. And again the 

continuity of g in conjunction with the continuity of the solutions x of (1) is enough to 

take care of condition 5(alt). 



3. A mid-course maneuver problem 

This example is also an optimal control problem. We consider a system to be steered from 

some initial state so to a final state XT but with a twist. The state so is only known 

in probability and cannot be directly observed. After an initial phase during which the 

evolution of the system is tracked, we are allowed to make a mid-course correction. One 

refers to the class of such problems as mid-course  m a n e u v e r  problems [14, 151. 

The problem can be formulated as follows: let U and W be reflexive Banach spaces, 

V a Hilbert space, E = lRN and U a closed bounded convex subset of U. Let 

S : U x E -+ W bounded linear in u and linear in < for u E U, 

p : E + W a linear operator , 
R : V -, W a bounded linear operator , 
I : U + a convex continuous function , 

q : v x = --, [o, 001, 

- 
p an absolutely continuous probability measure on z. 

We consider the following optimization problem: 

A typical example would be: 

S(u, t) = @(O, T ) t  + @(O, T)@(t, ~ ) B ( 7 ) 4 7 )  dT, 

fT 
it 

a(., .) the fundamental solution of the linear dynamical system: 

A(T) : [O, t] -, Rn x Rn continuous , 
B(T) : [0, t] + Rn x Rd continuous , 

< random initial state at time t = 0, 

p - XT (the terminal state) , 
U c U the space of admissible controls , u  : [O,T] -, Rd, Ju(t)l 5 1, a.e. 

U = L2([0, t]; Rd), V = L2([t, TI; R d )  



The preceding problem would model the situation when we seek to bring a system fro111 

an unknown state x(0) = E to a final state x(T) = p given the dynamics of the systern: 

x = A(T)x + B(T)w using a control w, a concatenation of a control u for the time period 

up to t and a control v for the time period that follows t .  The system is tracked up to 

time t and the actual state of the system is observed at time t .  The choice of the control 

v can be viewed as a corrective action (a recourse decision). The performance is measured 

by the value of 1(u) + q(v), i.e., in terms of energy usage. The objective is to minimize this 

function. 

Returning to the general formulation of the stochastic optimization problem, let 

idV{n(v, E) I R(v) = P(E) - S(u, C)J d~ if u E U, 
+ oo otherwise. 

With this definition, the problem at hand can thus be formulated as 

minimize 1(u) + f (u, [) p ( d 0  for u E U. J3 
We are interested in replacing the probability measure p by measures pY (possibl~ 

discrete probability measures) and thus rely on the results in section 1 to claim epi- 

convergence, more precisely Mosco-epi-convergence. Because epi-convergence is preserved 

under addition of a continuous convex function, we can ignore the additive term l (u . ) .  Thus 

it will be enough to check if 

f (u, E )  pY (E) M ~ ~ ~ ~ - e p i - c ~ n ~ e r g e ~  to 

We are going to assume that the problem at hand possesses the following properties, 

and we shall see that in turn they imply conditions 1-6: 

(a) R is onto; the problem is said to have complete recourse. - 
(b) q is proper, convex, lsc and bounded on bounded subsets of V x c. 

(c) limllvll,m inftEB q(v, t) = oo for B any bounded subset of E. 
We are going to sketch the proof that these conditions are enough to guarantee that 

conditions 1-5 are satisfied. Thus any sequence of probability measures satisfying condition 

6 will engender the epi-convergence of the functionals (theorem 14). We begin with a couplc 

of preliminary lemmas. Henceforth, we assume that (a)-(c) hold. 

Lemma 15. Let uY be a sequence in U that converges weakly to u, and [" a sequence in - 
z converging to [. Suppose vY is a sequence in V such that 



Then the sequence vY is bounded. 

Proof. Consider the restriction of R to ker(R)I, the orthogonal complement of the 

kernel of R. The map R : ker(R)I + W is an isomorphism. Thus, there exists K. > 0 such 

that 11 R(r)II 3 tcllzll for all r f k e r ( ~ ) I .  Now consider the system 

for u E U and t E B a bounded subset of 3. For all (u, t )  f U x B,  the system has a 

unique solution v(u, t )  and there exists a > 0 such that ((v(u, [))I 5 a. Thus there exists 

at least one sequence V Y  that is bounded and satisfies (2). 

Because q is bounded on bounded sets (assumption (b)), it follows that there exist 8 

and q such that 

It now suffices to appeal to assumption (c) to conclude that a sequence that satisfies both 

(2) and (3) must be bounded. 

Lemma 16. The function f : U x 3 + as defined above, is a convex normal integrand. 

Proof. Lower semicontinuity of f with respect to u follows directly from lemma 15. The 

proof will certainly be complete if we show that (u, t )  I+ f (u, t )  is (Borel-)measurable a.s 

we do next. Note that for a f IR 

where 

r ( t ,  4 = {v ( R(v) = ~ ( t )  - S(u, t ) )  

Now, gph l? is convex and thus a measurable subset of U x 3, and since {(u, v, [) 1 q(v, [) < 
a) is measurable (q is itself a normal integrand), the measurability of {(u , [) I f (u , [) < a) 
now follows from the projection theorem for measurable sets, cf. [2, lemma 111.39, theorem 

111.231. 

Condition 1 follows directly from the preceding lemma and the fact that dom f = U x E ;  
certainly U is weakly closed. 



To check condition 2, we need to show that if uV (in U) converges weakly to u and l" 
converges to t, then 

lim inf f (uu, tV) 2 f (u, t) 
u-+m 

It suffices to consider a sequence in the effective domain of f since otherwise the liminf 

term is +w. Let v u  be such a sequence that also satisfies (2) and (3). Lemma 15 tells 

us that such a sequence is bounded. Hence some subsequence converges weakly to .fi in 

v. Because, S(uu,  tU) converges weakly to S(u, t), it follows that R(vu) converges weakly 

to p( t )  - S(u,(). The graph of R is a closed, convex subset of V x W, hence weakly 

closed. Consequently, R(c) = p(t)  - S(u, t )  demonstrating that fi is an admissible solution. 

Moreover, 

f (u, () 5 q(@, t )  5 lim inf q(vU, t u )  = lim inf f (u", t u )  
u--*m u - r m  

where the second inequality follows from assumption (b) and the last equality from (3). 

For condition 3, note that f 2 0, and the argument used in the proof of lemma 15 

shows that f admits an upper bound on bounded sets. 

Condition 4 is trivially satisfied with h = 0. 

It is routine to show that for u E U the function t H f(u,  < )  is convex, cf. [15]: 

for example. Hence its level sets are convex. Now, in Euclidean space, every convex set 

is a p-continuity set since by assumption p is absolutely continuous with respect to the 

Lebesgue measure [B, 61. This is all what is needed for condition 5. 

Remark. Because this example is mostly here to illustrate the use one can make of the 

results of section 1 in this context, we have not provided the most general conditions under 

which one can ensure that conditions 1-5 are satisfied. For example, linearity of S with 

respect to u could be replaced simply by weak continuity, that is really all that gets used 

here. Similarly, the restrictive convexity assumptions on q (that are automatically satisfied 

if q does not depend on t and is convex in v )  and the linearity of p and S with respect 

to t are only needed to guarantee condition 5. One would expect that in most concret'e 

situations it will be possible to argue that this condition is satisfied without appeal to 

convexity, or alternatively use 5(alt). 
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