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INVERSE NONLINEAR PROGRAMMING 
PROBLEM A N D  ITS APPLICATION 

Gregory G. Kotkin 



Introduction 

Inverse nonlinear programming (i.n.p.) problems may by formulated as follows. We 

have to find out the pair z t  and u t  which satisfy the following system. 

a)  z t E  Ar min f ( z , u t ) ;  
z E % ( u * )  

6) g ( z t , u t )  5 0, H ( z t , u t ) = O ,  

where X ( u )  = {z E R n :  g (z ,  u) 5 0, h (z, u) = 0); u E Rm; 

f ( z , u ) ,  g (z ,u ) ,  G ( z , u ) ,  H ( z , u )  are continuous functions, 
f : ~ n + m - + ~ l ,  g : ~ n + m - + ~ ~ ,  ~ : R ~ + ~ - + R # ,  G : R ~ + ~ - + R / ,  H : R " + ~ - + R ~ .  

In other words, we have t o  find out the solution z t  of the parametric nonlinear pro- 

gramming (p.n.p.) problem ( l a )  with given parameter u t  and the pair z t ,  u t  have t o  satis- 

fy additional constraints ( Ib) .  

Similar problems were studied in game theory, system optimization and multicri- 

teria optimaization (see Kurzhanski, A.B. [I9861 ). 

The multicriteria nonlinear programming (m.n.p.) problem may be formulated as a 

i.n.p. problem. Let us consider the following m.n.p. problem: 

min f ( z )  
z  E X (O,O) 

where X ( y , v ) = { z ~ Q ~ R n : g ( z )  5 y, h ( z )  = v ) ;  Q =  { z € R n : a  5 z 5  6) is a rec- 

tangular constrained set, a € R n ,  b €  Rn,  a < b , are given vectors; T(z), g (z ) ,  h ( z )  are 

continuous vector-functions f: Q -+ Rm+', y : Q -+ RP, K :  Q -+ Rs. 

Usually we have t o  find out the Pareto optimal solution z t ~  Pz of the problem (2) 

using some additional information. It is assumed that  a decision maker chooses the o p  

timal solution using some additional knowledge about the solution. 

In order t o  write this additional information in the form of the equality and inequali- 

ty constraints let us consider the following parametrization of the Pareto optimal solution 

set: 



S 2 = {  Argmin P ( Z ) , U E R ~ )  r (~);~"j~;~f , . . . ,~  

It is easy to  prove that if a function 

F ( u )  = min 
z) < U' 1=1, ..., m 

P (2) 

r (  i(;,O, 

is a continuous function, the set S2 is a set of weakly efficient solution of the m.n.p. prob- 

lem (2). 

Under the assumption that all functions j ( z ) ,  g ( z ) ,  i ( z )  are strong convex func- 

tions any value of parameter ut associated with unique weakly efficient solution z ( u t )  of 

the m.n.p. problem (2) which is a solution of the following nonlinear programming (n.1.p.) 

problem: 

z (u  t) = argmin 7 ( z ) ,  
z) < U' i=l ,  ..., m T (  F€X'(O,O, 

and conversely for any weakly efficient solution z t  of the m.n.p. problem (2))  we can 

choose such parameter ut that z t  would be a solution of the n.1.p. problem (4): 

z4 = z (ut) .  

Therefore there is point-to-point correspondence between the weakly efficient solu- 

tion z* E Sz and values of parameter u t E U. 

Let us assume that we can write the decision maker's additional information about 

the solution z*E Sz in the form of equality and equality constraints. 

For example, if the reference point zt is given the additional constraints are 

7 p ( z * )  - zP = j (z*) - 21 = ... = p (z*)  - zP. 

If the reservation level z* is given the additional constraints are j ( z t )  5 zt. 

In common cases these constraints link the solution z t  and the parameter ut: 

G (z*,  u*) 5 0; H (zt ,  ut) = 0 



where G (z, u), H (z, u) are continuous vector-functions. 

In this case the m.n.p. problem (2) is reduced to the following inverse problem: 

a) Z* E Argmin P ( z )  
T ( z )  5 ui,i=l, ..., m 

r E X ( 0 , O )  

b )  G(z*,u*)  <O,H(z*,u*) = 0 

Using other parametrization of the Pareto set we have the following i.n.p. problem: 

a) Z * E  Ar min < u t , f ( z ) > ;  I .€lt(0,0) 
[ b ) ~  (z*, u*) 5 0, H (z*, u*) = 0, where U * E  R ~ + "  

It is easy to know that one cannot include the additional constraints (5b) to the set 

of the constraints of the problem (5a). Therefore we cannot use the usual optimization 

technique to  solve the inverse problem (5) or (1). 

In this paper we will consider a Generalized Newton Method to solve the following 

inverse nonlinear programming problem: 

where f :  R " + ~ +  R1 is a sufficiently smooth strong convex function, A and B are given 

matrixes. It is based on the idea that we can calculate the derivatives zu (u) of a so-called 

solution function 

z (u) = argmin f (z, u), 
zE R n  

if we consider the second order derivatives f,, (z, u) and f,, (z,  u) of the function f (z, u). 

We will present first some results and ideas of the parametric optimization theory 

and its applications for the i.n.p. problems. 



General ized sens i t iv i ty  f u n c t i o n  

Let us denote the weak efficient, the efficient and the proper efficient (Geoffrion o p  

timal) estimations set of problem (2) by S (0, 0) , P (0,O) and G (0,O) respectively. Clear- 

ly, G(0,O) c P(0,O) c S(0,O). Let us denote for any vector a = (a0, ..., am)  by ri the fol- 

lowing vector (a0 ,..., aj-', a ~ + '  ,..., am)  for some j. Without loss of generality we will 

consider sometimes the case j = 0 in notation, for example 

We are concerned with the following objects in the space z+ of functions f, g , s  

values (see Fig. 1): 

1)  problem image 2: 

2 = I ( Q ) ,  where I=  (f ,g ,Q;  

2) generalized sensitivity functions (g.s.f.) F j :  ~j + R' : 

F i ( i , y , v ) =  min j J (x ) ,  
z € X ( z ^ ,  v ,  u )  

where X ( i , y , v )  = { X E  Q : ~ ( x )  5 zi, i = O  ,..., j-1 , 

j + l ,  ..., m,g'(x) 5 y, i ( x )  = v), j = O  ,..., rn; 

YJ = { ( i , y , v ) : X ( i , y , v )  f 8 ) ;  
3) weakly efficient estimations (w.e.e.) set S (0,O): 

S (0,O) = { Z E  Rm" : there do not exist z 0 c  f (X (0,O)) such that  zo < z) ; 

4) convolution functions (c.f.) Mk ( 2 ,  y , v) : 

Mk : Z+ -+ R'; Mk (z, y, V) are continuous nondecreasing with respect z functions, 

defined on the domain ic Z+, k =  1,2,  ... 

5 )  the function value isolines Vk ( t )  of c.f.: 

vk( t )  = { ( z , ~ , v ) E g : M k ( z , Y , v )  = t),  

and the minimal function value isolines Vk (t  *), where 

t * =  min 
( z I v l u ) ~ Z n 2  

M k ( z , ~ , v )  - 

The well known sensitivity function (see Elster [1980]) is a g.s.f. in one goal n.1.p. 

problem (problem (1) in the  case m=O. 

If the arguments y and v are fixed ( y = 0 and v = 0) the g.s.f. transforms into a func- 

tion FJ (2) = FJ ( i ,  0,O) which can be used for w.e.e. set parametrization in the following 



Let us add vertical lines to the graph Ti  of function F j ( i )  through the points where 

FJ (2) is discontinuous. We obtain the set Ttj: 

such that F J  (i) 5 b 5 F ]  (ik) ). 

under the assumption that F] ( 2 )  = + oo (V i Y;), 

Theorem 1 (see Kotkin (19891). 

1) TrO= TI'= ...= Trm. 

2) s (o,o) = f (X (0, 0)) n T ~ O .  

3) Under the assumption that g.s.f. FO ( f ,  y v) or function FO (2) is continuous function 

we have 

S(0,O) = P(0,O) = TOnf(x(O,O)). 

We will say the n.1.p. problem is stable if and only if the optimal value function 

F  (y, v )  is continuous a t  (0,O). In this case the stability with respect to right hand side 

perturbations of the constraints is considered. 

Let us consider the n.1.p. problem with equaltiy constraints (problem (1) in the case 

m = 0, e = 0) and denote 

Theorem 2 (see Kotkin [1988]). 

Let us suppose that F ( z )  and 8 (z) are continuous functions, Q is a compact set 

and I (yo) # $4. Then in order that F  ( y )  be a continuous function at yo it is necessary 

and sufficient that 



Theorem 2 and some similar results can be used to study that  connectedness of vari- 

ous optimal solutions set and to  obtain proper efficiency criteria (see Kotkin [1988]). 

Theorem 3. 

Let us suppose tha t  F j  ( i ) ,  j = O  ,..., m, are continuous functions and X (0,O) is a con- 

nected (linear-wise connected) set. Then S(0,O) = P (0,O) is a connected (linear-wise 

connected) set. 

Let us denote r1 (z) = r l ( z )  n X(O,O).  

Theorem 4. 

Let us suppose tha t  F j  ( i ) ,  j = O  ,..., m, are continuous functions, r1 (z) is a connect- 

ed set for any z E f (X(0,O)) and S (0, O), P (0,O) or S (0,O) = P (0,O) are a connected 

set. Then r1 (S), r1 (P) or r1 (G) are the associated connected sets, respectively. 

Let us consider the stability of the m.n.p. problem (2) with respect to  right hand 

side perturbations of the constraints. We will say problem (2) is stable if and only if the 

w.e.e. set S (y, v )  of the perturbed problem is a continuous point-to-set mapping a t  (0,O). 

We use the Hausdorf metric in this definition. 

We assume the following regularity condition holds: for any sequence 

(yk, vk) -+ (yo, vo) and any io (iO, yo, vO) E p) there exists a ik + io such that  

(ik, yk, vk) E p- 

Theorem 5 (see Kotkin [1988]). 

If for any io g.s.f. , F(' ( ik,  y, v) is a continuous function a t  (iO,O,O) then the m.n.p. 

problem (2) is stable. 

A great variety of numerical methods to  solve n.1.p. and m.n.p. problems are based 

on their reduction to  a sequence of unconstrained minimization (u.c.m.) problems. We 

will call these methods sequential unconstrained minimization (s.u.m.) methods. In order 

to  construct each u.c.m. problem, a so-called convolution function (c.f.) is used. 



Let us consider, for example, the penalty functions method which reduce the n.1.p. 

problem to the following problem with rectangular constraints (we will call it the u.c.m. 

problem): 

where (y)+ = max (y,O), for any E R1. 

In this case we have the following goal function in the u.c.m. problem (we will 

denote it by u.f.): 

and the following c.f. is used for this method: 

Mk (2, Y )  = z + tk C (yi):, where Z E  R1, y E RP 
1 

We have a sequence of u.c.m. problems and associated u.f. and c.f. when the penalty 

coefficient tends to  infinity the following way: tl = 10, tkS1 = lotk. 

Therefore, the s.u.m. method would be defined if we define a sequence of c.f. and 

choose a u.c.m. method. This way we are concerned with external iterative process which 

is changing the c.f. and the associated u.c.m. problem. 

Because of the nature of s.u.m. methods we may consider the problem 

min Mk (z,y), where 2' = Z n  2, 
(z,Y)E Z' 

instead of the u.c.m. problem 

Therefore the efficiency of the s.u.m. method is determined by dual properties of the 

problem image i? and c.f. Mk (z,y) or minimal function value isolines Vk ( t t )  . 

Let us consider the class of stable n.1.p. problems with finite Lagrange function sad- 

dle point which satisfies the Slayter regularity condition. 



We will suppose initially that we have the exact solutions of the u.c.m. problem. 

We will call the c.f. exact if and only if the s.u.m. method converges in a finite numbe of 

steps. Otherwise, we will call the c.f. smooth. 

Let us define conditions that the minimum z of the u.c.m. problem is the exact (a) 

or approximate (b )  solution of the n.1.p. problem with respect to the space Z+: 

a) 3koVk 1 koV(zk,yk) E Ar min Mk(z ,y) :ukIO,  F(0) ;  
(z,u7 

b) VE > 0 3 koV k 1 koV (zk,yk) E Ar min Mk (z,y): 
(I,$ I5 

where Z' = Zn 2. 

There is a stronger condition with respect to the exact solution, namely the sets 

equality: 

a') 3 k o V k z  koAr min Mk(z,y) = {F(O)) x Wu(0). 
(z,u7 I5 2, 

Let us define the following compact set: 

K (a,b) = {(z,y) : a0 5 z 5 b0 5 6 5 y 5 i, a E l i p + ' ,  a < 0 < b ) .  

It can be proved that the characteristic property of the s.u.m. methods, under the 

assumption that c.f. series does not depend on the n.1.p. problem which is solved, is con- 

vergence of secalled "global derivatives surface" to the negative orthant with the origin 

at (F (0),0) (see Kotkin [1988], [1989]). The exact c.f. differs from the smooth c.f. on that 

it has a break-point. 

Let us denote 

The function ~i (z, y) has the following domain: 
(El 



We will use some assumption with respect to  the properties of c.f. Mk ( 2 ,  y) which is 

satisfied in the case of penalty functions methods, Center methods, Barier methods, etc. 

(See Kotkin [1989]). 

Theorem 6. 

1. In order that  condition a') holds for any n.1.p. problem i t  is necessary and 

sufficient that  for any compact set K (a ,  b) 

1)  for any point (z,y) E go such that  yi 2 0, yi 5 0 (Vj # i )  : 

DL+ (z,y) -+ - w ,  if k = w ,  i = l ,  ..., p; 

2) for any big enough k and any point 

(z,y) E zOn K(a,b)  such that  y < 0 :  

DL- (z, y) = 0, i= l ,  ..., p ;  

2. In order that  condition b) holds for any n.1.p. problem it is necessary and 

sufficient that  for any compact set K (a ,  b) 

1)  f o r a n y p o i n t ( z , y ) ~ ~ ~ s u c h t h a t ~ ~ > O , ~ ~ ~ O ( V j # i ) :  

D f t + ( z , ~ )  -+ - w , i f  k-+w, i = l ,  ..., p ;  

2) for any big enough k and any point 

( z ,  y) E zO n K (a ,  b) such that  y < 0 

~ f -  (2, Y) 1 0, 

DL(z,y) + 0 ,  i f k + w ,  i = l ,  ..., p.  

It can be proved that  the conditions of Theorem 6 hold for the m.n.p. problem (2) if 

we use the appropriate notation (See Kotkin [1988]). 

We consider now a technique t o  solve some class of the  i.n.p. problems based on the 

sensitivity analysis. Considered methods converge under the strong assumption tha t  the 

behavior of the p.n.p. problem ( l a )  a t  the solution similar to  the behavior of the associat- 

ed linear programming problem. The sphere of applications of these methods is restricted 

but they are interesting from a theoretical point of view. 

Consider first the following simplest i.n.p. problem: 



I a) zt E Ar min / (z )  ; 
g ( z 7 5  u *  

[b) z* = "0. 

where f: R n  -+ R', g  : R n  -+ R m  are continuous functions. We have to  find out the 

parameter ut  which is associated with the given solution z t =  z0 of the p.n.p. problem 

(6a). 

I t  is easy t o  see that  the solution is g  (zt) : ut = g (zt) , where z t  = zo . In this case 

the feasible set of the p.n.p. problem (6a) is bounded by the constraints g  (z) 5 g (zt) "just 

at the point z t  " (see Fig. 1). 

This approach can be generalized to  solve more interesting classes of the i.n.p. prob- 

lems: 

I a)  z t E  Ar min / (z ) ;  8 g ( z ) - v ( u * )  

[ b )  z* = 20; 

and 

I a) zt E Ar min / (z ) ;  
z ~ z k p ( u . )  

[ b )  zt = Aut + B; 

where f: R n  -+ R', g  : R n  -+ RP, cp: R m  -+ RP , are continuous functions, u  E Rm,  D,A ,C 

are matrixes. 

We will only discuss the main idea of the methods. 

Let us consider the i.n.p. problem (7) and assume that  gradient f, (z) is not equal t o  

zero a t  the solution z t  of the p.n.p. problem (7a). In this case we have the system of ac- 

tive and o t  active constraints a t  the solution (zt,  u t )  of the i.n.p. problem: 

g8(zt)  = cp8(ut), ic I,; 

gi(zt) < cpi(ut), i €  M\ I,; 



where M = (1  ,..., p), I, # $I, I, C M. 

It can be shown that under some assumptions the solution of the following nonlinear 

system with respect to u E R m  is a solution of the i.n.p. problem (7): 

In order to determine the set of active constraints at the solution (z*,  ut)  we have to  

consider all systems 

I < -f,(z*),  W >  5 0; 

< gf (z*) ,  w > 5 0 ,  i~ I,, where k=l ,..., N  5 2 P ;  

which have empty solution sets with respect to w E R n .  

Therefore we have to solve the set of N  nonlinear systems 

I gi (z*) = (Oi (u) ,  i € Ik; 

gi (2.) 5 pi (u) ,  i€ M \ Ik, where k=l ,.. ., N ;  

with respect to the parameter u E Rm. The solution ut of any of these systems is a solu- 

tion of the i.n.p. problem (7).  

In order to  solve the problem (8) we have to insert the dependence (8b) in the con- 

straints of p.n.p. problem (8a).  

We have the following system: 

The idea is t o  define the region Uk with respect to the parameter u such that the set 

of active constraints is fixed when the parameter u belong this region. 



Therefore we have t o  solve the set of the following systems 

where k=l  ,..., N 5 2P. 

Generalized Newton Method 

We will call the dual algorithms the numerical methods to solve the i.n.p. problem 

(1) which consist of two steps: calculating of the minimum of the p.n.p. problem ( l a )  with 

respect t o  the fixed value of the parameter u, and calculating of the new value of the 

parameter u using the constraints ( lb ) .  

Under the assumption that  the functions j ( z , u ) ,  g (z ,u) ,  h (z,u),  are strong convex 

with respect t o  z functions we have the unique solution of the p.n.p. problem ( l a ) :  

z (u)  = argmin j ( z , u ) .  
z € X ( u )  

We will call the  function z (u)  : Rm -r R n  a solution function. 

Let us use the solution function z (u)  in the constraints ( lb) :  

e ( u )  = G ( z ( u ) , u ) ;  E ? ( u )  = H ( z ( u ) , u ) .  

We have t o  solve the following system with respect to  u: 

e (u)  5 0; I? (u )  = 0 .  

We can calculate the values of the vector-functions e ( u )  and I?(u)  a t  any point 

u E R m  because we can calculate the values of the solution functions z (u) .  Therefore we 

may try t o  use usual optimization technique to  solve the system (11) but we do not know 

anything about the properties of the functions 6 (u)  and I? (u)  because we do not know 

anything about the properties of the solution function z (u).  



We will present the so-called Generalized Newton Dual Method to solve the follow- 

ing i m p .  problem: 

a)  z* E Argmin f (2,  us) ;  I z E R n  

[b )  z* = A U *  + B. 

It is a generalization of the Newton Method to solve the system. 

Let us consider the solution function z ( u )  of the i.n.p. problem (12) under the as- 

sumption that  f (z ,u )  is a sufficiently smooth and strong convex with respect to  z func- 

tion. Characteristic property of the solution function z ( u )  is the gradient fz ( z ,u )  equal to  

zero on the "surfacen z  (u) :  

We will use the equation (13) to calculate the derivatives of the solution function 

( 4 .  

Let us consider the function f z ( z , u )  at  the neighborhood of the point 

(z0,uo) = ( 2  ( ~ 0 ) )  uo): 

We have 

f z  (2  ( 1 ) )  1 )  = fz  (20, uo) + < If=, fzu], [z ( u )  - 20, u  - uo1> + 0([2 ( u )  - 20, u  - ~ 0 1 ) .  

Let us assume tha t  the solution function z ( u )  is a sufficiently smooth function and 

z (u )  = z ( u o )  + < 2" (uo),  u  - Uo > + O(u  - uo). 

We have 

fz ( z ( u ) ,  u )  = fz (20, uo) + < [fzz, fzul, [< zu(uo) ,  u  - uo >, u  - uo] > + 0 (u  - UO). 



Using (13) we conclude 

<[fn(~(u~),~~),fzu~(u~),u~)lr [<zu(uO), u - ~ o > ,  ~ - u ~ ] > = o .  (14) 

We have the following system of n linear equations 

a 1 which have an unique solution - (uo) = (wj ,..., wy) , where j=l ,..., m. a UI 

Therefore we can calculate derivatives zu (uo) using the system (14). 

Let us prove that  the solution function z (u) is a locally sufficiently smooth function 

in the case u~ R~ under the assumption that  function f (z,u) is a sufficiently smooth and 

strong convex function with respect t o  z function. 

Let us consider the system (14) with respect to unknown function f ( u )  : 

We have the system of differential equations (15) with initial condition that  unk- 

nown function z'(u) equal t o  the solution function z (u) a t  some point uo . System (15) 

has a unique and sufficiently smooth solution z (u)  which equal to  solution function a t  

some neighborhood of uo : z'(u) = z (u) .  

In order t o  find out the solution of i.n.p. problem (12) we have to  find out the root of 

the following vector-function 

q(u)  = z ( u )  - (Au + B).  (16) 

We can solve the system 

q(u) = 0 ,  u € R r n ,  



using the usual Newton Method (see Fig. 2). 

Let us rewrite the system (18) using the notation 

vt = ZU (Uk)) vu = U - Uk: 

< [ f U > f t U I ,  [<vz ,vu>,  % I >  = 0 

We have the dual methods which consist of two steps: 

1) solving of the p.n.p. problem (12a) with a fixed value of the parameter u ; 2) usual 

Newton step to solve the system (16): 

2) (v,, vu) E k g m i n  I < [fzz, fzu  I, [ < v,, vu >, vu I > l 2  -t 
"s, "8 

(zk+l - (Auk+ B )  - < v Z +  A ,  v u > I 2 +  

+ Q J  [ <  vZ,vU>,vU] 12), where a > 0 ;  

uk+l = Uk + vu 

This method converges to the solution u t :  q (ur)=O, under the assumption that 

f (z,u) is sufficiently smooth and strong convex function ( z (u) is sufficiently smooth in 

the case uE R m ,  m > 1 ) and function q (u) satisfy the usual assumption of the Newton 

Method. So we have the local convergence of this method. 

Pa rame t r i c  programming sys tem DISO / P C - M C N L P  

The DISO / PC-MCNLP system is developed for IBM-PC/XT compatible comput- 

ers in the Computer Center of the U.S.S.R. Academy of Sciences for multicriteria non- 

linear programming solving. 

DISO / PC-MCNLP is based on ideas of multicriteria and nonlinear optimization as- 

sociated with parametric optimization and sensitivity analysis. The great variety of nu- 

merical algorithms, interactive procedures, parametric study possibilities and flexible con- 

trol are the main features of the DISO / PC-MCNLP system. 

The flexible control system Field Manager and analytical differentiation language 

DIFALG are the user level. One can use the "C" language to make a problem definition if 



one prefers "Cn to  DIFALG. 

The unconstrained optimization algorithm, nonlinear programming algorithm, in- 

teractive procedure of multicriteria search, any parameters of numerical method and some 

parameters of the applied problem can be changed assynchronically with respect to  the 

calculation process. Field Manager allows one to adjust the interface to  one's own applied 

problem. The beginning of the possible adjustments is choosing the numerical algorithm 

and its parameters, followed by preparing (if one needs) windows, the form of presenta- 

tion of the system and problem objects (numeric, histograms, graphs), defining the a p  

plied problem objects, names, etc. One can change the values of parameters which lie in 

the basis of one's own applied problem, write and read these parameters and other infor- 

mation from a floppy disk assynchronically to the calculation process. All these features 

of DISO / PC-MCNLP allow the easy construction of the interactive system for applied 

optimization problems. 

Such interactive systems have been constructed for water resources distribution 

problems (see Kotkin and Mironov [1989]), metalworking production and other applica- 

tions. 

A great variety of numerical algorithms and interactive procedures are available in 

the DISO / PC-MCNLP system. They are needed to choose the appropriate algorithm 

for solving the problem. The DISO / PC-MCNLP has a multi level structure with respect 

to  numerical methods. Several unconstrained minimization methods are at the base level. 

They are the result of the long time experience of a group of scientists from the Computer 

Center of the U.S.S.R. Academy of Sciences (see Evtushenko [1985]). 

The next level consists of a number of nonlinear programming techniques because 

any multicriteria programming problem is usually reduced to one goal programming prob- 

lem. The last level consists of a series of decision making procedures. 

The DISO / PC-MCNLP includes the following methods. 

Unconstrained minimization methods: 

lu)  coordinate descent; 

2u) direct search (two modifications); 

3u) random search method; 

4u) conjugate gradient; 



5u) Newton method. 

Nonlinear p rog ramming  methods: 

In) center method modifications; 

2n) penalty functions method modifications; 

3n) barrier methods; 

4n) exact penalty function method modifications. 

Decision mak ing  methods: 

Id) gradient method (Geoffrion); 

2d) parametric programming method (Guddat); 

3d) reference point method modifications; 

4d) scalarization method modifications; 

5d) nonlinear parametric programming method. 

In order to  construct nonlinear programming method and decision making procedure 

we used a convolution which satisfying conditions of Theorem 9 and in special cases 

Theorem 10. 

We can construct the methods In) - 4n) and Id) - 5d) if we choose the parameters 
i i '  1 . .  v , u-, u; E R ; pY,p; E {-1,1,2,4), i=0 ,..., m + l + p + s ,  using Table 1. 

DlSO / PGMCNLP can be extended to solve i.n.p. problems. First of all it is easy 

to  consider the imp .  problem which has the parameters of the convolution (19) 

us U-)+ f as parameters of the i.n.p. problem. In this case the parameters of 

i.n.p. problem are used to construct goal or constraint function from the defined set of the 

"initialn functions. For example we can consider the i.n.p. problem (5) in order to solve 

m.n.p. problem (2). 



Table 1. 

O t h e r  definit ions of t h e  inverse  nonl inear  p r o g r a m m i n g  p r o b l e m  

Parameters o f  c.f. 

Let us consider other problem definitions for i.n.p, problems. We have to  find out a 

pair (zt ,  u t) such that  

z* E Argmin f ( z , u i )  
z E X2 (u*) 

Method 
- 

4 d 
3n+ 
4 d 
In+ 
3 d  

3n+ 
3 d  

4n+ 
3 d 

I n +  
5d  

The i.n.p. problem (1) is a special case of this problem under the assumption that  a t  

any fixed value of parameter u E R m  exist a solution of the system of the constraints ( lb ) .  

In this case the problem (1) is reduced to  the following problem 

W i t h  respect t o  

i i vi u- uft p -  p i  
tl 2 2 O t 2  
-00 

0 -tl t l  - 1  2 
-0 -00 

0 0 tl 2 2 O t 2  
-00 

0 0 tl  1 1 O t 2  
-0 -00 

0 0 t l  1 1 O t 2  
-00 

v l o  t l  2 2 
var -00 

W i t h  reepect t o  

vi ui u pi_ pl 
2 n + 0 1 1 1 1 0 0  

0 1 1 1 1 

z 0 1 2  2 
var  

z 0 1 2 2 
v a ~  

z 0 1 2 2 
v a ~  

2 0 1  2 2 
var  

zt E Ar min f (2,ut); 
z E P u . )  

zt E Argmin (G (z,ut): + H (z ,ut) ) .  
z E  Rn 

W i t h  respect t o  

: i i vi u1 uft p- p+ 
t 2  2 2 

-00 -00 

0 t 2  t 2  2 2 
+ -00 

t 2  2 2 
-00 -00 

t 2  2 2 
-00 -00 

t 2  1 1  
-00 -00 

v2 t 2  t 2  2 2 
var -+w -00 
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