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Preface 

Road transport is presently by far the most important form of travel and goods transport. 
Air transport, however, is growing worldwide more rapidly than any other long-distance 
mode. Although it presently represents a small share in the total passenger-kilometers 
traveled and total tons of freight transported globally, sustained growth of air operations 
and possible further increases in commercial air transport well into the next century, 
could shift the emphasis of adverse environmental effects of transport systems from road 
to air. Often such an environmental a sa smen t  deals with local and regional air pollution 
and ecology. There is, however, also the possibility of longer-term global warming as a 
consequence of increased atmospheric concentration of so-called greenhouse gases released 
by aircraft. 

Efficiency improvement and conservation would certainly help mitigate some of the 
adverse effects of increasing energy consumption in general and vehicle fuels in particular. 
There is also the possibility of a shift toward fuels with inherently lower levels of green- 
house gas emissions. Some energy carriers such as electricity and hydrogen do not emit 
any greenhouse gases in end-use, provided that they are produced by energy sources and 
technologies that themselves do not emit any greenhouse gases such as nuclear and solar 
energy. Aircraft powered by liquid hydrogen are such a technology. Combustion of 
hydrogen in air results in water vapor and nitrogen oxides. 

David Victor demonstrates that such advanced air transport could play an impor- 
tant role in greenhouse gas reduction policy. Since the current fleets of conventional, 
kerosene fueled aircraft cannot be replaced overnight, David also incorporates various 
scenarios of fleet replacement regimes and efficiency improvements of both hydrogen and 
conventional transport in his analysis. He demonstrates that the overall carbon dioxide 
emission profile is very sensitive with respect to the assumed rates of change of the fleet 
structure and efficiency of aircraft. 

The paper identifies an important policy dimension concerning the reduction of car- 
.ban dioxide emissions in the transport sector: Vigorous growth of air transport in the 
future could lead to  continued increase in carbon dioxide emiaaions even under conditions 
of rapid replacement of conventional by liquid hydrogen aircraft. Other possible effects of 
hydrogen fueled aircraft, not analyzed in the paper, might aggravate the overall loading of 
the atmosphere as the result of further growth of air transport. For instance, higher 
water vapor concentrations along the flight routes, directly or indirectly through the for- 
mation of contrail cirrous clouds, could lead to  enhanced ugreenhouse" heating. 

Nebojga NakiCenoviC 
Project Leader 
Environmentally Compatible Energy Strategies (ECS) 



Abstract 

A simple model of the world air market is used to test 

the role that liquid hydrogen (LH2) aircraft might play in 

reducing carbon dioxide (C02) emissions from this sector of 

the economy. I assume that LH2 aircraft can penetrate up 

to 70% of the market and will do so along a logistic 

diffusion curve with At = 40 yrs. Using two scenarios-- 

high and low demand--I find that although LH2 aircraft and 

the LH2 supply system can be configured to release no C02, 

the remaining conventional aircraft in the market continue 

to play a large role in the total sector C02 emissions. 

The model is very sensitive to the balance between the LH2 

substitution effect, market growth, and efficiency growth. 

Liquid hydrogen aircraft can help reduce C02 emissions, but 

reducing C02 emissions below current levels will also 

require constraints on growth in the entire air market. 



Introduction 

Recently, scientific and political attention has 

focused on the theory of global warming due to the emission 

of I1greenhousel1 gases such as C02, CH4, N20, and 

chlorofluorcarbons (CFCs). Numerous studies have outlined 

the relative effects of these gases,[l] and it is widely 

believed that reductions in some or all of these would be a 

central component of an effective greenhouse policy. 

Through the framework of the Montreal Protocol, 80 nations 

have agreed to limit the emission of CFCs;[2] and at 

national levels, policies are emerging to cut emissions of 

C02,[3] the most abundant and largest contributor to the 

anthropogenic greenhouse effect.[4] 

C02 reductions are possible through a number of 

pathways: 1) energy conservation can reduce the amount of 

energy required thereby reducing C02 produced as a 

byproduct of energy consumption.[5] 2) Energy consumers 

can switch to less C02-intensive fuels such as natural gas 

(methane). [6] And 3) shifts to "zero-CO2I1 technologies 

like solar, nuclear, and hydroelectric might allow energy 

consumption without C02 emissions.[7] 

In the air transportation market, liquid hydrogen- 

fueled (LH2) aircraft may be one such 11zero-C0211 

technology. The aircraft themselves emit only water vapor 

and nitrogen oxides, and if "zero-C02" technologies are 

used in the production of liquid hydrogen, these aircraft 



might play an important role in a greenhouse gas reduction 

policy. To test this hypothesis, I have developed a model 

of the aircraft market and used it to project to the year 

2075 with liquid hydrogen aircraft penetrating the market 

starting in 2000. The structure of the model is summarized 

in figure 1, and the four classes of included variables are 

discussed below. 

Market penetration 

Numerous studies on the diffusion of new technologies 

into the marketplace have noticed that market share follows 

logistic curve trends similar to the niche competition 

between species.[8] For this analysis, it is assumed 

(somewhat arbitrarily) that liquid hydrogen aircraft are 

introduced in the year 2000 and will ultimately penetrate 

up to 70% of the air transport market with the main 

diffusion taking place over 40 years (at = 40 yrs). The 

remaining 30% will likely consist of short-range flights 

(ill-suited for liquid hydrogen technology) and flights to 

and from airports which are infrequently used (where liquid 

hydrogen distribution and storage facilities would be 

highly cost ineffective). It is difficult to imagine that 

versatile petroleum-based liquid fuels will entirely 

disappear from the market. However, there are many reasons 

why synthetic fuels (e.g. Synjet) may become widely used 

for remaining conventional jet aircraft, but these may not 



affect C02 calculations, though in many cases synthetic 

fuels release more C02 per unit of energy, depending on the 

process used to manufacture the fuel. 

Figure 2 summarizes the scenario diffusion of liquid 

hydrogen aircraft the market[9] and figure 3 shows the 

changing market shares for conventional jet aircraft and 

liquid hydrogen aircraft. 

Market arowth 

Concern about the greenhouse effect, energy security, 

and other energy-related issues has focused attention on 

the role conservation might play in the future. However, 

it is not clear how extensively conservation measures might 

be followed, so two scenarios are used. The high-demand 

scenario (figure 4) assumes that the air market will follow 

past growth trends from the present to the year 2075.[10] 

Since 1970, growth has been about 7% per year; since 1980 

the average growth rate has been about 6% per year.[ll] In 

general, growth rates in the air transport market have been 

decreasing since 1945 so a lower number like 5% might be 

the most reasonable assumption for a high demand case, 

though it is possible growth may be higher. For this 

scenario, it is assumed that 50% of the liquid hydrogen 

aircraft are supersonic; much of the air market growth 

would result from the availability of economical, high 

speed transportation. Although many problems such as ozone 



depletion from supersonic aircraft exhaust remain 

unresolved,[l2] this growth scenario with 1/2 the LH2 ton- 

km supersonic simply represents a likely upper bound on 

energy use in the future air market. 

Higher energy prices, better alternatives to air 

transport, regulatory programs to limit energy use, and 

noise or environmental concerns might all yield lower 

growth in the air market. A low demand scenario (figure 5) 

assumes 5% per year growth to the year 2000 then, as part 

of broad conservation effort, growth is gradually reduced 

to zero. By 2075, the air market stabilizes at about five 

times 1989 levels. For this low demand scenario it is 

assumed that essentially all the aircraft will be subsonic. 

Putting these scenarios in perspective, figure 6 shows 

the ton-km per capita for both the high and low demand 

cases. Population statistics from World Bank forecasts 

predict gradually decreasing growth rates from the current 

1.7% per year to an average of 0.26% per year for the 

period 2050 to 2075. Population reaches 10.17 billion in 

2075.[13] Note that other forecasts such as those by the 

United Nations predict more vigorous population growth, at 

least through 2025.[14] 

The results of other air market forecasts are 

superimposed on figures 4, 5, and 6. Fitting a long wave 

scenario to past air transport volume, Nakicenovic and 

Grubler suggest that penetration of conventional jet 



aircraft into the intercity transport market will peak in 

about 2010.[15] They argue that conventional jet aircraft 

market shares will then gradually decrease when new 

transport systems--probably liquid hydrogen or natural gas 

aircraft--penetrate the market. Both the high and low 

demand scenarios exceed Nakicenovic and Grubler's forecast 

for conventional aircraft. However, Nakicenovic and 

Grubler have noted that in the past, diffusion of jet 

aircraft into the transportation market led to a ten-fold 

increase in travel.[l6] Such a 40 year pulse for liquid 

hydrogen aircraft starting in 2000 is consistent with the 

high demand forecast which relies, in part, the 

introduction of practical supersonic aircraft for market 

growth. Supersonic transport might offer the same 

revolution in transportation that the jet aircraft did 

thirty years ago. 

Boeing estimates on market growth are also shown and 

are quite similar to my scenarios although they only extend 

to 2005. Boeing predicts 5.3% growth per year from 1986 to 

2000 then 4.9% from 2000 to 2005.[17] 

Efficiency 

Some information on liquid hydrogen aircraft 

efficiency is available from a Soviet test in April, 

1988.[18] Although the Soviet aircraft was configured as a 

test aircraft and performance details remain 



incomplete,[l9] their flight indicates that liquid hydrogen 

technologies can work in existing production aircraft.[20] 

However, for -this analysis I have relied on a series of 

more detailed feasibility studies for LB2 aircraft at the 

Zurich airport (Zurich study)[21] which combined 

representatives from all branches of the air transportation 

industry. These data are probably as reliable as currently 

possible. [22] 

According to the Zurich study, a nconservativew 

estimate is that production hydrogen aircraft will have 

higher empty weight than their conventional jet counter- 

parts but roughly comparable weight is saved by the high 

energy density of hydrogen fuel. Thus operating weights of 

long-range (10,200 km) hydrogen and conventional aircraft 

will likely be about the same; therefore, energy require- 

ments will be similar. 

However, this probably represents a worst case for 

hydrogen aircraft since many of the associated technologies 

have not been fully explored in production aircraft to the 

same extent as conventional jet technologies. An ttidealtt 

case for liquid H2 aircraft would be 70% more efficient 

than new conventional aircraft; an "advancedn case-- 

between the wconservativeN and "ideal" case--would be 50% 

more efficient than conventional jet aircraft.[23] Better 

fuel systems, lightweight hydrogen storage tanks, engines, 

and aircraft designed to optimize liquid hydrogen 



advantages may all contribute to lower weights, less drag, 

and better fuel economy. I will use an I1advanced1l liquid 

hydrogen aircraft with an efficiency of about 100 ton- 

km/MBTU when it first appears on the market in 2000.[24] 

Although individual hydrogen aircraft may only be 50% 

more efficient than new conventional jet aircraft, statis- 

tics on existing aircraft efficiency indicate the conven- 

tional jet fleet is substantially less efficient than new 

aircraft. New aircraft may reach efficiencies of 65 ton- 

km/MBTU (at the current 67% load factor), but fleet 

averages for OECD countries in 1985 were 33 ton- 

km/MBTU.[25] US average figures were about the same, and 

world figures were about 10% lower.[26] It is unclear how 

to test this data since highly reliable sources on fuel 

consumption and aircraft use are not available; this is 

especially true for world data. However, the US/OECD 

figures are probably as reliable as currently available and 

are used for this analysis. 

Clearly projecting efficiency improvements is complex 

and includes many factors such as economic growth and fuel 

prices that are nearly impossible to include in a long- 

range forecast. Since 1970 the average growth in 

efficiency has been about 5% per year but in the early 

1980s that rate dropped to about 2.5% per year. For this 

forecast, I have assumed that efficiency will continue to 

improve at 2.5% per year while the most inefficient 



aircraft are substituted out of the fleet. In 1995 the 

rate will start to decline such that by 2005 the efficiency 

improvement for conventional aircraft is 1% per year where 

it will stay until 2075 (figure 7). This schedule of 

efficiency growth will put the fleet of conventional jet 

aircraft at nearly half the efficiency (48 ton-km/MBTU) of 

liquid hydrogen aircraft in 2000. 

I am assuming that these long term efficiency 

increases will likely come from two areas: first, 

investments in information systems will increase aircraft 

utilization from current levels of 67%.[27] Second, 

advances in composite materials, engines, flight management 

systems, and coordinated air traffic control will all lead 

to lower fuel use per flight. However, beyond the 

efficiency differences at the time of introduction, liquid 

hydrogen aircraft will not become progressively more or 

less efficient than conventional aircraft since these 

efficiency increases equally apply to both aircraft 

technologies. 

Computing the efficiency of supersonic liquid hydrogen 

aircraft for the high demand scenario is quite difficult. 

Supersonic technology--mostly the domain of the military-- 

has not been tested in production civilian air transport 

since the introduction of the Concorde. Consequently, 

there is not a clear indicator of the efficiency losses 

that are incurred with supersonic aircraft which are also 



designed with fuel economy in mind. NASA research on 

supersonic passenger aircraft suggests that conventional 

fueled supersonic passenger aircraft may be consistently 

half as efficient as subsonic aircraft.[28] I have assumed 

the same proportion will prevail for liquid hydrogen 

aircraft. However, this may understate the eventual 

relative efficiency of supersonic liquid hydrogen aircraft: 

although a huge drag penalty exists for supersonic flight, 

liquid hydrogen cooling of flight surfaces may offer 

unparalleled advantages in drag reduction at supersonic 

speeds.[29] As with subsonic LH2 and conventional 

aircraft, efficiency of supersonic LH2 aircraft is assumed 

to increase 1% per year. Note that with these assumptions, 

supersonic LH2 aircraft are slightly more efficient than 

subsonic conventional aircraft; as mentioned before, this 

study probably assumes the best cast for liquid hydrogen 

aircraft relative to conventional jet aircraft. 

Liauid hvdroqen production 

The combination of market growth and efficiency yields 

projections for LH2 demand which is then fulfilled using 

one or both of two LH2 production technologies. First, 

hydrogen can be produced from water by electrolysis and 

then liquified. Based on data reported in the Zurich 

study, it is assumed that the electrolysis process is about 

68% efficient which is consistent with "membrelW ion- 



exchange electrolytic cells under development.[30] An 

additional 25% energy input is required to cool the 

hydrogen gas to 19O~. The entire process requires about 

61.5 kwh per kilogram of liquid hydrogen produced: overall, 

the process is about 54% efficient.[31] Based on the 

lladvancedll case, a liquid hydrogen airplane with 36 ton 

(400 passengers plus baggage) payload will require about 22 

tons of liquid hydrogen for a 10,200km flight.[32] 

6% of all electricity delivered from power plants to a 

liquid hydrogen plant is assumed lost in transmission which 

is consistent with current experience.[33] The ultimate 

demand for electricity (64.7 kwh per kg of LH2) is met by 

one of three generation technologies: oil, natural gas 

(NG) , or nuclear. 
For oil and gas, electricity generation efficiencies 

are widely distributed due to different technologies and 

management practices, but an average figure of 37% for 

oi1[34] and 50% for gas[35] is realistic for generation 

capacity built at the margin to supply electrolysis 

plants.[36] It is assumed that the entire electrolysis 

process--from electricity generation to liquefaction--will 

increase in efficiency by .5% per year from 1989 levels to 

2000 then 1% per year until 2075. These improvements are 

due to increases in three areas: generation and 

transmission efficiency, electrolysis teqnology, and 

cryogenic technology. Nakicenovic has noted that 



efficiency changes in general are highly dependent upon 

pricing or other incentives,[37] so my assumption of 

gradual efficiency changes is only valid if such long-term 

incentives exist in the future. In 2075, the whole process 

is 2.3 times as efficient as today which represents a best 

case for efficiency improvements since electricity 

generation/transmission (at least for natural gas) is 

currently close to the theoretical (second law) efficiency. 

Therefore, this scenario for efficiency improvements relies 

heavily upon increases in electrolysis and liquefaction 

technologies.[38] 

In terms of C02 emitted, natural gas is even more 

efficient than oil since the latter releases about 40% more 

C02 per unit of energy produced.[39] Nuclear power is 

assumed not to release any CO2. 

A second means of LH2 production is steam reforming of 

natural gas: 

Energy 
CH4 + 2H20 ------ > C02 + 4H2 

Marchetti has suggested running the process with nuclear 

heat and discharging the high purity C02 back into oil 

wells or vacant natural gas deposits; as with nuclear 

electricity generation and electrolysis, the process would 

not release C02. Reforming would also be more efficient 

since efficiency losses from electricity generation would 

be avoided.[40] 



C02 from steam reforming may also be vented to the 

atmosphere if recharging it into the ground is not feasible 

(e.g. if oil/gas fields are not nearby), but doing so would 

not appreciably alter the scenarios for steam reforming. 

The high energy density (energy per molecule) of H2 allows 

very little C02 production per unit of combustible H2 

energy produced. 

There are, of course, many technologies such as solar 

power which do not release C02, all of which are subsumed 

under the category wnuclear/renewable.w For other reasons- 

-environment, economics, risk, etc.--some of these may be 

more favorable than others, but in terms of C02 emitted 

they are all the same. 

In calculating C02 from conventional jet aircraft 

there is an assumed 7% loss from refining operations 

(needed to produce jet fuel).[41] C02 emissions due to 

transport of fuel are not included; also, C02 emissions due 

to industrial activity required to build aircraft, 

airports, hydrogen plants, etc. are also omitted. 

Consequently, the model will underestimate total C02 

emissions by several percent; however, many of these errors 

will exist systematically and probably not affect the 

comparison of different scenarios. 

Results 



The two scenarios--high and low demand--are summarized 

in table I, and results from the two scenarios are shown in 

figures 8 and 9. Percentage changes in C02 are compared 

with C02 emissions from air transport in the base year 

2000. A number of national policies aimed at reducing C02 

emissions use a base year system for setting target 

emission levels. Furthermore, international efforts to 

control greenhouse gas emissions may follow the pattern of 

the Montreal Protocol on ozone-depleting substances which 

set emission levels as percentages of base year (1986) 

emissions.[42] Thus base year analyses may be the most 

useful means of assessing different scenarios and their 

contribution to greenhouse warming. 

In an effort to put C02 emissions from air transport 

in perspective with other fossil fuel uses, absolute values 

for C02 emissions due to my different scenarios are 

reported in table 11. In 1980, C02 emissions due to all 

fossil fuel uses was about 5200 trillion g of carbon per 

year,[43] so emissions due to air transport are relatively 

small (but, remarkably, not that small under the high 

demand scenario). However, C02 reduction schemes may 

require somewhat proportional cuts in all sectors, so the 

curves (figures 8 and 9) should be a guide to the role of 

liquid hydrogen aircraft in achieving such proportional 

cuts (or growth limits) in C02 emissions from the world air 

market. 



In general, differences in C02 emissions between the 

two scenarios are from two areas. First, the low demand 

scenario is more efficient because all aircraft are 

subsonic; although efficiency increases over time are the 

same for both scenarios, supersonic aircraft are assumed 

consistently half as efficient as subsonic aircraft. 

Second, the low demand scenario simply entails fewer ton-km 

performed. 

The high demand scenario leads to exponential C02 

increases, even when liquid hydrogen is produced without 

any C02 byproduct (nuclear/renewable curve). A strong 

substitution effect is evident in 2010 to 2050: the 

nuclear/renewable (i.e. no C02) curve is nearly flat since 

substitution to zero-C02 technologies is about equal to C02 

growth from remaining conventional aircraft. Note that 

this exponential trend would still be evident if efficiency 

grew at the recent trend of 2.5% per year rather than the 

1% per year that I have assumed. For the high demand 

scenario, market growth is substantially more vigorous than 

efficiency growth. 

If the assumption that liquid hydrogen aircraft can 

only penetrate 70% of the market is correct, C02 emissions 

from air transport with nuclear/renewable LH2 production 

will climb to five times base levels simply because the 

entire market--including non-LH2 operations--is increasing. 

The figures are much higher for non-nuclear LH2 production. 



In such an expanding market, reducing C02 emissions to base 

levels would require at least 94% penetration and complete 

use of non-C02 technologies for liquid hydrogen production. 

With such a scenario, C02 from air transport would return 

to base levels in 2062, but by 2075 emissions from the 

remaining 6% conventional ton-km would rise again to about 

1.3 times base levels. 

The low demand scenario demonstrates the critical role 

that growth restraints in combination with efficiency 

improvements can play in greenhouse gas reductions. C02 

emissions from the air transport sector return to base year 

levels by 2040 if nuclear/renewable technologies are used 

to produce liquid hydrogen. Increases of 100% to 200% are 

evident around 2035 if other technologies are used to 

produce liquid hydrogen, but thereafter emissions steadily 

decline. Efficiency improvements overtake market growth in 

about 2040 and produce these declines. Note that the I1no 

LH2I1 curve which represents the C02 increases that would 

result if no liquid hydrogen aircraft were used has a 

slightly different shape from the NG and oil curves. This 

is because NG and oil incorporate two efficiency increases- 

-one in the aircraft and one in the electrolysis--whereas 

the "no LH2n curve includes only aircraft efficiency 

improvements. Once efficiency improvements dominate the 

C02 emission patterns, the LH2 curves decline faster than 

the nno LHZn curve. These trends are not visible when 



market growth dominates C02 emission patterns (high demand 

case). 

Ausubel et al. have argued that an emerging Itmethane 

economyu is increasingly reliant upon natural gas energy 

sources.[44] Such an economy would likely include 

liquified natural gas (LNG) aircraft. Indeed, the Soviet 

liquid hydrogen flight was a first step in the development 

of a LNG aircraft which was later tested in January, 

1989.[45] For comparison, a curve representing LNG 

airplanes is also included. Since LX2 and LNG technologies 

are similar, it is assumed that LNG aircraft will have the 

same efficiency[46] and market penetration as liquid 

hydrogen aircraft but the higher boiling point of natural 

gas requires only a 4 KWH/kg energy input for liquefaction 

(liquid hydrogen required 12.5 KWH/kg).[47] Energy for 

liquefaction comes from a natural gas-fired electric power 

plant with the efficiency assumptions outlined earlier. 

The efficiency of the entire liquefaction process is 

assumed to increase 0.8% per year.[48] Note that the LNG 

curves offer a median case between nuclear/renewable LH2 

and oil-based electrolytic production of LH2. LNG 

emissions are lower than those of conventional jet aircraft 

(l1no LH2I1 curve). In sum, LNG aircraft can contribute to 

C02 reduction efforts since C02 emissions are lower than 

conventional jet aircraft based on the efficiency 

assumptions in this analysis. Furthermore, using LNG 



aircraft is a better option in terms of C02 emissions than 

using LH2 aircraft if it is believed that the 

nuclear/renewable option will not be usable at some point 

in the future. 

The relationship between the no LH2 curve and the 

others curves reflects my best estimates for system 

efficiencies. Clearly if the relative efficiencies of 

liquid hydrogen aircraft and conventional aircraft change 

over time, the relationship between these curves will 

change as well. For example, a modest campaign to reduce 

the age of the conventional jet aircraft fleet might 

increase the efficiency of the fleet by 15% or 20% which 

would make conventional jet aircraft (i.e. no switching to 

LH2 or LNG) a much more appealing option. 

Conclusions 

Without 100% penetration of non-C02 technologies-- 

which is unlikely--there are no technological llfixesw for 

the greenhouse effect, at least not in a rapidly growing 

transportation sector. Liquid hydrogen aircraft can play 

an important role in a campaign to reduce greenhouse gas 

emissions, but the model suggests that restricting market 

growth is equally important. 

Efficiency improvements are also important. For 

scenarios with essentially unrestricted market growth (high 

demand), realistic efficiency improvements are overwhelmed 



by growth and C02 emissions grow exponentially. But if 

demand is controlled at or below the rate of efficiency 

improvements (low demand scenario) there is ample room for 

technological fixes--like liquid hydrogen aircraft--to play 

a significant role in reducing greenhouse gas emissions. 

Although difficult to administer, this research suggests 

that a policy of setting target market growth at or below 

fleet efficiency improvements may be the basis for a sane 

greenhouse policy. Rather than unrestricted economic 

growth, policies might be tuned towards an efficiency- 

driven process. New technologies such as the introduction 

of liquid H2 aircraft could then be used to shift the 

emission curves down, depending on degree of market 

penetration. This approach may be helpful for policy 

makers interested in mitigating greenhouse gas emissions, 

decreasing energy consumption for economic or security 

reasons, or reducing other emission-dependent effects such 

as acid rain or urban pollution. Please note, however, 

that emissions other than C02 from liquid hydrogen aircraft 

are not examined in this paper: there may be serious 

environmental effects from, for example, the release of 

nitrogen oxides and/or hydrogen in the upper atmosphere. 

The case in favor of liquid hydrogen aircraft may be 

different if these emissions are included in addition to 

co2. 



Finally, a scheme to reduce C02 emissions with liquid 

H2 aircraft may be heavily dependent upon nuclear reactors. 

Solar and hydroelectric production of LH2 are being 

explored (both are "zero C02 technologies), but for areas 

poor in hydro and solar resources, transport of LH2 from 

hydro/solar production sites may be an unattractive option 

when compared with local production of LH2 using nuclear 

power. However, many serious social and engineering issues 

that pertain to nuclear power remain to be resolved. In 

sum, the capacity to produce LH2 without (or with minimal) 

C02 releases may be limited in many areas of the world.[49] 



Notes 

1. e.g. R.E. Dickinson and R.J. Cicerone, 1986. I1Future 
Global Warming from Atmospheric Trace Gases,I1 Nature 
m:109-115. 

2. In May, 1989 the signatories met and agreed, in 
principle, to ban the production of CFCs. Currently 
the Montreal Protocol calls for a 50% reduction from 
1986 production by 2000 with a 10 year delay for 
developing countries. See C.R. Whitney, 1989. "80 
nations favor ban to help ozone," New York Times, May 
13, p.A9. 

3. e.g. the Netherlands has introduced a policy to cut 
C02 by 20% to 30% by the year 2010. However, funding 
issues related to the policy have led to the downfall 
of the present cabinet. Dr. Jos Bruggink, 1989 
"Sustainable Development and Energy Policy in the 
Netherlandstn presented at International Institute for 
Applied Systems Analysis, Laxenburg, Austria; 19 June. 

4. The relative contributions of greenhouse gases, their 
trends, atmospheric processes and effects are reviewed 
in B. ~olin, B.R. Doos, and J. Jaeger, eds., 1986. The 
Greenhouse effect, Climatic Chanse, and Ecosystems: 
Synthesis of Present Knowledse (Chichester: Wiley). 

5. e.g. A.B. Lovins, L.H. Lovins, F. Krause, and W. Bach, 
1982. Least Cost Enersy: Solvins the C02 Problem 
(Cambridge, MA: Brick House Publishing). 

6. e.g. W.M. Burnett and S.D. Ban, 1989. Itchanging 
Prospects for Natural Gas in the United States,I1 
Science =:305-310. Oil and coal emit about 40% and 
80% (respectively) more C02 per unit of energy than 
natural gas. 

7. e.g. D. Rose, M. Miller, and C. Agnew, 1983. I1Global 
Energy Futures and C02 Induced Climate Change," MIT 
Energy Laboratory 83-015, Massachusetts Institute of 
Technology, cambridge, MA. 



8. J.C. Fisher and R.H. Pry, 1971. "A simple substitution 
model of technological change," Technol Forec & Soc 
Chs q:75-88. For an application of this diffusion 
principle to automobile technologies see N. 
Nakicenovic, 198 6. !!The Automobile Road to 
Technological Change,I1 Technol Forec & Soc Chq a:309- 
340. 

9. The curve is from an equation of the form: 

where K is .7 (70%) and b is a constant set by 
the rate of diffusion (b=0.1099 for this model). 
At, the time it takes from penetration of 10% of 
the market (when K is 1) to 90% of the market is 
40 years. 

10. The air market is measured in revenue ton-km 
performed . 

IATA, 1988. World Air Transport Statistics, 1987 and 
earlier issues of World Air Transport Statistics. 

12. A byproduct of high aircraft engine temperatures is 
the emission of nitrogen oxides which catalytically 
destroy ozone. For a summary of issues surrounding 
stratospheric flight and ozone depletion see M.B. 
McElroy, 1976. I1Man1s Impact on the Global 
Environment: some recent problems in atmospheric 
pollution," in Atomic Processes and Ap~lications 
pp.73-107 (Amsterdam: North-Holland). See, 
especially, the chart on page 97. 

13. K.C. Zackariah and M.T. Vu, 1988. World Population 
Projections: 1987-88 edition (Baltimore: Johns Hopkins 
press for the World Bank). 

14. United Nations, 1988. "UN population estimates and 
projections, revised 1988, (chart) . Projections only 
through 2025 when world population is estimated to by 
9.5 billion. 



15. N. Nakicenovic and A. Grubler, 1989. "World Volume of 
Air Transport," chart; International Institute for 
Applied Systems Analysis, Laxenburg, Austria. 

16. N. ~akicenovic and A. Grubler, 1989, personal 
communication. 

17. Boeing corporation, 1988. Current Market Outlook 
(Seattle). To avoid accounting differences, we have 
used our 1986 data from IATA and projected into the 
future with the Boeing growth figures. Therefore, the 
points marked "Boeingl' only reflect Boeing growth 
estimates. 

18. Associated Press, "Soviets claim world first with 
completed test flight of plane using liquid hydrogen 
fuel," 16 April 1988. 

19. The aircraft was a TU-155, the designation given to a 
cryogenic version of the TU-154. The center engine 
was fueled by liquid hydrogen and believed to be an 
NK-88, an older version not installed in new 
production TU-154 aircraft. Jane's All the World's 
Aircraft: 1989 (London: Jane's), p.271. Due to the 
engine differences and the fact that half the rear 
cabin was occupied by liquid hydrogen tanks, it is 
difficult to extend useful information on production 
efficiency from the test. 

20. However, the airplane was extensivelv modified to 
accommodate the iiquid hydrogen fuel- system, and only 
one of the three engines ran on liquid hydrogen. 

21. H.P. Alder, 1986. Hvdrosen in Air Transportation 
Feasibility study for ~urich airport, Switzerland, 
EIR-Bericht Nr. 600, p.7. 

Reliable data also exist from studies that explore 
conversion of Airbus A-300 aircraft to LH2 fuel use. 
However, these are not directly applicable to my study 
since the aircraft would be short range (European 
continent only) and would be conversions of existing 
aircraft designs. Many of the advantages of LH2 could 
not be used without completely new designs. For more 
information see, for example, "Pilotprojekt Airbus nit 



Wasserstoffantriebtvv MBB Unternehmensgruppe Transport 
und Verkehrsflugzeuge report March 1989 (Tel: Germany 
155-060/89). 

23. H.P. Alder, 1986. Hvdrosen in Air Transportation 
Feasibilitv study for Zurich airport, Switzerland, 
EIR-Bericht Nr. 600, p.7. 

24. According to the Zurich study, the efficiency for a 
fully loaded vvadvancedvv aircraft is 149 ton-km per 
MBTU; the figure is 100 ton-km/MBTU when corrected for 
a load factor of 67% which is the current rate for all 
commercial flight operations. 

25. Calculated from Enersy balances of OECD countries (for 
fuel consumption) and IATA and UN statistics (for ton- 
h). 

26. Computed from Shell Enersy Demand (fuel data) and an 
estimate of world aircraft use based on IATA data (for 
ton-km) . 

27. Aircraft utilization for all commercial operations of 
ICAO airlines as reported in IATA, 1988. World Air 
Transport Statistics, 1987. 

28. F.E. McLean, 1985. Supersonic Cruise Technoloqv 
(Washington: NASA), p.168. Available from the Supt. 
of Documents, NASA SP-472. 

29. Liquid hydrogen must be warmed from 1 9 O ~  to operating 
temperatures with heat exchanges using ambient heat. 
One theory is that the heat exchangers could also 
serve to influence the aerodynamics of the aircraft. 

30. The term vvefficiencyvv as used here is simply the ratio 
of energy out of the system (i.e. from burning the LH2 
in a calorimeter) to the total energy inputs. 

31. Other studies use similar efficiencies: an overall 
efficiency of 55.3% was used in a German study on the 
possibility of LH2 production in Canada. This does 
not include the energy required to transport the LH2 



to Germany for final consumption (efficiency drops to 
44.6% when maritime transport is included). See "A 
Study for the Generation, Inter-Continental Transport, 
and Use of Hydrogen as a Source of Clean Energy, on 
the Basis of Large-scale and Cheap Hydro-Electricitytn 
Hydrogen Pilot Project--Canada, translation of German 
final report issued June, 1987. 

32. H.P. Alder, 1986. Hydroqen in Air Transportation: 
Feasibilitv Study for Zurich-Airport, Switzerland, 
EIR-Bericht Nr. 600. p.7. 

33. Computed from OECD statistics in OECD, 1989. Enerqy 
Balances of OECD Countries (Paris: OECD). 

34. Computed from OECD statistics on oil energy input and 
electricity output from oil generation equipment in 
OECD countries. OECD, 1989. Enerw balances of OECD 
countries (Paris: OECD). 

35. A reasonable value based on the range of possible 
efficiencies for current and near-term gas-fired power 
plants as outlined in T.H. Lee, 1987. "Combined Cycle 
Systems: Technology and  implication^,^ in T.H. Lee et 
al., eds. The Methane Aqe (Dordrecht: Kluwer 
Academic), a IIASA publication. 

36. The United Nations uses a lower figure (20%, converted 
into coal equivalents) as an average for all power 
plants, but new power plants built at the margin to 
produce electricity for electrolysis will be able to 
achieve higher efficiencies. UN data from United 
Nations, 1986. 1984 Enersy Statistics Yearbook, p. 
xviii. 

37. N. Nakicenovic, 1986. "Patterns of Change: 
Technological substitution and long waves in the 
United States," IIASA working paper WP-86-13. 

38. Electrolysis at nearly 100% efficiency is technically 
feasible, so an increase to 2.3 times 1988 efficiency 
is not unrealistic, assuming efficiency of 
liquefaction technologies will improve substantially 
as well. Note, however, that opportunities for 
efficiency improvement may be larger for oil-fired 



power plants (currently assumed at 37% efficiency) 
than for gas-fired plants (assumed at 50% efficiency 
today) . 

39. Oil releases 0.020256 g C per BTU of energy; natural 
gas releases 0.0144535 g C per BTU of energy; from 
J.A. Edmonds, W.B. Ashton, H.C. Cheng, and M. 
Steinberg, 1989. "A preliminary analysis of U.S. C02 
emissions reduction potential from energy conservation 
and the substitution of natural gas and coal in the 
period to 2010.11 DOE/NBB-0085. I have assumed that 
oil products (e.g. jet fuel) have about the same 
emissions per BTU as oil. 

40. C. Marchetti, 1988. "How to solve the C02 problem 
without tears." Plenary speaker, 7th World Hydrosen 
Conference, Moscow, Sept. 25-29. 

41. Includes oil, gas, coal, and electricity inputs to 
refineries divided by the total oil energy requirement 
for OECD countries. Different fuel sources corrected 
for different carbon contents (electricity corrected 
based on the current fuel mix and standard powerplant 
efficiency). Calculated from 1986 statistics for all 
OECD countries in OECD, 1988. Enersv Balances of OECD 
Countries (Paris: OECD) pg 4. 

42. United Nations Environment Programme, 1987. I1Montreal 
Protocol on Substances that Deplete the Ozone Layer: 
Final Act," done 16 September, 1987. 

43. in W.C. Clark, ed., 1982. Carbon Dioxide Review: 1982 
(New York: Oxford University Press), table 15, part 4. 

44. J. Ausubel, A. Grubler, and N. Nakicenovic, 1988. 
Incarbon Dioxide Emissions in a methane economy,I1 
Clim. Chanae Q:245-263. 

45. TASS, 1989. I1Planes will fly on natural gas, Soviet 
experts believe,11 19 January. 



46. In an advanced or ideal case, LNG may be slightly less 
efficient than LH2 since the energy density of LNG is 
higher than LH2 so the LNG plane may be slightly 
heavier. However, this may be offset by potential LNG 
advantages over LH2 such as a higher boiling point and 
presumably easier handling and storage 
characteristics. 

47. The energy required for this step depends on the 
design tradeoff between pressure and temperature. At 
higher pressures LNG does not have to be as cold. 
Based on the l i ~ i d  hydrogen cooling process which 
cools LH2 to 19 K in three steps I have computed the 
4 KWH requirement usin one stage and liquid nitrogen 8 to cool the LNG to 111 K. 

48. This represents a reasonable share of the total 1% per 
year efficiency improvement for the electrolysis 
process discussed earlier. Since LNG does not require 
electrolysis it is not appropriate to take the full 
efficiency increase. 

49. I would like to thank J. H. Ausubel, A. Grubler, N. 
Nakicenovic, and J. Van de Vate for their helpful 
comments on the model and this paper. This research 
was supported by a grant from the Center for 
International Studies at the Massachusetts Institute 
of Technology for three months of research at the 
International Institute for Applied Systems Analysis. 



Captions 

Figure 1: Summary of model s t r u c t u r e .  

Figure 2: Top curve: penet ra t ion  of l i q u i d  hydrogen a i r c r a f t  i n t o  

t h a t  por t ion  of t h e  world a i r  market (70%)  t h a t  is 

s u i t a b l e  f o r  l i q u i d  hydrogen a i r c r a f t .  Notice t h a t  it 

t a k e s  40 years  t o  p e n e t r a t e  from 10% of t h e  s u i t a b l e  

market (2010) t o  90% of t h e  market (2050 ) .  Bottom 

curve: penet ra t ion  of l i q u i d  hydrogen a i r c r a f t  i n t o  t h e  

e n t i r e  a i r  market. 

Figure 3: Changing world market s h a r e s  f o r  l i q u i d  hydrogen and 

conventional jet a i r c r a f t  based on t h e  p a t t e r n  of 

pene t ra t ion  summarized i n  f i g u r e  2. 

Figure 4: High demand scenar io  f o r  growth i n  world a i r  market 

measured i n  annual revenue ton-Ian performed. A s s u m e d  

5% growth pe r  year  t o  2075. 

Figure 5: Low demand scenar io  f o r  growth i n  world a i r  market 

measured i n  annual revenue ton-Ian performed. Assumed 

5% p e r  year  growth t o  2000 then  gradual  growth 

reduct ions  t o  0%. 

Figure 6: World a i r  t r a n s p o r t  demand i n  annual revenue ton-)an pe r  

c a p i t a  f o r  high and low demand scenar ios .  



Captions, cont. 

Table I: Summary of assumptions for high and low demand 

scenarios. 

Figure 7: Efficiency increases over time (1% per year) for world 

fleet of supersonic and subsonic liquid hydrogen 

aircraft and subsonic conventional jet aircraft. 

Historical efficiency statistics based on data for OECD 

countries; world efficiency may actually be lower. 

Figure 8: Changes in annual worldwide C02 emissions due to air 

transport (2000 = 0%) with the high demand scenario. 

Figure 9: Changes in annual worldwide C02 emissions due to air 

transport (2000 = 0%) with the low demand scenario. 

Table 11: Absolute levels of annual C02 emissions (in 1012 g C 

per year) under the different scenarios shown in 

figures 8 and 9. 
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Table 1 

Hieh Demand Scenario 

Unrestricted growth (5% per year) from 1989 to 2075 

Liquid hydrogen aircraft diffuse into 70% of the market with At of 40 years 

Half of liquid hydrogen aircraft are supersonic 

Aircraft efficiency improves 190 per year 

Efficiency of electrolysis system improves 1% per year 

Low Demand Scenario 

Unrestricted growth (5% per year) from 1989 to 2000 then gradual growth reduction 
to 0%. 

Liquid hydrogen aircraft diffuse into 7090 of the market with b t  of 40 years 

All liquid hydrogen aircraft are  subsonic 

Aircraft efficiency improves 190 per year 

Efficiency of electrolysis system improves 190 per year 



Table I1 

Emissions of C02 under different scenarios 

(in 1012 g C per year) 

Scenario 

High Demand: 
oil elec. w/hyrdol. 
NG elec. w/hydrol. 
nuclear/renewable 
no LH2 aircraft 
LNG aircraft 

Low Demand: 
oil elec. w/hyrdol. 
NG elec. w/hydrol . 
nuclear/renewable 
no LH2 aircraft 
LNG aircraft 

C02 emissions (in 1012 g C per yr.) 

2000 

200 
19 0 
180 
190 
190 

190 
190 
180 
19 0 
19 0 

2 02 5 

700 
540 
360 
450 
490 

420 
340 
260 
300 
350 

2050 

2200 
1400 
480 

1000 
1300 

450 
300 
130 
230 
360 

2075 

4900 
3100 
1000 
2600 
3400 

300 
200 
85 

17 0 
280 


