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Foreword 

This is the second report on work done on time dependent probabilities initiated in cooperation 
between the International Atomic Energy Agency (IAEA) and IIASA in 1990. The treatment of 
the underlying mathematical model is rather theoretical, but the intent is to  cover a broad range 
of applications. The advantage with the problem formulation is that it enables the inclusion also 
of monetary considerations connected to  risks and the actions for decreasing them. The intent 
in formulating the model is that  it will be used for a computerized optimization of selected 
decision variables. Originally, the formulation was initiated by the problem of optimization 
of test intervals at  nuclear power plants. In this paper the non-destructive testing of major 
components has been approached. The main result of the paper is the formulation of an optimal 
rule for decision if continued operation can be considered safe enough. The decision rules 
integrates the earlier operational history, safety concerns and economic considerations. Also 
other applications are proposed to  be treated within the modeling framework. One specific 
problem is the selection of the most suitable time instant for a major repair or retrofittii~g at 
a plant. The time horizon of the model can be selected either short-term. stretching only over 
a few weeks or long-term, to encompass the complete life time of a depository of spent nuclear 
fuel. 
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OPTIMAL OPERATIONAL 
STRATEGIES FOR AN 

INSPECTED COMPONENT - 
STATEMENT OF THE 

PROBLEM 

U. Pulkkinen and S. Uryas'ev 

1 Introduction 

The failures of mechanical components often develop gradually. This fact should be taken into 

account, if we would like to predict failures and optimize operational procedures and strategies 

for preventive maintenance and repair of the system. The prediction of failures is usually based 

on probabilistic models, the simplest ones being the probability distributions for the time to 

fail with deterministic failure or hazard rate. More general models which may describe also the 

gradual development of the failures are based on the notion of stochastic intensity, which has 

been discussed by some authors (see. for example. [11].[15]). Mathematically, the models \\pith 

stochastic intensities are much more difficult than the traditional models. 

In many practical cases the gradual development of the failures cannot be observed directly 

but through more or less imperfect measurements or inspections. The models for imperfect 

observations are also probabilistic, and this leads t o  filtering problems in which the stochastic 

intensity is estimated on the basis of imperfect observations. This problem has been intensively 

considered in the literature (see, for example, (71 ,[10'1,[13]). 

The optimization of the repair and maintenance strategies is usually made by minimiza- 

tion of the expected cost due to  the failures and the maintenance and repairs. The practical 

means for controlling failure behavior are often very limited, the only possibilities are preventive 

maintenance or replacement of the component, and sometimes stopping the operation of the 

component. Since the controlling actions are made on the basis of imperfect measurements, it is 

also desirable to  optimize the inspection or testing policies. In practice this means, for example. 

the selection of inspection intervals, methods and strategies. 

Mathematically, the optimization of strategies for inspection, repair and preventive mainte- 

nance can be formulated as a stochastic optimization problem. As a rule, analytical solutions 

for such problems do not exist, and some numerical algorithms should be used. In principle, 



many problems of this type can be solved by using the dynamic programming algorithm (see [2] 

and others). Usually the dimension of the problem is very high and in practice one has to ap- 

ply other approaches, for example the stocllastic quasi-gradient techniques (see [4],[8], [12] and 

others) or scenario analysis (see [14]). We are going to  use stochastic quasi-gradient algorithms 

with adaptive parameters control to  solve the problem. 

The models or approaches outlined above are useful in making decisions concerning the safety 

and economical operation of nuclear power plants. This is due to  the stochastic nature of the 

failure phenomena and the high cost caused by accidents and extensive inspections of the plants. 

The failures of nuclear power plant components which develop gradually are numerous. The 

growth of defects in the pressure vessel and in the pipings are good examples. A similar type of 

phenomena occur also in the pipings of the steam generators at  PWR-plants. The inspections 

of the defects are usually very expensive, and the inspection costs depend on the ability of the 

inspection method to  reveal the defects. The information obtained from the inspections is used 

in the decisions, for example, for stopping the plant or for preventive maintenance, which may 

lead to  rather large costs. The problem is to  make optimal decisions in order to  gain economical 

profits and maintain a sufficient safety level of the plant. 

This paper describes a model to  evaluate and predict the gradual development of failures 

of a system which is inspected periodically. Further, an optimization problem is formulated in 

order t o  find the most appropriate inspection and maintenance policies. 

2 General Description of the Model 

2.1 Description of the Physical Phenomena 

The manufacturing process of any mechanical component is more or less imperfect. IV11e11 the 

component is taken into operation it has always some defect or faults, which do not cause the 

failure of the component or the system immediately. The number, the size and the type of 

the existing defects are usually unknown because they cannot be observed directly. The only 

possibility to  evaluate these is to  make good guesses on the basis of experiences obtained from 

similar manufacturing processes and components. The uncertainty about the defects can be 

modeled with suitable probability distributions. 

The characteristics of each defect (e.g., size, shape) will change with time. The rate of growth 

of the defect may be dependent on several environmental conditions, and the number of defects 

may increase. Often the development of the defects is correlated with the shocks wllicll occur. 

in the system due to  some external phenomena. For example, a t  a nuclear power plant typical 

shocks may be thermal transients due to  spurious or inadvertent operatioil of safety systems or 



due to  emergency shut down of the reactor. The empirical and theoretical research carried out 

on this subject is wide (see, for example, [3],[5],[6]). 

The development of the defects is followed by making inspections periodically and possibly 

a t  any moment of time when there is rea.son to  believe that  the defects have increased. The 

probability of identifying and properly estimating cha.ra.cteristics of the defects depends on the 

properties of the inspection methods. In the literature, there are some rather reliable models for 

describing the effectivity of inspections, and a lot of experimental research has been made on 

the subject ( [1],[9]). In the case of metallic components, the most popular inspection methods 

are based on radiographic or ultrasonic inspections or eddy current measurements. 

The component fails if the size of defect exceeds some limit. In the case where several defects 

exist in the component, it is not easy to express the exact failure criteria. The component may fail 

even if all the sizes of the defects are under the failure limit. It is feasible to  think that  the failure 

probability can be expressed as a function of the failure rate or intensity. In our case, the failure 

intensit'y depends on the number and cha.racteristics of the defects in the component. Since 

the defects may grow or change in time stocl~astically, the failure intensity is also a stocha,stic 

process. 

In the following sections we will describe a probabilistic model for the phenomena, described 

above. The model gives an idealized picture of the real degradation process of a (mecha,nical) 

component, and can be used to  find optimal inspection a.nd repa.ir strategies. 

2.2 Probability Distribution for the Number and Size of the Defects 

The initial defects in a metallic structure may be classified according to  their properties and 

growth mechanisms. The most important properties of a defect are its size and its orientation, 

which determine the probability with which they can be identified in an inspection. In principle. 

any defect can be characterized with some vector 2 = (tl,. . . , z,), where each component of the 

vector 2 corresponds to some property of the defect. This kind of characterization would lead 

to  more complicated models than what is needed in our example. 

We assume that a defect is completely characterized by its class, denoted by D with D E 
D D 

(1 , .  . . , Ii), and by its size, denoted by C with C E (O,C:,,]. Interval (O,C,,,] includes C,,, 

and does not include 0. The class of the defect is needed because it is possible that  all defects 

do not have similar growth mechanisms, or they cannot be identified with the same probability. 

We suppose that a t  the beginning of the operation of the system (a t  time point t = 0) the 

initial number of defects is M ( 0 )  2 0. Each of the h!(O) defects are characterized with tlieir 

class, D,(O), and their size, C,(O), i = 1, .  . . , M(O), at  t = 0. 

The values of M(0) .  D(0) = (D(o) ,  . . ., D(0)  ,,,,) and C(0) = ( ~ ( 0 ) .  . . . ,C(O) ,,,,,) are 



unknown, a.nd they depend on the random variation of the manufacturing process. Thus it is 

possible to assume tha.t they are random varia.bles specified on the probability space (P,  F, 0) 

'. The model for h4(O), D(0)  and C(0)  is now simply their joint distribution: 

P(M(O) = m, D(O) = dl C(O) E [c, c + dc)) = (1) 

def M D C  
Dm(0) = dm,Cm(O) E [cm,cm +dcm))  = go (m,dl ,c l , . . . ,dm,cm)dcl  x . . . x d c m .  

It should be noticed that  the random variables M(0) and D(0)  are discrete and the random 

variable C(0) is continuous. If we assume that ( D ~ ( O ) ,  Cl(0)), . . . , (Dm(0), ~ ~ ( 0 ) )  are indepen- 

dent given M(0)  = m, and if the joint distribution of (D,(o), c,(o)) is g tc(di ,  ci) , then the 

distribution (1) can be written in the form: 
m 

M D C  M  D C  
90 ( m , d l , c l , . . . . d  n 1 7 c m ) = g o ( n l ) n g o  (di ,c i ) ,  

i=l 

in which g t ( n z )  is the distribution of hd(0). 

If we finally assume that  there is only one class of defects we obtain the distribution 

I11 practical situatioils the assumption of independency of the defect sizes may not be a.ppro- 

pria.te, a.nd in that  ca.se we cannot write the above distributions in the product form. This may 

cause some calcula.tional difficulties. 

The functiona.1 form of the distributio~l ( 3 )  can be selected from rather wide family of distri- 
M  

butions. In our ca.se we restrict the distribution go ( m )  on a set m E (1, . . . , M,,,) with Al,,, 

being rather small (A&,, Z 50). Further, it is probable that  the size of any defect is small in 

the beginning of the operation and t11a.t its size doesn't exceed some upper value. Here we use 

the following discrete distribution for the number of the defects: 

with vm 2 0 and C Z ; ' ~ ~  = 1. 

Here we assume that  the size of a defect will follow a truncated exponential distribution with 

the density function: 

in which 0 < c 5 c,,,, oc is a known parameter, and Qc is a normalizing factor. 

'We denote the random variables without the index w  E R,  i .e .  the random variable z ( w )  is denoted simply 

by z ,  whenever it  is  possible without confusion. 



2.3 Probability Model for the Shock Occurrence 

The defects of the component may grow due to the shocks which occur in the system. These 

shocks are caused by various external phenomena independently of the development of the 

defects. These kind of phenomena are usually described with random point process models. 

The most simple point process is the time homogeneous Poisson process which we shall apply 

here. 

We assume that the shocks occur according to the homogeneous Poisson process model with 

constant intensity y.  Accordingly, the time points a t  which the shocks occur, TI, I = 1,2,. . . , 
can be expressed as sums of exponentially distributed random variables, i.e., 

in which the varia.bles bl, . . . ,6[ are identically exponentially distributed random variables with 

density function 

g6(t) = y esp {-yt)  . (7)  

Generalizations of the above model can be easily developed, for example, the intensity y may 

be assumed time dependent, or even stochastic and dependent on the other random variables of 

the model. 

2.4 Model for the Defect Growth 

In order to  describe the random changes of the number and the sizes of the defects, we have to 

make some assumptions. First, we assume that the number of defects will be constant if tlie 

component is not repaired. Further, we a.ssume that the size of the defects may increa.se only 

a.t the moments of the time where shocks occur (at  the time points r l ) .  If the component is 

repaired, all the old defects will be removed but some new defects may be introduced into the 

component. The repair may only be done after some shock or inspection point according to the 

control law which will be described later. 

The above assumptions are not the only possible ones. For example, the defects may grow 

also between shocks due to some chemical phenomena. Further, it is possible that new defects 

may be introduced into the component also between repairs. Thus our assumptions must be 

considered as idealized approximations. 

We denote the number of defects a.t time point t by M( t )  and the vector of sizes of the defects 

a t  the same time point by C(t) .  The time points where the inspections are made are denoted by 

t i ,  t i ,  . . . We denote the ordered union of the points t:, t i , .  . . and TI ,  TI, .  . . by V = {tl , t2,  . . .). 



Figure 1: Set V = {t l ,  t 2 , .  . .) 

At each 1, there either occurs a shock or an inspection (and possibly a repair) is made. T h e  set 

\/ is illustrated in Figure 1.  

Due t o  our assumptions, the changes of M ( i )  and C ( t )  must be considered only a t  the t ime 

points i,. Al( i )  and C ( i )  are constant in any interval [i , , t ,+l),  i.e. 

and 

If the  component is repaired a t  the time point t j  then the old defects are removed from the 

component. However, some new defects are introduced into the  component. T h e  number and 

the sizes of these new defects follow the distributions 

Afm,, 

with r); >_ 0 ,  r); = 1, and 
m=l 

where 0 5 c 5 cLax and uRc is a parameter,  and QRc is a normalizing factor. 

T h e  values of the process A/l(t) are  constant between repairs, or 

in which the t ime point tj' is the point where the component is repaired, and M ( t j )  follows the 

distribution (10). 



The values of the process C ( i )  are coilstant between the shock points 71, but they may grow 

a t  each shock point. The increase of the size of the defect is a random variable which may depend 

on the size of the defect just before shock. We assume also that  the defects grow independently. 

The conditioilal distribution of the size increase of a defect given the defect size, c, is assumed 

to  be of the form, 

which means that  the size increments are exponentially distributed random variables with the 

expected value t .  
The process C(t)  is constant between shocks (if there are no repairs between the shocks) or 

between successive repair and shock: 

C ( t )  = C(max {mas rr , mast;))  , 
T l L t  t ;<t  

in which each conlponent of the vector C ( 0 )  follows the distribution (5), components of C ( t i )  

follow the distribution (11) and a t  1 = T, the increments of C( t )  components are random variables 

followi~lg the distribution (14) .  The increase of the size of one defect is illustrated in Figure 2. 

The above model is one of the most simple possibilities. It  is applied here in order to  

formulate the optimization problem. In literature (see [3],[6]) several different models have been 

considered. The model discussed here may be modified rather easily in order to make i t  more 

realistic. 

2.5 Probability Model for Inspectioils 

The i~lspections are made in order to  mea,sure the sizes of defects. However, the inspections 

are not complete and they will not identify all defects with probability one. Further, the mea- 

surements do not give exact information on the size of the defects. Berens (see [I]) discusses 

both the so called hit/miss model and the signal response model for modeling the reliability of 

inspection of metallic structures. We shall apply here the model based on the signal response 

approach. 

The basic idea of the signal respoilse model is that each defect causes a signal which can be 

measured. However, there is also measurement noise due to  some external phenomena. Further, 

if the signal is too weak then the defect cannot be identified. We denote by t9,(tjj the signal 

caused by defect i with the size Ci( t j )  a t  the time point t = t j .  If the signal t9;(tj) is below some 

limit, dtr ,  then the defect i is not identified. We assume tha.t the signal di(tj) is related with the 

true size C,(tj ) according to  



Figure 2: Graph C;(t ). 

in which Po and PI are paramet,ers and < is a normally distributed random variable with zero 

mean and variance a? (i.e. ( N N ( 0 , a ; )  ). In other words, the  conditional distribution of 

111 di(tj) given Ci( t j )  is normal with parameters ,do + ,dl In Ci(t,) and at. The  random variable < 
describing tlie mea.surement noise could also follow any other distribution, but we use here the 

Gaussian distribut.ion. 

We assume further tha t  the  defects are inspected independently, and thus the  signal di( t j )  

corresponding to  tlie defect i is stocl~astically independent of the other signals. The  probability 

tha t  a. defect of the  size c is not identified in the  inspection is given by 

in which @ { a }  is the cumulative standard normal distribution function. 

Let us denote by r/(tj) the  number of defects identified in an inspection a t  t = t j  . Since 

all defects are not identified with probability one, v ( t j )  may be smaller than the t rue number 

of defects M ( t j ) ,  i.e. v ( t j )  5 M ( t j )  . The result of an inspection a t  t = t j  is described with a 

random variable (v( t j ) ,  dY( t j ) )  = ( ~ ( t j ) ,  dl( t j ) ,  dz(tj),  . . . , dY(t , ) ( t j ) ) .~ef ine  

The  conditional probability distribution of (v ( t j ) ,  dl( t j ) ,  d2(tj),  . . . , dY(tl)(tj)) given 

( ~ ( ~ j ) ? ~ l ( ~ ~ ) ~ ~ 2 ( ~ j ) ~  ' .  ' 7 cM( t l ) ( t j ) )  is 



in which 

I O .  otherwise ; 

is the truncated density function of normal distribution with the parameters Po + P1 In Ci(tj) 

and a; , and normalizing constant Qt' . The distribution (19) has the above form due to 

the independence of di(tj) given ( ~ ( t j ) ,  ~ ( t j ) ) .  It should be noticed that  in (19) the defects 

are indexed in the order of identification (the defects 1 , .  . . , v(tj) are identified, the defects 

u(t j)  + 1,. . . , h I ( t j )  are still latent after the inspection). 

The above model describes a situation in which only one inspection is made. In pra.ctice, 

the componeilt is inspected periodically and possibly by applying several inspection methods. 

In order to describe this situation we have to extend the above model. First we assume 

tl1a.t each inspection method can be described with the model given in the equations (17), (18). 

The only difference between the inspection methods are the parameters values of the respective 

normal distribution (the parameters Po, P I ,  a:). In the following we need these parameters for 

two inspectioil methods and we denote them by Po,, PI,, a:, with k = 1,2.  

The simplest way to model a series of successive illspectioils is to assume t11a.t the successive 

inspections are stocl~astically independent. This assumption ha.s some practically unacceptable 

consequences. For instance, it is possible that  a defect which has already been identified in earlier 

inspections will not be identified again. In practice, the known defects are usually identified at 

every inspection after the first identification. This means that  the successive inspections are 

dependent which should be taken into account in the model. Here we apply the following simple 

approach. We assume tha.t the result of a.n inspection depends on the result of the previous 

inspection such that if the defect was identified at  the previous inspection (i.e. di(tj-l) > 0'' 

for the defect i) then the result of the present inspection would also exceed the identification 

threshold Ot'. Further, we assume that the conditional distribution of the result (u(t j) ,  ou(t j))  

of the present inspection j ,  given tha.t the defect was identified at  the previous inspection j - 1 

is the truncated normal distribution. More exa.ctly 



In the above equation (21) the first product describes the defects identified a t  the previous 

inspection a t  t,-l and a t  the present inspection a t  t j  and the second product describes the 

defects which are still unidentified. 

If there are several types of inspections we assume that  each one follows the above model 

(with their own parameters), and that if a defect is identified at  a previous inspection of any 

type then it will be identified a t  every future inspection of any type. 

The above model for inspections is rather simple. In a real situation it is possible that the 

results of future inspections will be dependent also on the value of the previous inspections (not 

only on the fact that the defect wa.s identified as in our model). In some cases the inspections 

may be so noisy tha.t they indicate the existence of a defect although there is no defect. 

2.6 Probability Model for Failures 

A component with ma.ny large defects will obviously fail with higher probability than a compo- 

nent without any defects. However, also a component without any defects from the described 

class will fa.il after a. rather long period of time. Here we assume that the increase of the failure 

intensity due to a. defect will be proportional to the size of the defect. Thus the failure intensity 

of the component can be written in the form 

where A1(t) is the deterministic pa.rt of the failure intensity and the sum describes the stocha.stic 

contribution due to the defects. 

In the above equation h4(1) (the number of the defects a t  time t )  develops stochastically 

according to  the model given in the equations (8,10,12,13) and C( t )  (the sizes of the defects) 

behaves a.ccording to  the equations (9,11,14,15,16). The development of the variables M ( t )  and 

C ( t )  depend also on the occurrence of shocks and the decisions made to  control the failure 

intensity. 

The deterministic pa.rt of the failure intensity, A1(t), is a.ssumed to be of the form 

in which a0 and a1 are nonnegative constants. Figure 3 describes the process A(t). The increase 

of the failure intensity, AA(r,) . in Figure 3 is given by 



Figure 3: Graph X(t). 

The conditional survival function (i.e. the probability that  the component will survive over 

the time period [O: tj]) is (see, for example [15]) 

def S( t j )  = P(T,  > t j  I X(t),O 5 t < t j )  = exp 

in which X(t) is defined in the equation (22) and T, is the failure time. 

2.7 Estimation of the Failure Intensity 

The inspections ma.de in time points tJ give information on the number and the size of the 

defects in the component. Since the failure intensity is related to the size and the number of 

the defects this information can be used in the estimation of failure intensity at  each inspection 

point. 

In fact, the joint conditional distribution of the variables M( t )  and C(t )  given the results 

of inspections until t (i.e. (u(o), O(0)), . . . , (u( t j ) ,  O(tj)), t j  5 t < t j t l )  and the time points 

( r l , .  . . , TI, TI 5 t < T I + ~  ) where shocks have occurred, can be determined recursively by using 

the law of the of the defect size increase, the law of the shock occurrence and Bayes rule. By 

using this conditional distribution we could also determine the respective conditional failure 

proba.bility. In this study we do not consider these distributions, but we 'estimate' the failure 

intensity directly using the information from inspections. 



Let us assume tha.t the  information up to the time t is the following set: 

in which t j  5 t < t j+ l ,  rl 5 t < rj+l. The estimate of the failure intensity is a function of the 

variable listed in the above set,  for instance of the form: 

in which A(.)  is a function satisfying some measurability requirements. 

Here we take into account only the  result of the most recent inspection, i.e. (u(t j ) ,  eu(tj)).  

Since the result of the inspection and the  variables M( t ) ,  C( t )  a re  related in a very simple way 

(see the equation (IT))  and the failure intensity is a simple function of M ( t )  and C( t )  (see the 

equa.tions (22),  (23)) ,  we have the following estimate 

where p and X1(t) are defined in the equations (22), (23) and Po and /31 are  defined in the 

equation (17). 

3 Formulation of the Optimization Problem 

3.1 General Description 

The cornponeilt described above is used t o  give profit t o  the operator. Thus i t  is preferable t o  

use i t  a.s long as possible. If the system is used over a long time, then the probability of failure 

increa.ses. The  losses due t o  the failure ma.y be very high, especially in the case of nuclear power 

plants. The  operator or  the decision maker (DM)  has the possibility t o  avoid high costs due t o  

the failure by stopping the opera.tion of the  component or by repairing it .  T h e  early stopping 

will lead t o  loss of profit and the repair may be very expensive. 

The  decisions either t o  s top the component or t o  repair i t  may be done on the basis of the 

information obtained from the  inspections. However, the inspections are  also expensive and they 

cannot be made very often. The  DM ha.s t o  decide how often an  inspection should be made and 

which type of inspection should be used. 

Since we have described the stocha.stic behavior of the component we may formulate the 

selection of the best decision as a stochastic optimization problem. For that  purpose we have 

t o  determine the  objective function, give the model for the dynamics of the component, and 

establish the decision rules. 



Figure 4: Shifted inspections schedule. 

3.2 Decision Alternatives and Decision Rules 

We assume that there are two types of inspections which follow the models described in Section 

2.5. The most extensive inspection, 'the large inspection' is made regularly or periodically with 

fixed interval T I .  The cost of the large inspection is G I .  The other type of inspection, 'the small 

inspection', is made after every shock. The cost of the small inspection is Gz.  Depending on the 

result of the small inspection also a large illspectioil is made after shock, in that  case the time 

sclledule of the large iilspections is shifted. This means that if the shock occurred a t  the time 

point rl and the decision was to  make also a large inspection a t  rl, then the next regular large 

inspection will be made a t  t = rl + Tl (see Figure 4). 

After obtaining the result of a large inspection a t  some time point t, E I f  (see Chapter 2.4 

for definition of V ) .  the Dhl  has to choose between the following alternatives: 

continue the operation of the component; 

repa.ir the component; 

stop the operation of the component. 

The decision after a large inspection is denoted by ul ( t j )  with the following values: 

I 0 ,  continue the operation without repair ; 

u1(tj) = 1 , repair the component ; (27) 

2 , stop the operation of the component. 

After obtaining the result of a small inspection, the DM has to choose between alternatives: 

continue the operation of the component; 

make a, large test a.nd shift the time schedule. 



M'e denote the decisioil a.fter a small inspection by u2(t3) which has the following values: 

t 

I 0 . continue the ooera.tion : 

U2(tj)  = i 1 , make a large inspection, shift the time schedule. 

The selection between the above alterna.tives a t  each time point t j  should be based on the 

information obtained until the time point tj. Further, the decisions should be such that  they 

minimize the expected value of total costs. 

We assume here that  the decision is made on the basis of the most recent failure intensity 

estimate described in the equation (26). At the time point tj ,  the DM measures (v(tj),  eu(t j))  

and uses this value in selecting the best decision. In order t o  be able to  find the best decision, 

the DM has to  follow some decision rules which are of fixed form. 

Here we consider only one class of decision rules. In principle, any other rule could be chosen, 

and possibly they would lead to  better solutions (to better value of the objective function). We 

assume t11a.t the decisions are ma.de on the basis of the following rules: 

o , if q l ( i ( ~ , ) , z ~ ( t ~ ) )  < o , 
1 , if q l ( i [ t , ) , ~ l I ( ~ , ) )  2 O , 92( i ( t j ) ,v2[ t j ) )  > O , (29) 

2 , otherwise , 

and 

where 91 : R2 + R,  9 2  : R2 - R ,  q3:  R2  -- R are monotone and continuous functions with respect 

to  both va.riables. and vl : R - R ,  v2 : R -- R,  v3: R + R are monotone and continuous functions. 

The interpretation for the above decision rules is rather simple: the decisions are made if the 

recent failure intensity estimate exceeds some thresholds. The sense of the functions q1, 9 2 .  q3 

can be explain as follows: 

if q l ( i ( t j ) ,  v l ( t j ) )  < 0 , then continue the operation of the component; 

if q 2 ( i ( t j ) ,  v2(tj)) > 0 . then make a repair of the component (in case of 

~ l ( i ( t , ) , ~ l ( t j ) )  2 0 )  ; 

if 503(;\(tj), v3(tj)) < 0 then continue operation after small inspection without large 

inspection. 

We shall coilsider only the following forms for the functions q l ,  92, q3: 



Functions vl ( I ) ,  v2(t), v3(t) are the controls in the model. Here we consider that  they are 

linear: 

Define x = (xi, x:, x:, xi, x;, x;) . Now the optimization problem is to  find the vector x which 

leads to the smallest expected costs. In more general cases the respective problem could consist 

of finding the optimal forms of the functions (p,, v,, p = 1,2,3, and of finding the optimal 

failure intensity estimate. 

3.3 Objective Function 

The objective of the decisions described above is to  minimize the costs due to  the use of the 

component. The total costs depend on the stochastic development of the defects in the com- 

ponent, and on the choice of the threshold fuilctio~ls ~ ~ ( 1 , ) .  The costs will be very high, if the 

component has failed, and the profits gained from the use of the component will be larger if the 

component is used over a longer time. The total cost will be different for each trajectory of the 

stochastic process consisting of the values of the variables A!(t), C(t), v(t), QV(t), etc. 

We denote the profit of the operation of the component per unit time by G, and the cost 

of failure by Gj. The cost of repair is denoted by G,. The operation of the component mill 

be terminated at  the time point T,,,, if it is not terminated earlier (the time interval [0, T,,,] 

is the time horizon of the optimization problem). We designate by Tstop the stop time for the 

component due to  decision rule ~ ~ ( 1 , )  = 2 : 

Denote by Tend the termination point 

where T, is the failure time of the component. The termina.tion point is a random variable 

depending on control vector x and the random state of the nature, w E 0, i.e. Tend = Tend(x, w). 

Let the number of the large inspections (the small inspections) during the time interval 

[0, Tend] be N1 ( N2, respectively) and let the number of repairs during the same interval be AT, . 

Now the total cost is 

G(x, w )  , if the component ha.s not failed ; 
f(x,w) = 

Gj + G(x, w )  , otherwise , 

where 



We consider t11a.t the objective functio~l F ( x )  is the expected value of the cost function f ( x ,  w )  

and f ( x , w )  is defined in the equation ( 3 3 ) .  

The objective function (34) is not easily evalua.ted. The expected value cannot be determined 

analytically due t o  the complicated structure of the stochastic processes involved. However, the 

expected value can be evaluated in the form 

in which the first expectation is evaluated with respect to  a-algebra generated by the the 

processes X ( t ) ,  i ( t ) ,  0 5 t  5 T,,, . It should be noticed that time points t j  and decisions 

u1 ( t j )  , u 2 ( t j )  are random varia.bles measurable with respect t o  FA. The conditional expectation 

in the formula. ( 3 5 )  may be calculated analytically. 

The costs due to  iilspections or repairs may increase only a t  the time points t  = t j ,  where 

the decisions are made. The failure intensity develops independently on the decisions between 

the time points where repa.irs are ma.de. At repair points the failure intensity changes, and 

if the decision a.t some time point is t o  stop the operation of the component, then the failure 

intensity will be equal t o  zero. Thus the fa.ilure intensity is a stochastic process which depends 

on the decisions made at time points i j  in a simple way. Given the trajectories of the processes 

X ( t ) ,  i ( t ) ,  0 5 t  < Tstop , the conditioilal expectation failure probability in the time interval 

[0, TstOp] is calculated a.s follows (see ( 2 4 ) )  

in which the failure intensity X ( t )  is a random function defined in the equation ( 2 6 ) .  Conse- 

quently the conditional expectation of the failure cost is equal to G/(I - S ( T ~ ~ , , ) )  . 
The expected costs given X ( t ) ,  i ( t ) ,  0 5 t  5 Tstop , due t o  the inspections and repairs can 

be written in analogues form. Define jstOp as follows 

The costs due to  the large and small inspections are given by 

f a t -  

and 



where ( t j ) ,  X2( i J )  are random variables depending on the failure intensity estimates and they 

are defined by the equations 

and 

The  respective expected cost due to  repairs are given by 

j=1 

where xT( t j )  is a, random variable defined with 

The  random variables ~ 1 ,  ~ 2 ,  y, in the above equations are indicators, which determine the 

control action (continue the operation, make an inspection ets.) according t o  the rules given 

in equations (29),(30). These random variables depend on the vector x ,  which is t o  be chosen 

optimally. 

The  respective conditional expectation must be determined also for -GpTend, the expected 

profit due t o  the operation of the component. The conditional expectation is of the form: 

in which 

is the conditional expectation of the failure time, given tha t  the component failed during interval 

[O, Tstopl . 
By collecting the above formulae we obtain the conditional expectation of the cost function 

f ( x , w )  given X(i), i ( t ) ,  0 < t 5 T,,, in the form: 

Jstop 

( 1  - t o p )  + C { s ( l j ) [ ~ l \ l ( i j )  + G 2 ~ 2 ( t j )  + ~ r ~ r ( i j ) ] } -  

From the above equation and (35) we finally obtain the objective function. 



3.4 Approximate Calculation of the Objective Function 

We consider that  in the model described above, the fa.ult probability of the component is small 

value and 

Consequently 

Tatop 

s ( t j )  = exp (- 1 *(t) dt} z 1 , 

Substitutioil of the (43  - 45) in the expression (41) gives 

def 
E [ f ( x , w )  1 3 x 1  z f (x ,w)  = 

Further we use functioll f ( x .  w) to formulate stochastic optimization problem with respect to 

vector x . 

3.5 Statenlent of the Optiillization Problem 

The stochastic behavior of the colnponent (see Section 2), t,he possible decisions and the cor- 

responding decision rules (see Sectio~l 3.2) and the objective function are now defined. Let us 

designa.te by X a fea.sible set for decision vector x 

- here 21 21, 1 = 1 , .  . . , 6  are low a.nd upper bounds for variables 21, 1 = 1 , .  . . , 6  . Now we are 

ready to state the optimiza.tioi1 problem. It can be given in the standard form 

F ( x ) = ~ [ ~ [ j ( x , w ) I 3 ~ ] ]  + m i n ,  
x E X  

subject to the dynamics of the process X(t) , i ( t )  and the decision rules. The dynamics of these 

processes are described in Sections 2 and 3.2. 



4 Conclusions 

The aim of this paper is to  formulate an optimization model for finding good operational strate- 

gies for an inspected component. In the formulation of the model, the costs of inspections, 

repairs and failures and the profit earned from using the component were taken into account. 

The purpose of the optimal operational strategy was assumed to  be the minimization of the 

costs accumulated during the operation of the component. 

We suppose that  the component fails randomly and that  the failure intensity of the com- 

ponent depends on the number of initial defects in the component. Further, we assume that  

the defects grow stochastically. The models for the stochastic failure intensity and the defect 

growth are rather simple, they would need further development before they are used for practical 

applications. 

The model for the illspection of the component was adopted from the theory developed for 

evaluating the reliability of non-destructive testing of metallic structures. The inspections are 

not complete, and therefore the model was probabilistic. 

The above mentioned elemelits of the problem led to a very complicated (from a numerical 

point of view) stochastic optimization problem. Although the models applied to describing of 

the phenonleila were simple, the optimization problem appears to have several difficult and 

interesting features. In this preliminary paper, we did not try to  solve all this problems. 

The analytical solution of the problem is not possible, since the objective function is a 

very complicated integral (mathematical expectation). For this reason we are going to  apply 

stochastic quasi-gradient algorithms. Due to the nature of the algorithm, it is useful to  express 

the objective function as a double expected value; first we evaluate the conditional expectation 

of some function and finally calculate the unconditional expectation. The solution techniques 

will be discussed in future papers on this subject. 

The optimal operational strategies described in this paper are the optimal stopping and repair 

time of the component and the inspection strategies. The interesting problem connected with 

the inspection strategy is to  find conditions for gathering more information on the latent defects 

with the component. Principally, this problem may be solved by using the model described 

above. 

The control rules applied here are some sort of threshold control rules. The actions were 

assumed to be made on the basis of the failure intensity estimate, evaluated from the results of 

inspections. In our opinion, this kind of rules may be easily implemented in practical situations. 

The optimal values of the threshold parameters depend upon the cost structure and on the 

parameters of the failure models. 



Practical applications of the model are possible if there exist reliable data for the parameters 

used. I11 this respect the most problematic part of the model is the probability model for the 

defects growth and failure intensity. Some da.ta are available, but it is not evident that  they are 

enough to  estimate parameters of the model with sufficient accuracy. The data  for the inspection 

model seem to  be rather reliable. 

The model discussed here is designed mainly for applications in nuclear power plant safety. 

However, there are a lot of other applications which can be even more fruitful. One possjble 

area for this kind of model is the condition monitoring of mechanical components. 
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