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Foreword 

New techniques of local sensitivity analysis in nonsmooth optimization are applied to  the problem 
of studying the asymptotic behavior (generally non-normal) for solutions in stochastic optimiza.. 
tion, and generalized M-estimakion - a reformulation of the traditional maximum likelihood 
problem that  allows the introduction of hard constraints. 

Alexander B. Kurzhanski 
Cha.irman 

System and Decision Sciences Program 



1. Introduction 

Many problem formulations in statistics and stochastic optimization generate estimates 

from data by selecting a LLbest" or L'optimal" point xV = xV(sl , . . . , s,), frequently by 

choosing x" to solve a generalized equation in the form 

u 

(l.1) Choose x E Rn such that 0 E f (x, s,) + N(x), 
a= 1 

where g : Rn x S --t Rn is a function that is continuous in the first argument and mea- 

surable in the second, {si) an i.i.d. sequence of random variables in a complete separable 

metric space S, and N : Rn 3 Rn a multifunction. In stochastic programming, for exam- 

ple, this equation can represent the first-order necessary conditions for the optimization 

problem 

V 

minimize C h(x, si)  over all x E X c Rn, 
i= 1 

with f (x, s) = V, h(x, s), the gradient of h at x, and N(x) = Nx(x), the normal cone 

to X at x in the sense of nonsmooth analysis. In maximum likelihood estimation, the 

generalized equation (1.1) can represent the so-called "normal equations" by setting N(x) 

identically equal to the zero vector; this situation represents the case where no "hard" 

(i.e. a priori deterministic) constraints are placed on the maximum likelihood estimator. 

Introducing the multifunction N into the normal equations is natural for optimization, 

because it permits the specification of constraints that one knows must be true (e.g. non- 

negativity in variance estimation). In this case, solutions to (1.1) could be called generalized 

M - e s t i m a t e s .  

We shall study the asymptotics of the sequence of estimates {xV) from the point of 

view of consistency and central limits. The presence of the multifunction N complicates 

the asymptotic analysis, but in ways that can be analyzed using the special techniques of 

this paper. The problem (1.1) can be viewed as a generalized equation in which the first 

term is perturbed in a neighborhood of the function Ef( - )  := Ef(. ,  s l ) ,  by replacing it 

with the approximation EVf( . )  := $ Cy=l f(., si) ,  or, equivalently, adding to it the term 

E V f  - E f .  We shall view these functions as elements of the Banach space Cn(U), the 

space of Rn-valued functions that are continuous on a (yet to be determined) compact 

neighborhood U in Rn. The asymptotics of the solutions to (1.1) can then be derived 

from the asymptotics of the sequence {EUf) ,  as random elements of Cn (U), and from the 

sensitivity analysis of the so lu t ion  mapp ing  J : Cn(U) =t Rn defined by 



as developed by us in [B]. Consistency will follow from a sort of local continuity of J 

called subinvertibility, and the central limits from a certain differentiability property of J, 

employing the generalized delta method of King [7]. 

The asymptotic distributions obtained for solutions to (1.1) will not in general be 

normally distributed, because the multifunction N may impose restrictions that will affect 

the support of the asymptotic distribution. In stochastic optimization, constraints are 

fundamental to modelling practical decision problems and asymptotic normality cannot 

be assured except under rather special circumstances. This feature requires us to venture 

outside of the usual route to proving asymptotic results in maximum likelihood estima- 

tion, which considers the solution mapping as a functional of the probability measure or 

distribution function-cf. Clarke [3], for example. Our approach has a similar abstract 

flavor, but by considering the solution mapping as a functional of E U f ,  the analysis is both 

simplified, because the perturbation is additive, and enriched, because we are able to draw 

upon useful results from nonsmooth analysis. 

There has been much activity recently in proving asymptotic theorems for solutions 

to stochastic programs. An earlier version of the approach we follow here first appeared 

in King [7]. Recently, DupaeovA and Wets [4] and Shapiro [ll] have applied a theorem 

of Huber [S] to the problem of determining the central limit behavior of the solutions to 

(1.2); this technique employs standard finite-dimensional parametric analysis after making 

assumptions that ensure asymptotic normality of E U f  (xu) - E f  (x*). While the conclusions 

of this approach are similar to ours at first glance, our assumptions are simpler, less 

restrictive in practice, and cover a wider class of stochastic programs. 

Our study begins with the general theorems concerning consistency and central lim- 

its for the generalized M-estimates determined by the sequence of generalized equations 

(1.1). These results will then be specialized to asymptotic analysis for stochastic programs 

Pertinent details concerning the asymptotic normality of the sequence {EUf)  appear in an 

appendix. 

Much of the fundamental material on which our presentation is based has been com- 

prehensively treated in [7] and [B], which we shall consider as read. Nevertheless, we 

cannot resist repeating some of the more important ideas. We mention here the underly- 

ing topology on which our analysis is based: namely that of the convergence of closed sets 

in Rn. Let {A,) be a sequence of closed subsets of Rn and define the (closed) sets 

liminf A, = {x = lim xu I xu E A, for all but finitely many v) 
u 

lim sup A, = {x = lim xu I xu E A, for infinitely many v) , 
u 



then {A,) set-converges t o  A = lim, A,, if A = lim inf A, = lim sup A,. 

2. General  Theory  

We first investigate consistency of solution sequences to (1.1). There may be more than 

one cluster point for such a sequence, or there may be none. Though we are able to provide 

natural assumptions under which unique limits exist, we prefer to study a weaker form 

of consistency that is more in keeping with our view that these sequences are actually 

selections from the sequence of random sets  { J (EVf)) .  We review for the convenience of 

the reader some basic definitions concerning multifunct ions. 

Let (2 ,  A) be an arbitrary measurable space. A multifunction F : Z 3 Rn is measur-  

able if for all closed subsets C of Rn the set Fd'(C) := {z E Z I F ( r )  n C # 0) belongs to 

the sigma-algebra A. It is closed-valued (or convex, etc.) if F has closed (or convex, etc.) 

images. If the measurable space is a probability space, we shall refer to a closed-valued 

measurable multifunction F as a random closed set and denote it F. The domain  of the 

multifunction F, dom F, is the set of points where its image is nonempty; its graph is the 

set of pairs gph F := {(r, x) E Z x Rn I x E F(r)}. If Z is a topological space then we 

say that F is closed (or upper semicontinuous) if gph F is a closed subset of Z x R n .  It 

is well-known that a closed multifunction is closed-valued and measurable; cf. Rockafellar 

Pol 
Proposi t ion 2.1. For any compact set U in Rn, let Cn(U) be made into a measurable 

space by equipping it with its Borel subsets, and suppose that the multifunction N : Rn 3 

Rn is closed. Then the solution mapping J : Cn(U) 3 Rn defined by (1.3) is closed (and 

therefore, closed-valued and measurable). 

Proof.  Let us consider a sequence of pairs {( f ", xu)),  each an element of gph J, that 

converges to a pair (f *, x*) in Cn(U) x R n .  By uniform convergence, f "(xu) + f * (x*). 

Since N is closed, it follows that - f * (x* ) E N(x* ). This implies x* E J (  f * ), so J is closed. 

To analyze the existence of solutions to generalized equations such as (1.1), we intro- 

duced in [B] the following notion: a multifunction F : Rn 3 Rn is subinvertible at a point 

y* in Rn if there are a compact, convex neighborhood V of y* and a nonempty, compact, 

convex-valued multifunction G : V 3 Rn such that G is closed, and G(y) c F-'(y) for all 

y E V. The reader may easily verify that maximal monotone operators are subinvertible 

at every point in the relative interior of their domains, and that multifunctions admitting 

selections that are continuous on a neighborhood of a given point are also subinvertible 

there. 



Theorem 2.2. Suppose N is closed and the multifunction E f  + N is subinvertible at 0. 

Let V be the compact set and G the multifunction as are guaranteed by the definition of 

the subinvertibility of E f  + N,  let U be a compact set containing u{G(y) : y E V) in its 

interior, and suppose that 

Then, with probability one, 

0 # lim sup J ( E v f )  c J (Ef ) .  
V'OO 

Proof. Condition (2.1) implies by the strong law of large numbers that E V f  + E f  in 

Cn(U), with probability one. In the event of such convergence, the subinvertibility of 

E f  + N implies, by Lemma 2.1 of [S], that U n J ( E V f )  is eventually nonempty; this and 

the compactness of U prove that limsup J ( E V f )  # 0. Since N is closed, we know by 

Proposition 2.1 that J is closed, from which we obtain the inclusion limsup J ( E V f )  c 
J (Ef ) .  

Corollary 2.3. (Consistency.) Under the conditions of Theorem 2.2, if {xu)  is a sequence 

of solutions to (1.1) and if x is a cluster point of this sequence, then 0 E Ef(x)  + N(x) 

with probability one. 

Remark.  The corollary can be strengthened if there are natural conditions that imply 

(or if one does not mind imposing conditions that require) that solutions of (1.1) belong 

to some compact set. In this case, almost all solution sequences will have cluster points. 

We next consider the possibility that there is a central limit theorem for {xu),  that 

is, the existence of a random vector u and a point x* such that {Jv(xV - x*)) converges 

in distribution to u. This will follow from asymptotic normality of the E V f  and a certain 

differentiability property of the solution mapping J, which we now briefly review. 

For this discussion only, let Z be a Banach space. The contingent derivative of a 

multivalued mapping F : Z 3 Rn at a point z E d o m F  and x E F(z)  is the mapping 

DF(z1x) whose graph is the contingent cone to the graph of F at (z,x) E Z x Rn, i.e. 

(2.2) lim sup t-'[gph F - (2, x)] = gph DF(z1x). 
t l 0  

The contingent derivative always exists, because the lim sup of a net of sets always exists; 

and it is closed because the lim sup is always a closed set. The contingent derivative of the 

inverse of F is just the inverse of the contingent derivative, and is denoted DF-I (x 12). This 



definition may be specialized in two directions. If one has lim sup = lim inf in (2.2), then F 

is called proto-differentiable at (z, x). A stronger property that is related to differentiability 

for functions is semi-differentiability, which requires that 

lim (F(z + tw') - x)/t = DF(zlx)(w) 
I10 

wl+w 

for all directions w in Z. These definitions can be applied to functions, of course. If 

f : Z + IRn has a contingent derivative D f (z), as defined by the graph limit (2.1), that is 

everywhere single-valued, then f is B-differentiable at z and formula (2.3) holds. 

For convenient reference, we make a list of the principal assumptions that we shall 

impose on the function f ,  random variables isi), and multifunction N in order that the 

solutions to (1.1) obey a central limit theorem. We suppose that a given point x* belongs 

to the set J (Ef) .  

Analytical Assumptions for Generalized M-Estimates 

M.l The function f( . ,s)  : IRn -+ IRn is continuous for all s E S, and E f  : IRn + IRn is 

B-differentiable on dom N. 

M.2 The operator N : IRn 2 IRn is closed and proto-differentiable at (x* , - Ef(x*)). 

M.3 The multifunction E f  + N is subinvertible at 0. 

Let the compact set U be as defined in Theorem 2.2. 

Probabilistic Assumptions 

P.l For all x E U, the function f(x,  .) : S + IRn is measurable. 

P.2 The sequence of random variables {si) is independent and identically distributed. 

P.3 There is some a : S + IR with Ela(sl)12 < w and 

P.4 There is some x E U with El f(x,s1)I2 < w. 

In the Appendix we show that assumptions P.l-4 imply that the functions E V f  are Cn(U)- 

valued random variables that satisfy the central limit property 

where w is a centered, Gaussian Cn(U)-valued random variable with covariance equal to 

that of f (., sl ). (In particular, this means that w(x* ) is a centered, normally-distributed 

random vector in IRn with covariance equal to that of f (x* , sl ).) 



Theorem 2.4. (Central Limits.) Suppose the assumptions M.l-3 and P.l-4 hold, and 

that the random closed set 

is almos t surely single-valued. If a sequence {xu} of measurable selections from the solution 

sets to (I. I) converges almost surely, then it converges to the point x*, and moreover, 

(2.6) &(xu - x*) + U, 

where u is any selection from (2.5). 

Proof. As shown in the Appendix, the probabilistic assumptions imply that &(Eu f - Ef)  

is asymptotically normal, and as in (2.4) we denote the asymptotic distribution by w. The 

analytical assumptions M.1-3 and the almost sure single-valuedness of (2.5) imply that x* 

is the unique element of U n J(Ef) ,  that U n J is upper Lipschitzian at E f ,  and that J is 

semi-differentiable at ( E  f ,  x* ) with contingent derivative 

cf. Theorem 4.1 and Remarks 4.2 and 4.3 of [8], noting that (2.5) is precisely DJ(Ef  x*)(w). 

Observe that 

&(xu - x*) E &[J(Euf)  - x*]. 

The semi-differentiability of J implies by Theorem 3.2 of [7] that the sequence of sets on the 

right side converges in distribution to D J (Ef  (x*)(w). To obtain from this the convergence 

in distribution of the selections on the left side to a selection from D J (Ef  lx*)(w), we can 

apply Theorem 2.3 of [7], provided this sequence is tight. But we already know that 

where X is the Lipschitz constant for J at Ef .  Since Jv(Euf - Ef)  is asymptotically 

normal, it is a fortiori tight. This final detail completes the proof. 



3. Asymptot ics  for Stochastic P rog rams  

We consider the asymptotic behavior of sequences of solutions to a slightly more general 

version of a stochastic program than mentioned in the introduction, namely 

minimize E h(x) 

subject to EVg(x)  E QO 

and x E C ,  

where the set C is a convex polyhedral subset of IRn, the set QO is the polar of a convex poly- 

hedral cone in IRm, and for all s E S the functions h(., s )  : IRn 4 IR and g(., s )  : IRn 4 IRm 
are continuously differentiable. This form is a mathematically convenient generalization 

of the usual statement of a nonlinear program with equality and inequality constraints 

(which can be obtained by setting Q = IRml x IRy2); it was originally introduced and 

studied by Robinson [9]. The problems (3.1) are to be regarded as perturbations of the 

"true" problem 

minimize Eh(x)  

subject to Eg(x) E QO 

and x E C, 

In [8] we provided a second-order sensitivity analysis of this type of nonlinear program. 

The results of this section are direct consequences of that analysis, together with our results 

from the preceeding section. 

In nonlinear programming, the sensitivity analysis of solutions cannot be separated 

from the sensitivity analysis of the Lagrange multipliers for the constraints. Our study is no 

exception. Since in (3.1) we wish to cover the case of estimated constraints EVg(x)  E QO, 

we are forced to consider sequences of Kuhn-Tucker pairs (xV,  y V )  for (3.1) and not only 

sequences of solutions. 

Define the Lagrangian k(x, y, s )  = h(x,s) + yTg(x, s), and let (x*, y*) be a Kuhn- 

Tucker pair for the problem (3.2), i.e. a solution to the Kuhn-Tucker equations 

By Nc(x) and Tc(x) we denote the normal and tangent cones to the set C at a point x. 



Analytical Assumptions for Stochastic Programs 

S.l  The Lagrangian Ek(x,  y )  is twice continuously differentiable, and the second-order 

suficient condition holds at (x*, y*): 

for every vector u E Tc(x* ) satisfying 

and VEh(x*) = 0. 

5.2 The constraint set {x E C I Eg(x) E QO} is regular at x*: 

S.3 The linear independence condition holds at x*, that is, the Jacobian matrix VEg(x*) 

has full rank. 

The reader will recall that S.2 is the counterpart in this more general formulation of the 

Mangasarian-Fromowitz constraint qualification for nonlinear programs in the usual for- 

mat. The linear independence assumption does not explicitly exclude inactive constraints 

as in the usual statement of this condition: we simply suppose these are dropped from the 

problem statement. 

To correspond with the setting of the previous section, define the function f : ELn+" x 
S -t ELn+" by 

f (x ,  Y,s) = (Vk(x, y,s), -g(x,s)), 

and note that the Kuhn-Tucker conditions (3.3) correspond to the generalized equation 

Theorem 3.1. (Consistency.) Suppose that condition (2.1) holds with the function f 

as above, and that the analytical assumptions S.l-2 hold. If {(x", y")} is a sequence of 

Kuhn-Tucker pairs for (3.1) and (x, y )  is a cluster point of this sequence, then (x, y )  is a 

Kuhn-Tucker pair for (3.2) with probability one. 

Proof.  Under the assumptions S.l-2, it was shown in [B], Example 2.2, that the multi- 

function E f  + NcxQo is subinvertible at 0. Now apply Corollary 2.3. 

To obtain an expression for the central limit behavior, we saw in the previous section 

that it was necessary to consider an associated random generalized equation involving the 



derivatives of E f  + N and the normal random vector w(x*). For stochastic programs the 

corresponding object is a certain random quadratic program, which we now describe. If the 

probabilistic assumptions are satisfied for Vk and g, then from the Appendix we deduce 

that there exist Gaussian random functions wl and w2 such that 

and 

J;[EYg - E g l ~ w z  

Let cl = wl(x*, y*) and c2 = w2(x*), and consider the random quadratic program 

minimize cl u + ;uTv2 Ek(x*, y*)u 

subject to VEg(x*)u + c2 E [Q'I0 

and x E C' 

where 

Q' = {V E TQ(y*) I vTEg(x*) = 0) 

and 

C' = {u E Tc(x* I u T v ~ k ( x * ,  y*) = 0). 

Theorem 3.2. Suppose that the probabilistic assumptions P.l-4 are satisfied for Vk and 

g and the analytical assumptions S.l-3 hold. If a sequence of Kuhn-Tuckerpairs {(x", y")) 

for the problems (3.1) converges almost surely, then it converges to (x* , y*), and moreover, 

where (u,  v )  is the Kuhn-Tucker pair for the random quadratic program (3.4). 

Proof. In [S], Example 6.3, we showed that assumptions S.l-3 imply our assumptions 

M.l-3 and also that the set (2.5) in our Theorem 2.4 is single-valued, for the corresponding 

function f as above and multifunction NcxQ. An application of Theorem 2.4 finishes the 

prof. 

Remark  3.3. Theorem 3.2 resembles standard results in maximum likelihood estimation, 

except in that we allow constraints to be placed on the estimators. Aitchison and Silvey 

[I] worked out the asymptotic distribution for equality constraints only, which turns out 

to be asymptotically normal. Their results may be easily derived from ours. Shapiro [ll] 



treats asymptotics for stochastic programs by applying a theorem of Huber [5], but does 

not consider estimated constraints. 

Remark 3.4. There are interesting parallels to be drawn between our result and those of 

Huber [5] in the unconstrained situation. Our probabilistic assumptions P.l-4 correspond 

roughly to Huber's assumptions N1, N3(ii) and (iii), and N4, and our monotonicity as- 

sumptions correspond practically to Huber's N2 and N3(i). They imply his condition that 

xV + x* with probability one. Huber's goal is to prove that &(EV f (xV ) - E V  f (x* )) has 

the same asymptotic distribution as &(EVVh(x*) - EVh(x*)); then he can derive the 

asymptotic distribution of &(xV - x*) via the classical delta method under the assump- 

tion that EVh(.) is Frechbt differentiable at x* with invertible Jacobian H. We achieve 

the same result, namely that &(xV - x* ) is asymptotically normal with asymptotic distri- 

bution H-' w(x* ), but under our slightly different assumptions. For a further discussion 

of asymptotic theory in stochastic programming from Huber's perspective, see DupaEov6 

and Wets [4]. 



Appendix 

In this appendix we briefly discuss central limit theory for random variables in C,(U), the 

space of continuous Rn-valued functions on a compact subset U c Rn. Further details 

may be found in Araujo and Gin4 [2], on which this presentation has been based. 

For now, let Z be a separable Banach space equipped with its Bore1 sets A, and let Z* 

be the dual space of continuous linear functionals on Z. If z is a random variable taking 

values in Z ,  we say that z is (Pettis) integrable if there is an element E z  E Z for which 

[(Ez) = E{l(z)) for all e E Z*, where E l . )  denotes ordinary expected value. (Clearly, 

if Z = Cn(U) then E z  exists if and only if (Ez)(x) = E{z(x)) for every x E U.) The 

covariance of z, denoted cov z is defined to be the mapping from Z* x Z* into R given by 

A random variable z taking values in Z will be called G a u s s i a n  with mean E z  and covari- 

ance cov z provided that for all l E Z* the real-valued random variable [(z) is normally 

distributed with mean [(Ez) and covariance cov [(z). 

Let us now return to the specific case at hand, that of the Banach space Cn(U). 

The first assertion leading to (4.2) is that the functions EVf(.) are Cn(U)-valued random 

variables. This is a consequence of the following proposition. 

Proposi t ion A l .  Let (S, S) be a measurable space, and let g : U x S + Rn be continuous 

in the first argument, Vs E S ,  and measurable in the second, Vx E U. Then the mapping 

s H f (., S) is Bore1 measurable as a mapping from S into C,(U). 

Proof. It suffices to show that for every a > 0, the set 

is a measurable subset of R n .  This follows easily from standard results in the theory of 

measurable multifunctions; see, for example, Rockafellar [lo; Theorem 2K]. 

Corollary A2. E V f  is a Cn(U)-valued random variable for every v = 1,2, . . .. 

The main result is a "well-known" theorem that does not seem to have been published 

for Cn(U) with n 2 2. The argument presented here was suggested by Professor R. Pyke. 

Theorem A3. Suppose that g : U x S + Rn satisfies the probabilistic assumptions P.l-4. 

Then there exists a Gaussian random variable w taking values in C,(U) such that 



where for all x E U, w(x) is a normal N(0, C(x)) random variable with covariance C(x) = 

cov[f (x, s1)l. 

Proof. Each E V f  is a vector of continuous functions (EVf l ,  . . . , EVfn).  The conditions of 

the theorem imply that for each j = 1,. . . , n there is a Gaussian random variable in C,(U) 

with zero mean and covariance equal to cov fj, which we suggestively call wj ,  such that 

cf. Araujo and Gink [2; 7.171. It follows that the finite-dimensional distributions of wV := 

&(EVf - Ef)  converge to those of w,  i.e. for all finite subsets {xl,  . . . , xk) c U one has 

This determines the limit w,  if it exists, uniquely as that in the statement of the theorem. 

Thus by Prohorov's Theorem (Billingsley [5; 6.11) it remains only to show that the sequence 

{wV) is tight in Cn(U), i.e. for each E > 0 there is a compact set A c C,(U) such that 

Pr{wV E A) > 1 - E for a11 sufficiently large v. By adapting the argument of [5 ;  8.21 for 

C,(U) we find that the tightness of {wV) is equivalent to the simultaneous satisfaction of 

the following two conditions: 

(i) There exists x E U such that for each q > 0 there is a > 0 with 

(ii) For each positive E and q there exist S > 0 and an integer vo such that 

Pr{ sup IwV(x) - wV(y)l > E) 5 q,  VV > VO. 

( 2 - ~ ) < 6  

These conditions follow easily from the tightness of the coordinate sequences {wy) for 

and similarly for the probability in condition (ii), and hence these can be made as small 

as one pleases by application of conditions (i) and (ii) to the co-ordinate sequences. Thus 

{wV) is tight, and the proof is complete. 
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