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Foreword 

The authors introduce a new method for the analytical regulator design problem. The 
method is based on a theory of weak asymptotic stability for differential inclusions and 
yields some new algorithmic techniques. 

Alexander B. Kurzhanski 
Chairman 
System and Decision Sciences Program 





A New Approach to the Regulator 
Design Problem 

Vladimir Bushenkov and Georgi Smirnov 

The most widespread modern approach to the regulator design problem is based on 
an analytical solution to  the optimal control synthesis problem. Acceptable results in this 
direction have been obtained only for linear control systems in the following cases. The 
linear time-optimal control problem was solved by Pontryagin et al. [I] with the help of 
the Pontryagin maximum principle and the linear infinite horizon control problem with 
a quadratic functional was investigated by Letov [2] by means of calculus of variations. 
These methods can be used under very restrictive assumptions and give the appointed 
transient characteristics only. We propose a new approach to  the regulator design problem 
wich is based on the weak asymptotic stability theory for differential inclusions developed 
by Smirnov [3]. Our method allows the problem to  be solved for many controlled system. 
It presents a possibility for designing regulators with various transient characteristics and 
for choosing the most suitable one. Moreover the method admits a very nice numerical 
realization. 

The purpose of our paper is to  apply the main ideas and results from [3] to  the regulator 
design problem and emphasize the most important parts of a regulator design algorithm 
which has been developed by the first author of this paper. 

1. The regulator design problem. Let us consider the controlled system 

We assume that f : R" x U 4 Rn is a continuous function differentiable with respect to  
x and that 1 v, f (x ,u ) l  5 L for all ( x , u )  E Rn x U. Let f ( x , U )  c Rn be a convex set for 
all x E Rn, and let uo E U be such that f (0, uo) = 0. Our aim is to  find a map u : Rn 4 U 
defined for some neighbourhood of the origin satisfying the following conditions: 

2. equilibrium point x = 0 of the differential equation 

is asymptotically stable. 

The function u(x), in general is not continuous, and therefore we define asymptotic 
stability following Filippov [4]. Let 4 : Rn 4 Rn be a bounded function satisfying 
$(0) = 0, and let : R" 4 Rn be the set-valued map defined by 



where Bn is a unit ball in Rn centered at the origin, co is a convex hull and cl means 
closure. Obviously, the set-valued map has nonempty closed convex images and closed 
graph. The equilibrium point x  = 0  of the differential equation 

is called asymptotically stable if for any c > 0  there exists 6 > 0  such that for all xo E 6Bn 
every generalized solution to the differential equation ( 3 ) ,  i.e. a solution of the differential 
inclusion 

x E @ ( x ) ,  ( 4 )  

with x ( 0 )  = so exists for t  E [0, oo[ and satisfies the conditions 

Ix(t)l < c for all t  E [0, oo[ and l i m x ( t )  = 0  when t  -t oo. 

Solutions of the differential inclusion (4) are regarded to be locally absolutly continuous 
functions satisfying ( 4 )  almost everywhere. 

2. The scheme of regulator design. The method of solving the regulator design 
problem is as follows. First of all we investigate the "first approximation" of the system 
( I ) ,  i.e. the linear controlled system 

where C  = vt f ( 0 ,  u o )  is ( n  x n )  matrix and Ii' is a closed convex cone spanned by 
the set f ( 0 ,  U). For controlled system ( 5 )  we derive necessary and sufficient conditions 
guaranteeing the existence of a norm V ( x )  in Rn and a number 8 > 0  satisfying the 
following condition: 

for all x  E Rn there exists a vector v  E C x  + I( such that 

where D V ( x ) ( v )  is a directional derivative of the convex function V .  

Then the map u ( x )  will be defined to make V ( x )  a Lyapunov function for the differ- 
ential equation (2 ) .  This will imply asymptotic stability of the equilibrium point x  = 0. 
The proof of the existence of the function V ( x )  is constructive and is the base for the 
numerical regulator design algorithm. 

3. Regulator design for the linear controlled system (5) .  We now consider 
two linear differential equations 

x = C x ,  ( 6 )  

where C* is a conjugate matrix. We shall say that ~ [ f ]  is the Lyapunov exponent [5] of 
a continuous function f  : R -t Rn if 

We denote by P the set consisting of all points x  E Rn such that there exists at least 
one trajectory of ( 5 )  starting at x  that has a positive Lyapunov exponent. Let A be the 
subspace consisting of all points x  E Rn such that a solution to  the equation ( 6 )  with 



the initial condition x ( 0 )  = x  has positive Lyapunov exponent, let A+ be the subspace 
consisting of all points x  E Rn such that  a solution to  (7) with the initial condition 
x ( 0 )  = x  has a nonnegative Lyapunov exponent. 

I t  is easy t o  check that P is a convex cone and that  A' = A+. 
The next result contains nessessary and sufficient conditions of solvability for the 

regulator design problem for the linear system (5). We denote by Ii" polar cone defined 

by 
I f *  = { x *  E Rn 1 ( x ,  x * )  > 0 ,  x  E I f ) .  

Theorem 1. The following conditions are equivalent: 

2 .  the matrix C* has neither eigenvectors corresponding t o  nonegative eigenvalues 
contained in the cone I f *  nor proper invariant subspaces contained in the subspace 
A+ n I f *  n - I f * ,  

3. there exist a number 8  > 0  and a norm V ( x )  in Rn such that for all x  E Rn a vector 
v E C x  + I f  satisfying D V ( x ) ( v )  + 8 V ( x )  5 0  can be found. 

We now present the main idea of the proof of implication 2-3 since it is the base of 
the numerical regulator design algorithm. For the sake of simplicity we shall consider the 
most important case when the matrix C* has no proper invariant subspaces contained in 
the subspace I f *  n - Ii". 

For all real X which are not eigenvalues of the matrix C we define convex cones 

Let an+' c Rn be a simplex containing the origin as its interior point. We denote by 
x i ,  i = 0 , .  . . , n the vertices of the simplex. Using Brauer fixed point theorem one can 
prove the following result. 

Proposition. Assume that  the matrix C* has neither eigenvectors corresponding t o  non- 
negative eigenvalues contained in the cone Ii" nor proper invariant subspaces contained 
in the subspace I(* n - I f * .  Then there exist a number X < 0  and vectors 

satisfying the equality 
X ;  = y; + bi.  

Obviously, for every point yi there exists a number m; such that  

From the definition of the cones Lm, ( A ; )  we derive the existence of a finite set of nonzero 
vectors { y ~ ) ~ ; l  which satisfies the following inclusions: 



. . . 
yyi-l + X y m t  E cyy1 + K ,  

ym' = yj. 

Let M be a convex hull of the points 

b;, i  = 0 , .  . . , n ;  z> (2 /JXJ)mi -mym,  rn = 1, .  . . ,m;,i  = 0 , .  . . , n .  (9) 

It is easy to see that the convex compact set M contains the origin as an interior 
point. We now prove that the Minkowski function of the set M appears to be a desired 
norm. For all i = 0 , .  . . , n the vector vf = Xzf belongs to the set Czf + K and satisfies 
the inclusion 

zf + [XI-'v! = 0  E intM, i = 0 , .  . . , n .  

By intM we denote an interior of M.  For all points z y ,  m > 1  we consider vectors 
v;" = (112) JXlzy + Xzy . Obviously, we have inclusions v;" E Czm + K and 

zm + (XJ-lvm = ( 1 / 2 ) z T 1  E intM 

Since yBn C an+'(y > 0 ) ,  we conclude that ( y / 2 ) B n  c M. Let v; = Cb; - 4(Cb;lb;. Then 
v; E Cb;+ K and 

b; + 1/(41Cb;l)v, E ( 1 / 4 ) B ,  c intM. 

We shall denote a boundary of the set M by bdM. From the above consideration we 
obtain the existence of numbers c > 0  and 6  €]O,1[ satisfying the following condition: for 
every point x  E bdM there exists a vector v  E C x  + K such that 

Let V ( x )  be the Minkowski function of the set M . If x  E bdM and a vector v  E C x + K  
is chosen according to the condition (10)  then 

D V ( x ) ( v )  5 [ V ( x  + cv)  - V ( x ) ] / c  5 -(1 - 6 ) / c .  

Since functions V ( . )  and D V ( x ) ( . )  are positively homogeneous, for any x  E Rn there 
exists a vector v  E C x  + Ii' such that 

where 9 = ( 1  - 6 ) / ~  
Inclusion (10)  or inequality (11)  actually give the solution to the regulator design 

problem in the case of the linear controlled system (5) (see the next Section). 

4. Regu la to r  design for  general  control led s y s t e m  (1).  In this case we obtain 
sufficient conditions of solvability for the regulator design problem. 

T h e o r e m  2. Assume that the matrix C* has neither eigenvectors corresponding to non- 
negative eigenvalues contained in the cone K* nor proper invariant subspaces contained 
in the subspace A+ n K* n -K*.  Then there exist a neighborhood fl of the origin and a 



map u : R -+ U which satisfies the following conditions: u(0) = uo and the equilibrium 
point x = 0 of the differential equation 

is asymptotically stable. 

The main idea of the proof is as follows. Suppose that numbers a > 0, 6 E]O,l[ and 
a norm V(x) are such that for any x E bdM ( M  = {xlV(x) 5 1) )  there exists a vector 
v E Cx  + K satisfying x + av E 6 M  (see the previous Section). By d(v, F) we shall denote 
a distance between a point v and a set F. For any vo E Cxo + I< the equality 

lim A-'d(Avo, f (Ax, U)) = 0, 
X10, x--+I0 

is fulfilled. This implies that if a > 0 is sufficiently small then for all x satisfying inequality 
V(x) < a there exists v E f (x, U) such that x + av E ?V(X)  M. 

Let us consider the set-valued maps 

1 + 6  
G(x) = {V E Rn I a: + av E -V(x)A4), H(x)  = G(x) n f (x, U), 2 

defined on the set R = {xlV(x) < a ) .  We take now any single-valued map 4(x) E H(x).  
Since 4(O) = 0 there exists a map u : R -+ U satisfying the conditions: u(0) = uo and 
4(x) = f (x, u(x)).  It is easy to prove that 

where 0 = y e .  The last inequality means that the equilibriun point x = 0 of differential 
equation (2) is asymptotically stable. 

Further details of this theory can be found in [3]. 

5 .  T h e  main  s teps  of t h e  numerical  algori thm. We now describe the most 
important steps of the numerical regulator design algorithm. The algorithm consists of 
two parts: the first one is a design of the Lyapunov function V(x) and the second is 
choosing of control u(x) for any current state x. For the sake of simplicity we suppose 
that the set U from (1) is a polyhedron, i.e. U = co{ul, 212, . . . , u,). First of all we have 
to find the "first approximation'' (5) for controlled system (1) at  the equilibrium point 
x = 0. Computation of the matrix C is not difficult. The cone I< is spanned by the 
vectors f (0, uk),  k = 1 , .  . . , r .  For further computations we need to have the cone I< as 
an intersection of halfspaces. To obtain such representation we can exclude the variables 
vk, k = 1, .  . . , r from the system 

vk 2 0 ,  k =  1, ..., r 

by first using the Gauss algorithm for equalities and then "rolling up" the system of linear 
inequalities following Chernikov [6]. As a result we obtain the cone Ii' in the form 

where W is a matrix. 



According to the previous consideration we have to find for any simplex vertex x; a 
set of vectors {y!)r;l satisfying relations (8). Using representation (12) we rewrite the 
first and the second inclusions from (8) as 

(13) 

Wyf + W(XE- C)y? 5 0. 

If we add to the system (13) the inequality Wy? 5 W x ;  and find any admissible solution 
we then obtain a desired set {yf)r;l for m; = 2. If this system is incompatible, we 
consider a similar system but for m; = 3, etc. After a finite number of steps we obtain 
a compatible system. To find an admissible solution of the linear inequality system we 
use the first part of the simplex-method. After computation of the sets {y ;k )~? ,  for all 
vertices x; of the simplex an+' we obtain the polyhedron M as a convex hull of the points 
(9). The set (9) can contain another points besides the vertices of M .  We exclude such 
points using the simplex-method and obtain 

where t; are the vertices of M .  
The value V ( x )  of the Minkowski function of the polyhedron M at the point x is equal 

to the optimal value of the functional in the following linear programming problem 

p1 + . + p, + min 

Taking the proof of theorem 2 into account we can choose the control u(x) at  the point x 
from the folloving condition 

V ( x  + cr j (x, u(x)) = min V ( x  + cr j (x, u)). 
uEU 

The parameter cr > 0 is defined experimentally for each given problem. This method of 
u(x) calculation can be realized as follows. Let G = co{x + o j (x, u;) 1 i = 1, .  . . , r)  (ui 
are the vertices of M ) .  The solution 6 of the optimization problem 

can be represented as 6 = C:=l t,(x + cr j (x, u;)), where C:=, t; = 1, t; 2 0, i = 1,. . . , r. 
To determine values t;, i = 1,. . . , r we consider the linear programming problem 

p1 + - - -  + p, + min 

plzl + ' ' + P S ~ S  = (1 ( X + af (x, ~ 1 ) )  + . , . + [T(X + Q f (x, u,)), 
(1 +...+tr = 1, 

p , Z O ,  i = l ,  ..., s, ( , > O ,  ; = I ,  ..., r. 
Then the control u(x) E U is calculated from the equation .i, = ( x  + cr j(x, u(x)). 



The above algorithms have been tested. We present one example below. 

6. Example. The controlled system which describes a motion of an oscillator sub- 
jected to a unilateral force 

il = -x2 + U, 

2 2  = 21, (14) 

O S u S 1 .  

is considered. The polyhedron with the vertices (1,0), (0,1),(-1,-1) is taken as a3. The 
parameter X  is chosen -2.0 and -0.5. In the first (second) case the set { y ; k ) ~ ~ l  for the first 
vertex of the simplex a3 is found when ml = 7 (ml = 4), for the second vertex when 
m2 = 4 (m2 = 2) and for the third vertex when m3 = 7 (m3 = 5). As the result 21 
(14) points of the set (9) are obtained. Only 8 (5) of them turn out to be the vertices of 
the polyhedron M. Examples of trajectories for the case X  = -2 are in Fig. 1 and for 
X  = -0.5 in Fig. 2. Numerical integration of the differential equation 

is fulfilled following the Euler scheme with the step At = 0.1. The markers are put on the 
trajectories after every ten steps of integration. 

The parameter X  influences the duration of the transient. If we allow [ X I  to drop, the 
duration of the transient grows. With the help of markers we can see that when X  = -2 
(Fig. 1) the regulator is "fast" and when X  = -0.5 (Fig. 2) the regulator is "slow" but it 
spends control resources more carefully and gives nonoscillating trajectories. 

7. Concluding remarks. In this paper we have discussed a new approach to 
the regulator design problem. This is a computational approach which uses only linear 
programming techniques. The algorithm described above contains many parameters. 
We can dispose of these parameters as needed through some optimization methods or 
heuristically to  obtain desired result. These possibilities allow us to  expect that our 
method will be a useful tool for regulator design. 
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