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Foreword 

We review some of the recent results obtained for constrained estimation, involving possibly 
nondifferentiable criterion functions. New tools are required to push consistency and asymptotic 
results beyond those that can be reached by classical means. 

Alexander B. Kurzhanski 
Chairman 

System and Decision Sciences Program 

iii 



1. Introduction 

The choice of a statistic is limited by our capability of using it in a practical environment. 

This used to mean that the estimator had to be a relatively simple function. With the 

advent of the computer this no longer needs to be the case. We can build estimators that 

involve conditional "switches" , nondifferent iable functions, and may not be expressible in 

terms "standard" functions. For example, the estimator could be the optimal solution of 

a certain optimization problem (possibly involving constraints). This is certainly going 

to be the case if there are restrictions on the choice of the estimator and more than a 

single parameter needs to be estimated. These restrictions could be simple nonnegativity 

constraints (as in the estimation of a variance), but much more complex restrictions could 

also be present, such as certain relations between the parameters that need to be estimated. 

Classical techniques, that can still be used to handle, for example, least square estimation 

with linear equality constraints on the parameters, break down if there are inequality 

constraints or we replace least squares by a nondifferentiable criterion function. 

The following example, involving least square estimation of regression coefficients, will 

help make more concrete the issues that need to be addressed. 

Example 1.1. Eatimating regreasion coeficients. Assume that the dependent y variables 

can be predicted on the basis of information provided by independent x variables. In the 

linear model, the observations yj would be generated according to 

where PI, .  . . , Pp are unknown parameters to be estimated, c,, j = 1,. . . , v, denote noise, 

and X = (xi,) is a (p, v) matrix whose rows consist of the observed values of the indepen- 

dent variables. 

In practice, there may be in addition some a priori constraints imposed on the pa- 

rameters such as nonnegativity constraints on the elasticities, see Liew (1976), a required 

presigned positive difference between input and output, Arthanari and Dodge (1981). As- 

sume that these constraints are of the form 

where A(m,p), c(m, 1) are given matrices. The use of the least squares method leads to 



the optimization problem: 

minimize C [ yj - C zi  j& ) 

subject to C ariai  < ck, k = 1,.  . . , m. 

The (best) estimate for the unknown coefficient is then the optimal solution of a quadratic 

program 

A robust version would lead to a problem of the type: 

minimize p(yj - C zijai) 

subject to C a*;@; 5 ck, 1 < k < m. 
i= 1 

with p a convex function (with bounded derivatives of sufficiently high order), for example, 

for lul < c, 
clul - f c2 for lul 2 c. 

Fig. 1. sRobust" leaat rquues 

The robust estimator is then the optimal solution of a (generalized) linear-quadratic 

optimization problem. 

Minimizing the sum of absolute errors yields the optimization problem 

minimize C lyj - z z i j & I  



subject to C akiPi < ck, I < k < rn. 

The estimator is the optimal solution of a problem featuring a nondifferentiable objective. 

(This simple case can be reformulated as a linear programming problem.) 

We have to accept the view that finding best estimates may require solving a complex 

(involving constraints) optimization problem. And, thus, there is a need to come up with 

a mathematical framework that will back up such an approach, i.e., a mathematical theory 

that will provide the tools to study consistency and to analyze the asymptotics of this this 

class of problems. We are going to be concerned with a review of a number of results that 

propose such a theory. The approach that is detailed here is not the only one possible, 

related results have been obtained by Shapiro(l989), Vogel (1988) Ermoliev and Norkin 

(1989) by relying on different tools. 

2. The model 

We take for general model, the following optimization problem: 

find x* E IRn that minimizes E { f (x, [)). 

More precisely: Let (2,  A, P) be a probability space, with 2 - the support of P - a closed 

subset of a Polish space X, and A the Bore1 a-field relative to E; we may think of 2 as the 

set of possible values of the random element [. With P known, the problem is to: 

find x* E IRn that minimizes E f (x), 

where 

and 

is a random lsc function (see below); ( E  f)(x) = oo, if there is no summable function that 

majorizes H f (x, t). We allow for the function f to take on the value oo, in order to 

allow for constraints; f (x, [) = oo correspond to the situation of an infeasible x (that does 

not satisfy the constraints) if ( is observed. 

In terms of example 1.1 (regression model), we have that 

( € 0  - ELl if x E S = { X I A X  < C), 

otherwise, 



when the criterion is least squares; 

f ( x , a  = { ~ ( t o - C : = ~ t i x i )  if x E S, 
+CX, otherwise. 

when the criterion is the robust version of least squares; and 

r c x , a  = { ( t ~ - C : = ~ ( i x i J  if X E  S 
+=I otherwise 

in the case of minimizing the sum of absolute errors. 

When dealing with problems of this type, the traditional tools of analysis are no longer 

quite appropriate. The classical geometrical approach that associates functions with their 

graphs must be abandoned in favor of a new geometrical viewpoint that associates functions 

with their epigraphs (or hypographs). The epigraph of a function h : Rn -t R is the set 

epi h = {(x, cr) E Rn x RJh(x) < a). 

The function f : Rn x -t is a random ZJC (lower ~emicontinuou~) function if and 

only if 

the set-valued mapping t H epi f (-, 6) is closed-valued , 

the set-valued mapping t H epi f (., t )  is a random set ; 

recall that set-valued mapping ( H r ( t )  : E --t Rn+' is a random set if for all closed sets 

F c Rn+' 
r - l ( ~ )  := {t E E (r(t) n F # 0) E A. 

Proposition 2.1. (Yankov-von Neuman's Measurable Selections' Theorem). If I' : E =t Rn 
is a random closed set, then there exists a least one measurable selector, i.e., a random 

vector x : domr  --t Rn such that for all t E domr,  x(t)  E r ( t ) ,  where 

As an immediate consequences of this proposition and the definition of a random lsc 

functions, we have: 

Proposition 2.2. Let f : Rn x E --t R be a random lsc function. Then for any A-measurable 

function x : E -t Rn, the function [ I-+ f (x(t), t) is A-measurable . Moreover, the infimal 

function 

t H inf f ( - , t )  := inf f (x , t )  
z €Rn 



is A-measurable, and the set of optimal solution 

is a random closed set (from E into the subsets of IRn). This implies that there exists a 

measurable selector 

( H x*(() : dom(argmin f (., ()) 3 IRn 

such that z* (( ) minimizes f (., () whenever argmin f (., () # 0. 

If instead of P, we only have limited information available about P, - e.g. some 

knowledge about the shape of the distribution and a finite number of samples of ( - then 

to estimate z* we usually have to rely on the solution of an optimization problem that 

approzimates (hopefully) the one constructed with the P-measure: 

find z' E IRn that minimizes E' f(x) 

where 

The measure P' could be the empirical measure, but more generally it is the best 

approximation of P given the information available. As more information is collected, we 

could refine the approximation to P and hopefully find a better estimate of x*. To model 

this process, we are going to think of the measures P' as random measures that depend 

on a random vector [ whose realizations determine the information available. 

Let ( Z , 3 ,  p) be a sample space with ( 3 ' ) ~ 1  an increasing sequence of a-field con- 

tained in 3. A sample [ - e.g. [ = {(', (',. . .} obtained in this case by independent 

sampling of the variables [ - leads us to a sequence {PY(., [), u = 1,. . .} of probability 

measures defined on (E, A). Only the information collected up to stage u can be used in the 

choice of P", thus for all A E A, [ H PY(A, [) is 3'-measurable . Since P' depends on [, 
so does the approximating problem, and in particular so does its solution set, and so does 

every selection xu of this solution set. A sequence of estimators {xu : Z + IRn, u = 1,. . .} 
is consistent if p-almost surely they converge to z*. 

The ultimate goal is to show that under rather benign assumptions, the solutions of 

the approximating problems are consistent if the measures P' converge narrowly (weakly) 

to P p-almost surely. Our approach will actually derive a stronger result: we are going 

to show that the sequence of approximating problem are (epi-)consistent! To do this, we 

need a notion of convergence for "optimization" problems. 



- 
A sequence of functions {gY : IRn + IR, v = 1, . . .) epi-converges to g : IRn + if for 

all x in IRn, we have 

Y W  lim inf g"(xY) 2 g(x) for all {x converging to X,  
Y'W 

and 
Y o 0  for some {x converging to x, lim sup gY(xY) 5 g(x); 

Y'OO 

we then say that g = epi-lim gV. Note that these conditions imply that g is lower semicon- 
Y'W 

tinuous. 

Proposition 2.3. [Attouch and Wets (1981), Salinetti and Wets (1986)l. Suppose {g;gY : - 
IRn + IR, v = 1,. . .) is a collection of functions such that g = epi-limg". Then 

Y+OO 

lim supinf gY 5 inf g, 
Y'W 

and, if xk E argmingYk for some subsequence {vk) and x = limk,, xk,  it follows that 

x E argrnin g, and limk,, inf guk = inf g. 

Thus, if g = epi-limg" and if there exists a bounded set D c IRn such that for some 
Y'OO 

subsequence { vk ), 
argmingYk n D # 0, 

then the minimum of g is attained at some point in the closure of D. 
To prove consistency of the estimators it will certainly be sufficient to prove that 

p-almost surely the functions E" f epi-converge to E f .  

3. Consistency 

Three different results are going to be featured. The first two are general in nature, whereas 

the last one is restricted to the case when the P" are empirical measures. The first one of 

these results relies on the following assumptions. 

Assumption Al.  For the random lsc function f : IRn x S + (-00, oo], 

domf :={(x,[)lf(x,[) < m ) = S x S ,  ScIRn closedandnonempty, 

- for all x E S, [ H f (5, [) is continuous on C, 

Assumption B1. For all [ E S, the function x H f (x, [) is locally lower Lipschitz on S: to 

every x in S, one can associate a neighborhood V of x and a bounded continuous function 

p : S + I R s u c h t h a t f o r a l l x ' ~ V n S a n d [ ~ 2 ,  



Assumption Cl .  For all v, P' : A x Z + [O, 11 are "conditional" probability measures, i.e., 

for all ( E Z PY(., () is a probability measure on (E, A), and for all A E A, ( I-+ PY(A, () 
is 3'-measurable. 

Assumption D l .  For p-almost all ( E Z, PY(., () converge narrowly (weakly) to P. 

Assumption El .  For all x E S, p-almost all ( E Z, the collection of measures {P;  PY(., ()} 
is f (x, -)-tight (asymptotic negligibility), i.e., to every x E S and r > 0 there correspond a 

compact set Kc c E such that for v = 0,1,. . . 

and 
r 

inf f ( x , ~ ) P U ( d ~ , ( )  > -00. 
ZER" 

One important distinction between this approach and the "classical" approach - 

consult, for example, Huber (1967) and Ibragimov and Has'minski (1981) - is that they 

assume that the set S is open. This might seem to be just an innocuous difference, but it 

leads to a very different collection of asymptotic results! With S open one may hope for 

asymptotic normality, but, as we are going to see, that is not the case if S is closed. 

To simplify notations we follow, henceforth, the accepted practice of dropping refer- 

ence of the dependence on (, this applies to the measures P' , the resulting functions E' f 
and, the argmin sets associated with those functions. Nonetheless one should always keep 

in mind that all p-a.s. statements refer to the underlying probability space ( Z , 3 ,  p). 

Theorem 3.1. [DupaEovb and Wets (1988), theorems 3.7 and 3.81 Let f be a random lsc 

function. Suppose {E' f ,  v = 1,. . .} is a sequence of expectation functionals defined by 

and E f (x) = E{ f (x, E ) }  = h f (x, E )  P ( d 0  such that f and the collection {P; P', v = 

1,. . .) satisfy assumptions Al-El. Then, p-almost surely, 

(i) the expectation functionals E" f : JRn x Z + are random lsc functions, 

(ii) with ptwse-lim E' f the pointwise limit of the sequence E' f ,  
'--roo 

Ef = epi-lim EY f = ptwse-lim E' f .  
Y + o o  Y 

With the help of the results and the observations in the previous section, we come to 

the following (important) corollary. 



Corollary 3.2. (Consistency). Let f be a random lsc function. Suppose {E f ;  Ev f ,  v = 

1,. . .) is the collection of expectation functionals defined in theorem 3.1. Then, under 

assumptions A1 -El ,  we have 

lim sup(inf Ev f )  5 inf E f p-almost surely . 
v--roo 

Moreover, there exists Zo E 3 of measure 1 such that 

(i) for all C E Zo, if i is a cluster point of any sequence {xu) with xv E argmin Ev fv(., C) 
then i E argmin E f (i.e., i is the actual value of the quantities being estimated), 

(ii) for all v, C H argminEvf(.,C) : Zo =t Rn, is a random closed set that is F V -  

measurable. 

Proof. The first inequality immediately follows from the corresponding one in theorem 2.3. 

The epi-convergence p-almost surely of the expectation functionals Ev f to E f (theorem 

3.1) in combination with theorem 2.3 yield the assertion about the cluster points of se- 

quences that lie in argmin Ev f .  That C t+ argmin E" f (-, C) is a random closed set is also 

a consequence of the theorem and proposition 2.2. 

Let also observe that we do not assume the uniqueness of the solution; the "classical" 

analysis relies fundamentally on such an assumption, Wald(1940), Huber(1967). 

Similar results can be obtained under a somewhat different set of assumptions. As- 

sumption B1 is very much "finite dimensional" in nature. It is difficult to find a "reason- 

able" parametric estimation problem whose criterion function would fail to satisfy assump- 

tion B1. On the other hand, if the decision variable x belongs to an infinite dimensional 

space (as would be the case in nonparametric statistics), it is difficult to think of a "rea- 

sonable" criterion function that would satisfy assumption B1. This has led a study of the 

consistency problem from a different angle. We are going to exploit the following fact: 

if Pv is a sequence of probability measure converging narrowly to a probability measure 

P, then they converge uniformly on certain sets. We restrict our attention to the finite 

dimensional case to facilitate comparison. Let IB denote the unit ball in Rn. 

Assumption A2. For the random lsc function f : IRn x Z -t (- oo, oo], 

dom f := {(x, t)l f(x,  t) < oo) = S x E, S c Rn closed and nonempty, 

for d o E R, lev, f = {(x, () I f (x, () 5 a} c ( S  x 8) are closed, and f is bounded 

on bounded subsets of S x 8. Moreover, for p > 0 let wp(() := inf{f(x,() 1 x E pB) 

and assume there exist usc (upper semicontinuous) functions {up : X -t R 1 u usc , u p  < 
w,, p E IR.+), and a measurable function h such that h 5 up and A - h dp > -oo 



Assumption B2. The strict (inf-)level sets of the functions { f (x, .), x E S), 

are P-continuity sets, i.e., their boundaries are P-null sets. 

Theorem 3.3. [Lucchetti and Wets (1990), theorems 12 and 131 Let f be a random lsc 

function. Suppose {Ev f ,  v = 1,. . .) is a sequence of expectation functionals defined by 

and E f (x) = E{ f (x, 0 )  = J: f (x, E) P(dt)  such that f and the collection {P; P v ,  v = 

1, . . .) satisfy assumptions A2, B2, Cl -El. Then, p - h o s t  surely, the expectation func- 

t ional~ Ev f : Rn x Z + are random lsc functions, and 

E f = epi-lim Ev f = ptwse-lim Ev f 
v + w  v--+w 

Corollary 3.2 is also a corollary of this theorem, and thus consistency of the set of 

estimators argmin Ev f is guaranteed. As already pointed out earlier, the major difference 

lies in the use made of assumption B2. The conditions in assumption A2 are mostly 

technical in nature and do not seem to exclude any potential application. 

The third epi-consistency results is of a very different nature. It relies on the law of 

large numbers for random sets, and applies only in the convex case. The result can easily 

be extended to the case when the decision variables x lie in a reflexive Banach space. Again 

we state the assumptions in a manner that facilitates comparison. 

Assumption A3. f : Rn x 2 + (-m, oo], is a random convex lsc function, i.e., for all (, 
the function x H f (x, [) is convex. Moreover, E f is finite somewhere, say at Z. 

Assumption B3. There exists a measurable function u : Z + Rn such that 

and J IIu(()II P(d[) is finite. 

Assumption C3. For all v, Pv : A x Z + [O, 11 is the empirical measure (process) obtained 

from the first v observations of the random vector [. 

Theorem 3.4. [King and Wets (1990), theorem 2.21 Let f be a random convex lsc function. 

Suppose {Ev f ,  v = 1, .  . .) is a sequence of expectation functionals defined by 

r 



and E f (x) = E{ f (x, [)) = IE f (x, [) P(d[) sucb that f and the collection {P; P", v = 

1, . . .) satisfy assumptions A3-C3. Then, p-almost surely, the expectation functionals 

E" f : IRn x Z + are random lsc functions, and 

Ef = epi-lim E" f = ptwse-lim E" f. 
"+OD "+OD 

Again, Corollary 3.2 is a corollary of this theorem. We note that assumption B3 refers 

to a function u that must determine for all [ a subgradient of f (., [) at 2. The condition 

that this function must be summable is thus a growth-type condition of the same nature 

as that found in assumption B1. 

The argument used in the proof of theorem 3.4 is based on (1) the fact that it will 

suffice to prove (in this convex case) that the conjugate functions of E" f epi-converge to 

the conjugate of E f (a sequence of convex functions epi-converge to a limit function g if and 

only if their conjugates converge to the conjugate of g), and (2) that functions epi-converge 

if and only if their epigraphs converge as sets (Painlevd-Kuratowski convergence), and (3) 

the epigraphs of the conjugates of the E" f are the (normalized) sum of the random sets 

epi f *(., tk) for k = 1,. . . , v where f * is the conjugate of f and tk is the random variable to 

be observed at stage k (the tk are iid). This allows for the use of the law of large numbers 

for random set of Artstein and Hart (1981). 

4. Asymptotics: Convergence rates 

Let us now proceed with the assumption that the sequence of problems 

minimize E" f (-, [), v = 1, ..., 

are epi-consistent with 

minimize Ef. 

The next question on our agenda is to know at which rate the solutions of the approximating 

problems will actually converge to true parameter x* , i.e., the solution of the limit problem. 

Of course, because the solutions of the approximating problems depend on the random 

variable [ (modeling the sampling process), we can only achieve "probabilistic" convergence 

rates. Typically, we are going to be interested in the distribution of the error, i.e., the 

quantity 

1)x*-xY([)ll, ormoregenerally x* -xu ,  

as v tends to w. If the problem is without constraints, then one may hope for asymptotic 

normality, if the functions x I+ f (x, [) are sufficiently smooth (at least of class C2) in 



a neighborhood of x*. And this is actually the case as demonstrated first by Huber 

(1967). DupaEova and Wets (1988) extend Huber's result to the case when the f (., t )  are 

not necessarily differentiable and there is some provision for equality constraints. But in 

general, one cannot expect the asymptotic distribution of the error to be normal. Indeed 

let US consider the following very simple example. Let {Cv I Y = 1,. . .) be iid (independent, 

identically distributed) normal random variables with known mean 0 and variance a2. Let 

The asymptotic distribution of xv is easy to derive from the expression 

half of the probability mass is concentrated at {O), the other half of the mass is spread on 

nt, like the right half of a normal distribution with variance a2. The mapping M is non 

differentiable at (0). However it is directionally differentiable at {0), with 

and the asymptotic distribution is given by MI: M1(O, c) with c a random variable with 0 

mean and variance a2. As can be surmised from this example, most mappings that arise 

in constrained optimization are nondifferentiable, and the asymptotic normality for the 

distribution of the error is bound to be the exception rather than the rule. 

However, if normality will not be at hand, as the preceding example confirms, the 

example also suggest that the asymptotic distribution of the error will have to be of 

the following form: M1(x*; c) where < is a normally distributed random variable and 

M1(x*; -) : Rn + Rn is a (nondifferentiable) Lipschitz mapping that roughly speaking 

corresponds to the directional derivative of map argmin mapping. 

We are going to feature two results. The first one is mostly concerned with conditions 

under which one can still prove asymptotic normality. The second one gives a general 

answer in the convex case. 

To state these results we shall be in need of some "standard" subdifferentiability 

results that are reviewed in the Appendix. For the sake of this discussion let us simply 

deal with problems of the following kind: 

minimize E fo(x) subject to x E X 



where fo(- ,  () is a locally Lipschitz function and X is a polyhedral set. When fo(., () is 

locally Lipschitz, the set of subgradients afo(5, () at 3 can characterized in the following 

terms: 

a fo(z, () = co{u = 1,im V fo(xt, () I fo(- ,  () is smooth at xt}; 
E 'f 

see the Appendix for a brief justification of the preceding definition. 

We shall also assume that ( H fo(x, () is continuous (for all x E X), and that to any 

bounded open subset V of Rn there corresponds a function P uniformly integrable with 

respect to P Y , v  = 1,. . ., such that for any pair xO,xl in V: 

Together these conditions are those that appear in assumption Al, except, of course, for 

the ("upper") locally Lipschitz property. 

It is easy to show that under these conditions ( H a f O ( ~ ,  () is a random closed convex 

set and 

aEfo(3) c E{afo(Z, 01 = / afo@,E), 

as follows from a result of Clarke (1983); the integral of set-valued mappings is to be 

interpreted in the sense of Aumann (1965). More to the point, with bx the indicator 

function of X ,  we have that 

with equality if Efo is subdifferentiably regular at z (consult the Appendix); bx(5) is the 

polar of the tangent cone of X at 3 if z E X. 

Let us introduce the following notation: uo(x, () will always denote an element of 

afo(x,() and v,(x) an element of abx(x). In view of the above and the measurable 

selection theorem 2.1, if x E X ,  we always have that v(x) E aEf(x) (with f = fo + bx) 

implies the existence of v,(x) E abx(s) and uo(x, .) measurable with uo(x, () E 8 fo(x, () 
P-a.3. such that 

v(x) = vo(x) + V,(X> = E{uo(x, ()I + v,(x). 

Moreover similar formulas hold p-a.s. if the integration is with respect to PY(., (.) instead 

of P. Because the functions fo (-, (), as well as bx , are p-a.s. subdifferentially regular, then 

a type of converse statement also holds. We have that 

0 E aE f (x*) 



implies the existence of v,(x*) E ahx(x*) and of a random function uo(x*, a )  from E to Rn 
with uo(x*, .) E afO(x*, () P-as.  such that 

Similarly, 

0 E aEY f(xY), 

means that there exist v,(xY) E ahX(xY), and a random function uo(xY , .) from E to Rn 
with uo(xY, .) E afo(xY, .) PY-a.s. such that 

Assumptions C1-El that deal with the "probabilistic" structure of the problem will 

be supplemented with the following one: 

Assumption F. Statistical Information. The probability measures{PY, v = 1,. . .} are such 

that for some vV E aEV f (x*, C)  and v E aE f (xu ( 0 )  

(i) J.[vY(x* , C) + v(xY (C))] converges to 0 in probability; 

(ii) Jv[vs(xY(C)) - v,(x*)] converges to 0 in probability; 

(iii) JvvY(x* , C )  is asymptotically Gaussian with distribution function N(0, C 1) where C1 

is the covariance matrix. 

Moreover 

(iv) E fo is twice continuously differentiable at x* with nonsingular Hessian H 

Theorem 4.1. DupaEovd and Wets (1988). Under assumptions Al, Cl-El, F and for 

x H fO(x, () locally Lipschitz for all [ E E, X polyhedral, 

f i(xY(.) - x*) is asymptotically normal 

with distribution N(0, C) where C = H - ' C ~ ( H - ' ) ~ .  

Before we move on to a more interesting result, let us examine condition (ii): 

fi[vs(xV(C)) - v,(x*)] converges to 0 in probability . 

It basically means that convergence of xY to x* must be smooth. Of course, this will be 

the case if x* belongs to the interior of the set X of constraints, in which case v,(x*) and 

p-as. v,(xY(C)) are zero for v sufficiently large. It will also be satisfied in a few other rare 



situations. This is the condition that imposes strict restrictions on the use of this theorem. 

We already knew from the example given at the beginning of this section that in fact this 

theorem has a limited range of applicability. 

To capture the asymptotic properties of xu - x* it will be necessary to enlarge the 

class of acceptable limit distribution. A good class, that will certainly take care of all the 

examples mentioned in section 1 as well as many other situations, is that of random vector 

that are conically normal; by this we mean that their distribution is the projection (with 

respect to a certain norm) of a normal distribution on a convex cone. More specifically, 

let K be a convex cone in IRN and 8 a random N-vector normally distributed with mean 0 

and covariance matrix C, then 8, the LLprojection" of 8 on K ,  will have a conically normal 

distribution. The distribution of 8 (on IRN) is given by: 

PK(A) = P({x 1 prjK(x) E A)) V measurable sets A. 

The following theorem only applies to the convex case, but captures the essence of the 

type of results one may hope to derive. It is direct application of general results obtained 

by King (1988) for Lipschitz mappings. 

Theorem 4.2. King (1988). Let fo : IRn x Z + be a random lsc function, convex in x 

and let X c IRn be a polyhedral set. Suppose that 

minimize E fo (x) on X 

has an optimal solution x*. Suppose also 

(a) x H fO(x,[) is C1 for all [ E Z, 

(b) E fo is C2 with H := V2 E fo(x*) positive definite, 
V j ( z  ,€)-Vj(z *€)I (c) EJJVf(x* ,  E)I12 < m, E S U P ~ ~ . ~ ~ O X  is L2, 

(d) PY are the empirical measures. 

Let 8 be a normally distributed random vector with mean 0 and variance 

Then 

f i (xY - x*) is asymptotically conically normal . 

The asymptotic distribution is the projection, with respect to the metric induced by the 

matrix H, on the cone 



where Tx(x*) the tangent cone to X at x*. The asymptotic distribution is the distribution 

of the vector: 

8 = argmin llu - ~ - ' 0 1 1 ; .  
UEX' 

In the case of a (generalized) linear-quadratic problem 

minimize cx + f n ~ x  + E{pV,~(T(t)x - h(t))} 

subject to x E X 

where C, Q are positive definite matrices, X, V are polyhedral sets, and T(t) ,  h(t) are 

random, and 

p v , ~ x )  = sup {vx - fv.Qv) . 
vEV 

The theorem takes on the following form (it was the seminal result of this type). 

Corollary 4.3. King and Rockafellar (1986). Let x* be optimal solution of the stochastic 

(generalized) linear-quadratic problem. Let xu be the solutions of the (generalized) linear- 

quadratic stochastic optimization problem with E replaced by Ev and the measures Pv 
are the empirical measures. Then 

&(xu(.) - x* ) is asymptotically conically normal . 

The asymptotic distribution is the distribution of 

where 

8  is normally distributed: mean 0, covariance COV(T*(~)V~~,Q(T([ )X* - h(t))), 

X f  = {U E Tx(x*) 1 u-[c + Cx* + E{Vpv,~(T(t)z* - h(t))}] = 0) 

V f ( 0  = {v E Tv(w(t)) I v.[T(t)x* - h(t) - Q-w(f) = 0) 

and 

~ ( t )  = VPV,Q(T(~)X* - h(t)). 



Appendix 

We provide here a brief review of the main concepts that enter in the building of a subdif- 

ferentiability theory. It provides an entry to the literature on the subject, see Clarke (1983), 

Rockafellar (1983), Aubin and Ekeland (1984), Rockafellar and Wets (forthcoming). 

The lower derivative of a lower semicontinuous function h : IRn + (-oo, +oo] at  x, a 

point at  which h is finite, with respect to the direction y is 

hl(x; y) := epi-lim inf h(x + ty) - h(x) 

relying on the convention oo - oo = m. It is not difficult to see that h' is always well 

defined with values in the extended reds. If x 4 dom h, then hl(x; -) = oo, otherwise 

hl(x; y) = lim inf 
h(x + ty') - h(x) 

Y1--rY , t l 0  t 

The (upper) epi-derivative of h at x, where h is finite, in direction y, is the epi-limit superior 

of the collection {h1(x'; .), x' E IRn) at x, i.e. 

ht(x; .) := epi-lim sup,r,, hl(x'; .) 

ht(x; y) = inf lim sup h1(x'; y') 
~ ' - - r ~ , ~ ' - - r ~  

where by writing {x' + x) and {y' + y) we mean that the infimum must be taken with 

respect to all nets - or equivalently here sequences - converging to x and y, see Aubin 

and Ekeland (1984), Chapter 7, Section 3. 

It is remarkable that if h is proper, and x E dom h, the function y H ht(x; .) is 

sublinear and lsc [Theorems 1 and 2, Rockafellar (1980)l. Moreover, if h is Lipschitzian 

around x, then ht(x; a )  is everywhere finite (and hence continuous); in particular if h is 

continuously differentiable at x then ht(x; y) is the directional derivative of h in direction 

y, and if h is convex in a neighborhood of x, then 

ht(x; y) = lim h(x + ty) - h(x) 
t l 0  t 

is the one-sided directional derivative in direction y. The sublinearity and lower semicon- 

tinuity of ht(x; -) makes it possible to define the notion of a subgradient of h at  x, by 

exploiting the fact that there is a one-to-one correspondence between the proper lower 

semicontinuous, sublinear functions g and the nonempty closed convex subsets C of IRn, 

given by 

g( y) = SUP v y for all y E IRn, 
vEC 



and 

C = {v E Rn I vy 5 g(y) for all y E Rn} 

see Rockafellar (1970). Assuming that hT(x; a )  is proper, let ah(x) be the nonempty closed 

convex set such that for all y, 

hT(x ;y )=  sup vy. 
vEah(z) 

Every vector v in ah(x) is a subgradient of h at  x. If h is smooth (continuously differen- 

tiable) then 

ah(x) = {Vh(x), the gradient of h at  x}; 

if h is convex, then 

is the usual definition of the subgradients of a convex function. More generally if h is 

locally Lipschitz at  x, then 

ah(x) = co{v = lim Vh(xl) 1 h is smooth at XI}. 

21-2 

For the   roofs of these identities and for further details, consult Rockafellar (1981), Aubin 

and Ekeland (1984) and Rockafellar and Wets (forthcoming). 
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