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FOREWORD 

The authors investigate a differential inclusion whose solutions have to 
remain in a given closed set. The viability kernel is the set of the initial 
conditions starting at which, there exist solutions to the differential inclusion 
remaining in this closed set. In this paper, the authors provide an algorithm 
which determine this set and they apply it to some concrete examples. 

Alexander B. Kurzhanski 
Chairman 
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Viability kernels of differential inclusions 
with constraints: Algorithm and applications 

H616ne Frankowska & Marc Quincampoix 

1 Introduction 

Let us consider a differential inclusion with constraints: 

{ i )  ' F(x( t ) )  
ii) V t 2 0, x(t) E K 

where F is a set valued map and I( a closed subset of a finite dimensional 
vector space X. 

Recall that the contingent cone to K at x is the set: 

Under adequate assumptions, the Viability Theorem of Haddad states 
that, for all xo E I(, there exists at least one K-viable solution (i.e. satisfying 
ii) ) to the differential inclusion i) starting at s o ,  if and only if F(x)flTK(x) # 
0 for any x E I( (see [13], [4], [3], [8], [2], [I]). In this case, K is called a 
viability domain. 

Of course, generally, I< is not a viability domain, and we have to solve the 
inclusion in subsets of I( and to determine all the initial conditions providing 
solutions viable in I(. Let us denote by ViabF(K), the viability kernel of I( 
namely the largest closed viability domain contained in K. This set (possi- 
bly empty) exists if F is lipschitzeanl (or even upper semicontinuous) with 

lLet us recall that the set valued map F is k-lipschitzean if and only if: 

where B denotes the closed unit ball. 



nonempty convex compact values and with linear growth (see for instance 
[I]). In this paper, the set valued map F is assumed to be such. 

In the control theory literature, viability domains are said to be controlled 
invariant se ts  and many control problems are known to depend on the prop- 
erties of the maximal controlled invariant subset of a fixed set. For example, 
the construction of zero dynamics (see [6]) is the construction of the viability 
kernel of the zero locus of the output map (see [3]). 

The related problem of controlled invariance for distributions has played 
a fundamental role in nonlinear geometric control, for example in the solution 
of the problem of disturbance decoupling (see [19], [14], [20] and [16] and also 
[I 81 for an earlier nonlinear interpret ation of transmission zeroes). 

Our main aim is to provide a constructive algorithm allowing the compu- 
tation of the viability kernel when K is assumed to be only closed. We would 
like to recall that such algorithms were found in several particular cases: 

The V* algorithm allows one to compute the viability kernel of a closed 
set defined by a linear equality constraint for control systems (cf [9], 
[24], [25]) and of course closely parallels the Silverman algorithm [23]. 

A "local" viability (viz, the zero dynamics) algorithm was extended 
to nonlinear systems (see [7], [17], [8] for systems which are affine in 
the control and [15] for partial results in the polynomial non affine 
case). See also [16] for more detailed discussion and examples. The 
connections between viability and zero dynamics are described in [3]. 

In the case of descriptor systems, in a finite number of iterations the 
viability kernel is obtained, when K is a subspace of a finite dimensional 
vector space (cf [5]). 

Let us notice that there exist algorithms providing viability domains (but 
not the viability kernel) in particular cases (see [2], [I 11 and [5]). Our algo- 
rithm will be applied to concrete examples and a numerical treatment will 
be suggested in particular cases. 

The authors are indebted to Chris Byrnes for his suggestions and com- 
ments. 



2 The viability kernel algorithm 

2.1 Assumptions 

In all this paper, X denotes a finite dimensional vector space, K C X is a 
closed subset. We impose the following assumptions2 on the set-valued map 
F from X into itself: 

F is a k -1ipshitzean set valued map with nonempty convex 
compact values, with linear growth and satisfying the 

boundedness condition M := sup,, sup,, F(,,  11 y 11 < w 

Recall that F has a linear growth if there exists c > 0 such that: 

The problem is to determine the viability kernel, i.e. to find all initial 
conditions xo E I( such that there exists at least one absolutely continuous 
solution x(-) starting at xo to the following differential inclusion: 

(2) x'(t ) E F (x(t)) almost everywhere in [0, w [ 

viable in I( in the sense that x(t) E K,  for all t 2 0. 

2.2 Definition of viability kernels 

Let us recall the definition of viability domains and kernels (see [2], [I], [4]). 

Definition 2.1 A set A is  called a viability domain of F if and only if: 

The viability kernel ViabF(I() of a closed set K is  the largest closed viability 
domain of F contained in I(. 

If F is upper semicontinuous with nonempty compact convex values and 
linear growth, thanks to Haddad's viability theorem (see [13], [2], [4], [I]) a 
closed set I( is viability domain if and only if starting from any point of K ,  
there exists at least one solution to (2) viable in K (i.e. which remains in 
the set I(). 

'If K is compact, then the boundedness condition M < oo is obviously deduced from 
the lipschitzeanity of F. 



2.3 Description of the algorithm 
We can divide the boundary of K into three disjoint subsets (see [21]): 

Where DK(x) denotes the Dubovitsky-Miliutin tangent cone to K at x defined 
by: 

DK(x) := { V E  X ( 3 a > O ,  x+]O,a[(v+aB) c K ) .  

This partition enables us to express the Haddad's Viability Theorem in the 
following way: 

Proposit ion 2.2 A nonempty closed set K is a viability domain of F if and 
only if the set Ice is empty. 

Furthermore, if Ice # 0 then, ViabF(K) n K e  = 0. 

The second statement holds because the viability kernel is a closed set. 
There is a "natural" algorithm (see [2], [I], [5]) defined by the following 

subsequence: 

where C denotes the closure of a subset C c X. In some particular cases, 
this sequence may converge (see, for instance, [5]), but, generally, it is not 

- ~ 

the case. In fact, it is easy to notice that this sequence is constant (= K )  as 
soon as: 

K = In t (K)  

The idea of our algorithm is to subtract to K not only Ice, but an open 
neighbourhood of Ice. In fact, since ViabF(K) is closed, for any xo E Ice, 
there exists a real > 0 such that: 

where B(xo, a:,) is the closed ball of center xo and radius a:, and 

(so,&'& ), the open one. A sequence of closed subsets of K can be defined 
in the following way: 



I<l := KO\ U x o ,  Ki h ( ~ 0 ,  

where B(xo, E:~) n V i a b ~ ( K )  = 0 
. . . 
I<n+l := Kn\ Uxoe K: ii ( s o ,  &go 
where B(xo, &go) n V i a b ~ ( K )  = 0 
. . . 

Of course, such sequence depends on the choice of &go. Also, since we do not 
know in advance the set ViabF(K), we have to find a procedure which allows 
to determine E:, from the knowledge of K,, and F for all n 2 0. Below, we 
suggest a particular choice of E:, which leads to the viability kernel. 

Proposi t ion 2.3 Consider a sequence of closed subsets Kn, n 2 0 satisfying 
(5). Set K, := n,,, Kn. Then, 

V i a b ~ ( ~ )  c I<, C ... c Kn+1 C Kn C ... c Kl C K 
and 
ViabF(I<) = ViabF(Ki) for i > - 1 

Proof  - Since I(1 C I<, we deduce that ViabF(K1) C ViabF(K). On 

the other hand, for all s o  E KC,  we have ViabF(K)n (so, E:,) = 0. So 
ViabF(I<) C K1. This and the induction argument end the proof. 

2.4 Approximations 

In this section, for each n and for each s o  E K i ,  we compute numbers &to 
depending only on Kn and F. We accomplish this task thanks to Filippov's 
theorem (see [24]) and so, we build an algorithm. In section 2.5, we shall 
prove that this algorithm converges to the viability kernel. 

Proposi t ion 2.4 Let s o  E K e  and E := d(F(xo), TK(xO)). Define 

and set 

(7) 
ctzo 

t,, := min{ t,,,, & ), E:~ := 8ektz0 



Then, 

and furthermore, 

In order to prove this proposition, we need two results concerning the 
distance of a solution starting at xo E K c  from the set K .  Let us denote by 
S(xo )  the set of solutions to (2 )  starting at xo and defined on [0, w [. 

Lemma 2.5 Let xo belong to K C .  If there ezist a, i > 0 such that 

then, 

Proof - By assumptions, we have: 

Hence (xo + t (F(xo)  + q B ) )  n ( K  + B )  = 0 and therefore 

On the other hand, for all t  2 0 and for any solution to (2 )  starting at 
2 0 ,  we have 

t 

(8 )  x ( t )  = xo + 1 zl(s)ds E xo + M t B  

where x l ( s )  E F ( x ( s ) ) .  
Since the set valued map F is k-lipschitzean, for almost all s  > 0, x l ( s )  E 
F(xo)+ kllx(s) -xoll B,  and thanks to (8 ) ,  we have for almost every 0 5 s  5 t ,  
x'(s) E F(xo )  + k s M B  and, consequently, by integrating this inclusion and 
using (8):  

1 
~ ( t )  E F ( X ~ ) ~  + - k t 2 ~ ~ .  

2  



Finally x(t) E xo + t (F(xo) + B)  as soon as f ktM 5 q. This is proving 
that d(x(t), K )  > ta/2. Q.E.D. 

If a solution x(.) behaves as in the claim of Lemma 2.5, it is the case for 
at least one solution of S(yo), for any yo near xo. We shall show this thanks 
to Filippov's Theorem (see [24] or, for instance [4], chapter 10): Let us state 
the version of Filippov's Theorem, we shall use here: 

v 6 > 0, v Yo E B(xo,6), v Y(.) E S(yo), 3 4.) E S(xo), 
such that V t >_ 0, (Ix(t) - y(t)ll 5 ekt6 

Lemma 2.6 Let xo belong to K and T > 0. If for any x(.) E S(xo), we 
have d(x(T), I() > aT/2, then 

Proof - It is an application of Filippov's Theorem (9) when 6 := 5. 
Let yo belong to xo + 6B. For any y(.) E S(yo), there exists x(-) starting at 
xo solution to (2) such that 

Clearly, d(y (T), I() + I(x(T) - y (T) 1 1  > d(x(T), K)  and therefore 

Since ekT6 = 2 4 9  we proved that d(y(T), K )  >_ y. Q.E.D. 

Thanks to lemmas 2.5 and 2.6, we shall determinate a radius such 
that ViabF(K) n B(xo, E:~) = 0, and consequently, we shall define the first 
step of our algorithm: 

Proof of proposition 2.4 - Let us consider xo E Ke, then e := 
d(F(xo), T K ( x ~ ) )  > 0 hence 

e 
(F(xo) + $B) n TK(XO) = 0. 

Since F(xo) + i B  is compact, by the very definition of the contingent 
cone, we can find a positive t satisfying: 



We have defined t,,,, the largest t (possibly equal to +oo) satisfying (10). 
Thanks to lemma 2.5, we know that: 

From lemma 2.6, we deduce that 

This is ending the proof of proposition 2.4. Q.E.D. 

Now, we have defined for each xo E K e ,  a positive number E:~ and 
consequently the set K1 by using (5). Clearly, Kl is a closed subset of K .  
This and the induction argument allow us to define a decreasing sequence of 
closed sets. 
Set := Kn. Observe that if K is compact, then K, = 0, if and 
only if for some N 2 1, KN = 0. 
If K have some additional regularity properties at xo, then the number E:~ > 
0 satisfying ViabF(K)n (xo,&L) = 0 can be estimated from the distance 
between F(xo) and TK(xo). 

Corollary 2.7 Let xo belong to K e .  Set E := d(F(xo),TK(xo)). If K c 
xo + TK(XO) then, 

Proof  - It is an obvious consequence of proposition 2.4, if we notice 
that t,,, = oo. Q.E.D. 

Remark  - If the set K is convex, then, for any x E K ,  K is contained 
in x + TK(x) and corollary 2.7 can be applied. 

In the next section, we shall prove that the sequence Kn converges to the 
viability kernel of K. 

2.5 Convergence of the algorithm 

In section 2.3, we have shown that algorithms defined by formula (5) lead to 
the inclusion ViabF(K) C n,,, Kn. In section 2.4, we have suggested, thanks 



to proposition 2.4, one possible choice of numbers cz0 satisfying requirements 
of ( 5 ) ,  namely B(xo ,~Zo)  n ViabF(K) = 0 for all xo E KE. Now we check 
that our algorithm converges to the viability kernel, i.e. that V i a b ~ ( K )  = 

Theo rem 2.8 Let I{ be a closed set and K, be defined as in section 2.4. 
Then, 

ViabF(K) = K, 

Proof  - By proposition 2.3 and the choice of E~ ViabF(K) c K,. ".' Let us assume, for a moment, that K, is not a viability domain, namely 
K& # 0. Pick x in I{& and set E := d(F(x), TK,(x)) > 0. Let us define the 
following finite number: 

We shall state, thanks to a technical lemma given below, that: 

3 N > 0, such that V n > N, 
3 X n  E I{n n (X + [O, iLa , ] (F(x)  + ( E / ~ ) B ) )  
satisfying Kn n (xn+]O, ~f,,,,,](F(x) + ;B)) = 0 

For this aim, we need the following well known result: 

L e m m a  2.9 Let C be a convex closed cone3 and H be a compact subset of 
X .  If C does not contain any whole line, then there exists y E H such that: 

Proof  - The proof results from the lemma of Zorn. Let us define the 
following relation for the points of H: 

3Recall that a subset C  C X is called cone with the vertex at 0 if and only if: 

V X > O ,  V Z E  C, X Z E  C. 



We can easily check that, if C  does not contain whole lines and since it is 
convex, then this relation is an order. We shall prove that all subset P of H  
which is totally ordered has a majorant. 

Clearly, for any a E P, (a  + C )  n H  # 0. Since these sets are nonempty 
compact and are included one in the other, we deduce that: 

Let b belong to naE p(a + C )  n H .  Obviously, b is larger than any element 
of P for the relation 5. According to Zorn's lemma, there exists a maximal 
element y E H  namely, if z E H  is different from y ,  then y $ z + C .  Hence, 
( Y + C ) ~ H  = { y ) .  Q.E.D. 

Thanks to Lemma 2.9, we can achieve the proof of Theorem 2.8: 

Since x  E I<&, F ( x )  does not contain 0 and so does F ( x )  + ( E / ~ ) B .  
Consequently, the convex closed cone C  := R + ( F ( x )  + i B )  does not contain 
any whole line and by setting H  := K ,  n ( x  + [0, L a , ] ( F ( x )  + EB)) ,  we can 
assert, thanks to Lemma 2.9: 

3 x,  E H,  such that ( x ,  + C )  n H  = { x,  ) 

On the other hand, by the very definition of K ,  and the choice of x ,  the 
bounded sequence (x,), converges to x.  Hence for all n large enough, 

1  - E 
xn E x + [O, 2 t m a z ] ( F ( ~ )  + B ) .  

Thus, 

I<n n (xn + [O, f fmar](F(x)  + : B ) )  c 
n ( X  + 10, L a z ] ( F ( x )  + :B)) n ( x ,  + C )  = ( x ,  + C )  n H = { xn 1. 

This is proving (12) and clearly x,  E aK,. For n large enough, as F  is 
lipschitzean, we have F(x,) C F ( x )  + qB, hence: 

Consequently, for any t  < ifma,, 



Thus d(F(xn), TKn(xn)) 2 ~ / 2 ,  and since 0 E TK,(xn), we have also 
d(F(xn), TKn(xn)) 5 M. Let us denote by f := min{ *, $& }. 
If tzn is defined by (7) for the set Kn, then 

Since the function a ae-kg  is increasing for a E [0, i ] ,  we can assert 
thanks to the definition of ezn (see (7) in proposition 2.4): 

By the very definition of I(,+1: 

- - 
Let us notice that $ e - k i  does not depend on n. Consequently, since x 
belongs to I(,+1, the two following contradictory statements would hold: 

{ i) x n  - xi1 2 ze - ' :  
ii) lim-m xn = x 

The algorithm (5) provides closed sets Kn which contain the viability 
domain. Consequently, if there exists N such that KN is compact then we 
can deduce: 

For all n >_ N, the set Kn is compact. 

The set ViabF(I<) is compact. 

In the next section, we shall make this algorithm more precise when F 
and I< are regular enough. 



3 The convex case 

In all this section, the set K is compact and convex, the set valued map F is 
k-lipschitzean with nonempty convex compact values and with linear growth. 
Furthermore F is assumed to be convex (i.e. its graph is convex). In this 
case, we know that ViabF(K) is convex (see [ 5 ] )  and we can apply corollary 
2.7 at least at the first step. 

We shall modify our algorithm in such way that for any n > 0, the subset 
Kn is convex. 

3.1 Description of the algorithm in the convex case 

We define the following sequence: 

where co(A) denotes the convex closure of the closed subset A and EL are 

defined as in the previous section and are associated to Ei. 
It is obvious that goo is closed and convex and that it contains the via- 

bility kernel of I( thanks to the results of section 2. 

3.2 Convergence of the modified algorithm in the con- 
vex case 

Lemma 3.1 Let K be compact and convez, F be a convez set-valued map 
satisfying4 (1). Then K is a viability domain of F if and only if for any x 
which is an extremal poinPof K ,  we have: TK(x) n F(x)  # 0. 

4Let us notice that the boundedness condition is automatically satisfied because K is 
compact. 

5Recall that a point z of a convex set K is an extremal point whenever: 



Proof - We only need to check that, if for any extremal point x of 
K ,  we have F(x)  n TK (x) # 0 , the same property holds for any point of K. 
Let be x E K. Then, there exist extremal points xl, 5 2 ,  . . . xp such that 
x E co({ x;, i = 1,2. .  . , p 1). Consider A; 2 0 such that: 

Let v; E TK(x;) n F(x;). Then x;=, A;v; E F ( s )  because F is convex, 
and Cy=l A;v; E TK(x) because x I+ TK(x) has a convex graph (see [5]). 
Consequently F(x)  n TK(x) # 0. Q.E.D. 

Now, we can prove the convergence of the algorithm (13). 

Theorem 3.2 Let I( be compact and convex, F be a convex set-valued map. 
Then 

ViabF(K) = Em 

Proof - We know that ViabF(K) c Em. Assume for a moment that 
Em is not a viability domain. It means, by lemma 3.1, that there exists 
an extremal point x of 17, such that: F(x)  n TE (x) = 0. We denote by 

00 

E := d(F(x),Tkm(x)) and by C := R+(F(x)  + frB).  For ?i,, we define t ,  
as in proposition 2.4. 

Thanks to the lemma 2.9, there exists xn E n (x + C) such that: 

It is clear that the sequence x, converges to x. Let tZn, &Zn be defined as in - 
proposition 2.4 applied to K,. Then the sequence tZn satisfies, for n large 
enough: 

In fact, since 0 E TEn (x,), for all n large enough, 

If there exist A E [0, 11, (y, z) E K x K such that y # z and z = Ay + (1 - A)%, then 
necessarily A = 0 or A = 1. 

13 



As is convex, the number tkoZ associated to x, thanks to (6) in proposi- 
tion 2.4 applied to K, is equal to oa and thanks to (7) and (15), we proved 
inequalities (14). This is also proving that there exists p > 0 such that for 
all n large enough, 

(16) EZ, 2 P 

(thanks to (7), it is possible to choose p := &Lfi). We have to consider 
two different cases: - 
Case 1 I{, = { x } .  

Assume for a moment that 0 4 F(x)  and let p E R" and E > 0 be such 
that: 

inf < p , y > r E .  
YE F ( z )  

- 
Pick yn E Kn such that < p, y, >= supyE E, < p, y >. Then for all large 

n, d(F(y,), Tkn(yn)) 2 f . Then, the choice of €in and the definition of 

the algorithm (13) imply that x 4 E+l for all large n and we derived a 
contradiction. 
Case 2 # { x } .  

Pick 6 > 0 such that for any 0 < I) < 6, - Q := F,\B(x,I)) # 0. Fix 
0 < I) < 6. Then co(Q) c g, (because K, is convex) and since x is 
extremal, it does not belong to co(Q). Consequently 

and we can separate these two sets by an hyperplane: 

3 p E X such that 
infeE =+c < P, e > > a(&, P) := ~~P, ,co(Q) < P, !I > 

It means that the set x + C is contained in the open half-space 

- - 
and H f~ (L\B(~, I))) = 0. Since x is an extremal point of K, = n,,, K,, 
for any n large enough, H n En c B(x, I)). From (16), using that x, converge 
to x, we deduce that, if I) < min{ i, 61, for all n large enough, 



So, according to proposition 2.4, H n = 0, for n large enough: a contra- 
diction. Q.E.D. 

Remark  1 - When the closed set K is convex and the set valued-map 
F satisfies 

V A E [O,l], V (x,y) E X x X,  F(Ax + (1 - A)y) = AF(x) + (1 - A)F(y). 

then algorithms (13) and (5) define the same sets, i.e. V i, K; = z. 
Remark  2 - From the proof of theorem 3.2, follows that in the al- 

gorithm (13), instead of considerinkall points of z:, we could restrict our 
attention only to those elements of K: which are extremal points of z n .  The 
algorithm would still converge to the viability kernel ViabF(K). We shall 
apply this remark in a concrete example in section 4.2. 

4 Examples 

We shall give some examples of computation of the viability kernel. 

4.1 Control systems 

Consider a metric space Z, a continuous set-valued map U from X into Z 
with closed nonempty values and let f : X x Z H X be a continuous function. 
Then the control system: 

(I7) .I(i) = f ( ~ ( ~ ) l  u ( ~ ) ) ,  E U(x(t)) 
can be reduced to the following (equivalent) differential inclusion: 

xt(t) E F (x(t)) where F(x)  := { f (x, u) ( u E U(x) ) 

(see [2] and [4] for details). 

4.1.1 Linear control systems in t h e  two dimensional space 

Let us consider the system in R 2 :  

xt(t) = x(t) + aul  (t) 

(18) 
= Y (t ) + au2 (t ) 

where 
(.l(t), .2(t)) E B(0, l )  



Example 1- t h e  constraint se t  is a ball 
K = B(O,r), 0 < cr 5 r 

Here, clearly F (x, y) := { (a, b) E R2 I (a - x, b - y) E B(0, a) ). It is easy 
to check that the Lipschitz constant is k = 1 and that M = r + a .  If 
(xo, yo) E dK,  then we can notice that: 

It means that I(" = d K  when cr < r. 
In this case, E is constant on the boundary, so thanks to corollary 2.7, we 
can assert that 

( r  - IG = B(0, r - m(r - a)), where m(r - a) := e- 
16(r + a) 

By induction, we determine the sequence of the algorithm (5): 

= B(0, rn) where r, := r,-1 - m(rn-l - a) 

Thanks to this, we obtain the viability kernel: 

Proposit ion 4.1 If 0 < cr 5 r, then: 

Viab~(B(0,  r)) = B(0, a) 

Proof - For doing this, it is sufficient to prove that the sequence r, 
converges to cr. Let us introduce g(s) = s - m(s - a), then rn+l = g(r,). 
We check that r, 2 0 is a decreasing sequence. Thus it converges to some 
s 2 0. Since the unique positive solution to g(s) = s is s = a, we deduce 
that r, converges to cr. The proof is complete. Q.E.D. 

We can easily extend this example to the nonlinear case when cr is a 
function depending on the radius, i.e. cr := p(z2 + Y2),  where P : R+ H R+ 
is a given function. It is easy to check that now, when the viability kernel is 
nonempty : 

ViabF(B(0, r)) = B(0, cro) 

where cro is the largest solution (if it exists) to the equation: 

Example 2- t h e  constraint set  is a square  



Now, K := [-I, 11 x [-I, 11 and the dynamics is still (18). It is easy 
to check that Ii', = { (-1, I), (-1, -I), (1, I), (1, -1) ) and for any x E K,, 
d(F(x), TK(x)) = fi - CY. - 

Here K1 is not convex; consequently, we introduce Kl and we use the 
convex-case algorithm. - 

We obtain K, = ViabF(K) = B(0,l). 

Remark - In these two examples, the viability kernels are exactly the 
sets of equilibrium points. 

4.1.2 A linear control system in the  four dimensional space 

It is a little different version of example 1-1 in [16] page 298. Consider the 
following control system in R4: 

= ~ l ( t )  
xi (t) = x4(t) + x3 (t)ul (t) 

(19) xS(t) = -x3(t) + x4(t) 
x&(t) = u2(t) 

where ( ~ l ( t ) ,  ~ 2 ( t ) )  E 1-1, 11 

With the following set of constraints: 

Here, we shall determine the viability kernel (or the playable kernel if we 
consider the system as a model of a differential game, see [22] ). Firstly, we 
determine Ice: here 6'K = K. It is easy to check that F(x) nTK (x) # 0 if and 
only if: xl = x2 = x4 = 0 and x3 E R. Now we can immediately notice that 
this set, i.e. Ii'\Ii'" is a viability domain. This is a case of a "degenerateted" 
application of the algorithm 4. This example allows to see that it is possible, 
sometimes, to obtain the viability kernel in a finite number of steps thanks 
to our algorithm even if K is not compact or if the boundedness condition 
of (1) is not satisfied. 

4.2 "Convex" differential inclusion on a polyhedral 
convex set: A numerical method 

Here X = Rn. 



We consider the system (2) and assume that the set of constraints K is 
a compact, polyhedral set, i.e the intersection of p (2  n + 1) half-spaces such 
that their intersection is compact (clearly it is also convex). We assume that 
K has exactly p faces and No vertices: A:, . . . , Ago. We denote by sO(A:) 
the number of faces of K which contains the vertex A:. Define &ap by (7) in 
proposition 2.4 and set 

It is clear that we have a new polyhedral convex compact set which has, no 
more than xZ1 sO(A:) vertices and p+ No faces. By iterating this algorithm, 
we have an approximation of ViabF(K) by polyhedral sets, and for any step 
we do a finite number of calculus of the real numbers ~1:. 

A simple example illustrating this approach is: 

and we obtain: 
ViabF(K) = K fl B(O, 1). 
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