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Foreword 

This paper continues the investigations in SDS on observability issues motivated by environ- 
mental monitoring and related problems. Here the author introduces a specific class of scanning 
sensors that ensure solvability of the problem and can further lead to numerically robust tech- 
niques. 
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Observability of Parabolic Systems under Scanning 

Sensors 

A.Yu. Khapalov 

1. Introduction , Statement of Problem. 

Let 0 be an open bounded domain of an n-dimensional Euclidean space Rn with sufficiently 

smooth boundary ao. Consider the following homogeneous problem for the parabolic equation 

4 5  t )  = 0, t E ao, t  E T ,  

with an unknown initial condition uo(z) .  

Here A is the infinitesimal generator of a strongly continuous semigroup S(t)(t > 0)  in the 

Hilbert space L2(o)  : 

n n 

vCC:< C aij (z)&&, & E R, v = const > 0, 
i=l i, j=l 

We will treat the solution of the initial-boundary value problem ( 1 . 1 )  as a generalized solution 
0190 

[15, 161 from the Banach space V 2  (Q) consisting of all elements of the Sobolev space H;"(Q) 



that are continuous in t in the norm of L2(Q) ,  although most results of this paper require further 

smoothness for solutions to the system (1.1), as it will be specified below. 

Below we will use the standard notation for the Sobolev spaces [22 , 15 , 161. 

Let i ( t ) ,  t E T denote a spatial trajectory in the domain 52 ( i ( t )  E 52) , i ( t )  is measurable 

on T. 

Assume that the available measurement data are defined by a scanning sensor (in general, 

it might be fixed, so as i ( t )  G 2 ) 

where y ( t ) ,  t E T is a scalar observation data, C(t)  is an unknown but bounded measurement 

error, 

C ( - )  E = , = C B, (1.3) 

with the set 9 given and a Banach space B to  be suitably selected below. 

In the case of the singleton set =, the equation (1.2) is written as 

y ( t )  = u ( i ( t ) ,  t ) ,  t E T.  (1.4)  

The traditional definition of observability for the parabolic system (1.1) (which derives from 

the observability theory for ordinary differential equations ) says [20 ,2 ,4 ]  that the system (1.1) ,  

(1.4) is observable if an initial ( or final, which is the same ) state of the system can be uniquely 

determined from the observation y ( t )  over the time interval (O,8). 

The infinite - dimensional nature of distributed - parameter systems generates various defi- 

nitions of observability that are determined by the topological structure of the problem (1.1)  - 

(1.3). 

The system described by (1.1) and (1.4) is said. [20, 2 , 4 ]  to  be exactly observable (or contin- 

uously observable) at  final t ime 8 if 

for any solution u ( x ,  t )  of the system (1.1). 

The latter definition can also be formulated in an equivalent form in terms of informational 

domains [ l l ] :  

Definition 1.1 [ lo ,  121. The informational domain U ( 8 ,  y ( . ) )  of states u ( x ,  8 )  of the systcrn 

(1.1),  (1.2) is the set of all those functions u ( x ,  8 )  for each of which there exists a pair 



with the second component satisfying (1.3) and uE(-)  E L2(S1) that, in turn, generates due to 

(1.1),  (1.2) a pair { u * ( z , t ) ,  y*( t ) )  satisfying the equalities 

Definition 1.2 [13 , 141 .The system (1.1) - (1.3) is said to be strongly observable if the set 

U ( 0 ,  y ( - ) )  for this problem under 

is a bounded subset of L 2 ( R ) ,  regardless of the measurement y(.). 

Let A;, w;(.) ( i  = 1,2, .  . .) denote sequences of eigenvalues and respective orthonormalized 

(in the norm of L 2 ( R ) )  eigenfunctions for the spectral problem 

so that 

Denote by L?)(Q) the subspace of L 2 ( R )  spanned by the functions 

w;(- ) ,  i = 1, 2 , . .  . , k .  

Definition 1.9 [13, 14].The system (1.1) - (1.3) is said to be weakly observable if all the 

projections u ( ~ ) ( o ,  y( . )) ,  k  = 1,2, .  . . of the set U ( 8 ,  y(.))  on the sequence of finite-dimensional 

subspaces L F ) ( R )  are bounded, regardless of the measurement y(.). 

We should stress that Definition 1.3 is given in the relation to the basis in L 2 ( R )  consisting 

of eigenfunctions associated with the observed system in question. However, in general, the 

specified property of sets U ( 8 ,  y(.))  may not occur with respect to another basis. 

Consider a sequence of functions 

& ( t )  = e-Aitw;(2(t))  , t E T ,  i = 1 ,2 , .  . . 

and denote by B; the closed subspace of B spanned by the functions 



Finally let 

d; = inf 1 ( )  - ( )  1 ,  i = 1,2,.  . .. 
4(.)EBi 

Then one can observe that the system (1.1) - (1.3) is weakly observable if and only if all of the 

values d; (i = 1,2,.  . .) are positive. Furthermore, if the latter are such that 

2 e x ~ ( ~ f A i 0 )  < 00, 

i=l 

then the system (1.1) - (1.3) is strongly observable. 

In case of stationary sensors ( 2(t) 3 2 , t  E T) the problem (1.6) turns out to be the 

one of exponential sequences which was investigated in [17, 61 and results were applied to the 

controllabilty and observability theory by many authors [5, 6,20, 2,4,  91. 

It is known that if dimensionality of spatial variable x is higher than 1, then 

in which case all the values d; turn to be 0 .The latter means that there does not exist any 

stationary sensor that can make the system (1.1) - (1.3) weakly or strongly observable under 

n 2 2. 

The main objective of present paper is to present a method (which does not depend upon 

dimensionality of x ) of constructing measurement trajectories 2(t) in (1.2) that can provide both 

weak and strong observability for the system (1.1) - (1.3). We assume that disturbances I(.) 

in the observation equation (1.2) are restricted in the norm of the spaces C[s, 01 or La(&, 8) 

with an arbitrary (but preassigned ) value s > 0. 

Some results on existence of such a type of scanning sensors under B = C[s, 81 have been 

presented in [13, 141. 

Another approach to the solution of observability problems with scanning sensors was con- 

sidered in [18] for lumped - parameter systems. 

In the last section of the paper we also discuss the case of disturbances from L2(&, 8) for 

the one-dimensional parabolic equation. 

Section 3 deals with the application of the above method to discrete - time observability 

problem with scanning sensor. A similar problem in case of stationary sensor and 0 = m has 

been studied in [9]. 

Remark 1.1. To ensure the correctness of the value u(2(t), t) we will require a proper smooth- 

ness of solutions to the mixed problem (1.1). 

If the dimension n of the spatial variable x is equal to 1, due to embedding theorems [22, 

15, 161 we have 



In case of n = 2,3 we will assume in addition that the coefficients of A and the boundary 

8 R  are sufficiently regular and 

u(. ,  .) E H ~ J ( Q ) .  

Then again due to  embedding theorems [22, 15, 161 

In both cases the superposition u(P(t) ,  t )  , t  E ( c ,  8 )  will be measurable and bounded [2 1, 161. 

Finally , assuming that the coefficients of the elliptic operator A and the boundary 8 R  

are such that the system (1.1) admits a unique classical solution, one can find (taking into 

account the asymptotics of eigenvalues Ai) a series of systems of type (1.1) such that an arbitrary 

generalized solution to  those satisfies 

for any c  E ( 0 , 8 ) .  The latters give us a class of parabolic systems with an arbitrary dimension 

of the spatial variable z ,  which admits scanning sensors (1.2). 

For the sake of simplicity we will assume below that all the solutions u ( z ,  t )  to the system 

(1.1) satisfy (1 .7)  ( for general situation see Remark 4.3 ), in particular 

Remark 1.2. Due to  the generalized maximum principle for solutions of the initial - boundary 

value problem (1.1) [15] we have an estimate 

vrai max I u ( z ,  t l )  I 2 M vrai max I u ( z ,  tl1) 1, tl1 > t1 2 0 ,  
z E n  z E n  

M = const. 

According to Remark 1.1 this estimate will be used below in the form (without loss of 

generality we can put M = 1 )  [7] : 

max Iu ( z , t l )  12 max I u (z , t l1)  I, t N ~ t 1 2 c  > 0 .  
z E n  zECi 



2. Observability under Disturbances from C[E, 81 and Lm(., 8). 

Let E be an arbitrary positive number from T .  Consider the initial - boundary value problem 

( 1 . 1 )  under the measurement data y ( t )  taken over subinterval T, = ( E ,  0 )  of the time interval 

T :  

~ ( t )  = u ( W ,  t )  + C(t ) ,  t E Tc. ( 2 . 1 )  

The main results of this section are derived under assumption that disturbances C ( - )  are 

subjected to the restriction 

In the sequel we will extend them to the case of LM(Tc). 

It is clear that if some trajectory 2( t ) ,  t E T makes the system (1.1), ( 2 . 1 ) ,  ( 2 . 2 )  be observable 

then it does the same for the system (1.1) - (1.3). 

It is well-known that any solution to problem (1.1) admits a unique representation as 

where 

Due to Remark 1.1 we assume that the series (2.3) converges in the norm C(!? x [ E ,  d l )  for 

all E > 0. 

Let us select in the interval Tc an arbitrary monotone sequence of points {ti}zo such that 

Denote 

Assume first that the unknown solution u(x, t )  is generated by initial condition uo(x) from 

L Y ) ( ~ )  , e.g 

where 



Take t i  from rl and denote by iil) the solution of the optimization problem 

i b )  = arg {max I w l ( z )  1 I z E a}. 
Consider an arbitrary measurement trajectory 2 ( t )  such that at time t i  it passes through a 

point it1) : 

1 - - 1  
- Z(1). 

Then , if any element u * ( - ,  8 )  belongs to  ~ ( 8 ,  y ( - ) )  n L ~ ) ( R )  so that 

u*(z,  t )  = e-A1t u&wl ( z ) ,  

one can obtain 

~ ( t : )  = u ( W : ) , t : )  + a t : )  . ( 2 . 4 )  

We note next that due to linearity of equations (1 .1 ) ,  ( 2 . 1 )  with respect to u ( . ,  -) to prove 

observability ( weak or strong ) of the system ( 1 . 1 ) ,  (2 .1 ) ,  (2 .2 )  it is sufficient to consider the 

case when the information domain U ( 8 ,  y ( - ) )  for the latter is "largest" possible , so as 

y ( t )  = 0, t  E T,. 

Thus , for any element u*( . ,  8 )  of the set U ( 8 ,  {0}) n L ~ ) ( R )  from ( 2 . 2 )  - ( 2 . 4 )  the following 

estimate is fulfilled: 

This gives 

since 

Let us proceed now to the general case. Let u( . ,  8 )  be an element of U ( 8 ,  y(.)) n L ~ ) ( R )  (if 

the latter is non-empty ) and hence 

Denote by i P k  the set 



@ k  = {v(') 1 1 v )  2 )  1 v ( . )  E L ~ ) ( R ) I .  

We note next that @k is also a bounded finite - dimensional subset of C(Q).  This enables 

us to associate with it for any positive 7 (whose dependence upon k will be specified below) the 

finite 7-net 

Jk 
@; = {vj(.)Ij=l. 

Thus for any element v(.) E @ k  there exists an integer j = j, 5 Jk such that 

The maximum principle (1.8) (applied for the set a k )  turns the 7-net (due to finite 

dimensionality of the latter (1.8) can be extended for [O, 81) into the (also finite) 7-net 

a:(-) = {ui(z,t) ,  z E a , t  E [O,8] 

in the space C ( 0  x [O,8]) for the set all of the possible solutions u(z , t )  generated at instant 

t = O by the set @k C C(0) .  

Choosing in r k  an arbitrary sequence of instants of time t i  , j = 1,2, . . . Jk , so as 

we introduce a series of optimization problems 

Let j = I , .  . . , Jk denote a sequence of solutions to (2.8) . 
Let i ( t )  - 2*(t) (t E T,) be an arbitrary spatial curve in Sl that passes a t  instants t i  through 

spatial points 2ik), j = 1,. . . , Jk. 

Now, if any element u*(., 8) belongs to U(8, y(-)) n Lf1(Sl) (so as (2.5) is valid) , then from 

(2.1) it follows that 

y(t{) = u(i*(ti) ,  t i )  + ((ti), j = 1,. . . , J k .  (2.9) 

Let a denote the norm in the space Lz(R) of function u*(-,t) taken at t = 0: 

a = I I  u*(., 0) l l ~ ~ ( i - 2 )  . 
Select an element u r  (-, .) E a;(-) so that 

I a-'u*(z, t) - $(z, t) I 5 7 for z E R , t E [o, 01. 



Thus we have 

0 u * ( . , t i l  Ilc(q 5 a II u i ( . ,  $1 Ilc(n) +o7. (2.11) 

On the other hand (using (2.8) and again (2.10)), 

. . 
1 ( )  = a ( , )  5 1  u * ( * t , t )  1 + a7. (2.12) 

Assuming ("the worst case ") y ( t )  = 0 ,  t  E T, and combining (2.2) , (2.9) - (2.12) we obtain 

Now note that 

= u * ~ ( z ,  511 u*(., t t )  (meas R ) .  (2.14) 

Combining (2.13) and (2.14) we obtain 

k k 

(meas R)- l l2( (C e-lAit:' < u*(., 0 ) ,  wi(.) >2)112 - 2 7 ( C  < ut(.,O), w;(.) >2)112 5 1. (2.15) 
i=l i= 1 

Assume now that the value of 7 depends upon k.  The latter affects only the number of 

elements in the 7-net a;(.). We will choose 7 = 7 k  from the following condition 

which in its turn yields 

1 
7 k  = Pk - ( m e a . s ~ ) - ~ / ~ e - ' ~ ~ ~  2 with 0 < Pk < 1. 

Taking into account the inequality 

and combining (2.15) , (2.16) we finally obtain 

k 
1 II u*(.,tk) Ils(n) < (C e-lhtr  < u*(., o ) ,  w;(.) >2)1 /2  5 (meas o) ' l2  - I - B y  (2.17) 

i=l 

which is valid for all k = 1, ... . 
The estimate (2.17) allows us to construct measurement trajectories making the system ( l . l ) ,  

(2.1), (2.2) be both weakly and strongly observable. 



Indeed , let us introduce in the domain fl a class of spatial curves X ( P )  to be continuous 

in the time interval [O, 81, excluding perhaps a single instant of time, as follows. 

Procedure 2.1. Let P be an arbitrary number from the interval ( 0 , l ) .  For a chosen monotone 

sequence { t k ) g l  C Te, the relation (2.16) defines the values 

7 k  = 7k(P) ,  Jk = Jk(P), k  = 1 , 2 . .  . . 

Then, selecting due to  (2.7)  an arbitrary monotone sequence of instants of time 

t i ,  k =  1 ,... ; j =  1 ,... J k ( P ) ,  

we can obtain from (2.8)  the respective sequence of spatial points 

2 ,  k = 1 , .  . . ; j  = 1 , 2 . .  . Jk(P) .  

It is clear that there exists a limit 

lim tk = a < 8.  
k - r w  

Definition 2.1. We will say that an arbitrary spatial curve f * ( t ) ,  t  E [ E ,  81 in the domain R 

belongs to the class X ( P )  if it is continuous everywhere in [ E ,  81 except possibly at the instant 

t  = a and such that 

2 * ( 4 )  = i i k ) ,  k = 1 , 2 , .  . .,; j = I , .  . ., Jk(P) ,  

where the sequence of pairs { t i ,  2 6 ) )  is selected according to  Procedure 2.1. 

Thus we have proved 

Lemma 2.1. Let f * ( t )  be an arbitrary measurement trajectory from the class X ( P )  (0  < 
/3 < 1 ) and let the set U ( 8 ,  y(-)) ~ L ? ) ( R )  for the system (1.1),(2.1),(2.2) be non-empty. Then 

to assure that the estimate (2.17) is uniform (over k = 1, . . .) it is sufficient for each k = 1 ,  . . . 
to take into account measurement data (2.1)  taken only over the time interval r k .  

We may reformulate Lemma 2.1 in the following way : 

(k) to  solve observability problem ( in weak or strong sence ) in an arbitrary subspace L, (0)  

with the estimate (2.17) it is sufficient if a measurement curve would only pass through a finite 

number of spatial points specified according to Procedure 2.1 in advance. 

This result immediately leads to  

Theorem 2.1. An arbitrary measurement trajectory f * ( t )  from the class X ( P )  with 0 < 

p < 1 makes the system (1 .1) ,  (2 .1) ,  (2.2)  strongly observable. 



Proof. Let u*( . ,  8 )  be an element of U ( 8 ,  y ( . ) ) ,  so as 

We assume again 

y ( t ) O  , ~ E T , .  

Take any positive constant 6 and divide the sum on the right-hand side of (2.19) into two 

parts 

u * ( z ,  t )  = u;V*(z, t )  + v;;1*(z, t ) ,  

where 

in such a way that 

II v;;1*(.,8) I I L ~ ( ~ ) S  6, 

and ,besides, due to (2 .3)  

II v;;r*(i*(.),  -1 l lc[c,e] S  6. 

We note next that (2.21) implies 

where U6(8 ,  ( 0 ) )  stands for the informational domain for problem (1 .1) ,  (2 .1 )  under the con- 

straint 

Consequently lemma 2.1 gives us the estimate 

1 + 6  I * 0 )  L 2 (  < (meas R)l/'- 1  - p '  

Finally , combining estimate (2.20) with the latter , one can obtain 

The following assertion allows us to  make a conclusion about weak observability for the 

system (1.1) ,  (2.1) ,  (2.2)  at the initial instant of time. 



Corollary 2.1. Let 2*( t )  be an arbitrary measurement trajectory from the class X ( P )  , 0 < 

/3 < 1 . If U* (., 8 )  belongs to U ( 8 ,  { 0 ) ) ,  then 

,Xi0 
< u*(., 0 ) ,  ~ i ( . )  > < (meas - 

1 - P 9  i =  1 7 * * -  

Taking into account the continuity of the curves from the class X ( P )  , we obtain 

Theorem 2.2. An arbitrary measurement trajectory i* ( t )  from the class X ( P )  with 

0 < p < 1 makes the system (1.1), (2.1) under the constraint 

strongly observable. 

Indeed, with disturbances from L,(T,), at each instant 4 ( k  = 1 , 2 . .  . ; j = I , .  . . , Jk) 
one can find such a neighborhood of the latter that the estimate (2.17) (or its approximation ) 

is valid for the entire corresponding neighborhood. 

Corollary 2.2. An arbitrary measurement trajectory i ( t ) ,  t E T such that its restriction 

on T, belongs the class X ( P )  ( 0  < P < 0 ) makes the system (1.1), (1.4) observable . 
Remark 2.1. F'rom Corollary 2.1 it follows that we can obtain estimates for values d; (i = 

1,2 , .  . . , see(l.6)) when B = C[E, 81 or L,(T,) and 

Indeed , combining inequalities (2.24) with formula (2.5) we obtain 

d; = inf 1) e - x i t w i ( ~ ( t ) )  - $(.) I I B  2 (meas 0)-'12(1 - p)e- l ie ,  i = 1 ,2 , .  . . . 
+(.)EBi 

3. Discrete - Time Observability under Scanning Sensors. 

Consider now the initial-boundary value problem (1.1) under discrete - time measurement data 

{ y ( t ; ) ) g l  that are available through the observation equation 

Here {ti);OO=l(t; E T,) is a monotone sequence of instants of time ; the spatial points 

xi ( z i  E R)  describe the location of scanning sensor at the instants ti(i = 1, .  . .). 
Assume that disturbances (;. are subjected to  the constraint 



Definitions of informational domain and observability can be easily adjusted for this class of 

observed systems. 

L e m m a  3.1 . Let the sequence of pairs {ti ,zi)gl in (3.1) be selected according to  Proce- 

dure 2.1. Then the system (1.1), (3.1), (3.2) will be strongly observable and the estimate 

will be valid for all those solutions u*(z,t) to the system (1.1) that satisfy (3.1), (3.2). 

The proof of this lemma immediately follows from the theorem 2.1. 

The following assertion demonstrates a principal application of Procedure 2.1. 

Theo rem 3.1 . Among all sequences of pairs that satisfy Procedure 2.1 there is a subclass 

of those such that any element of the latter, as well as its restriction on an arbitrary time interval 

(a, b) c T, (regardless of the duration), makes the system (1.1), (3.1), (3.2) strongly observable 

and the estimate (3.3) holds. 

ProojThe idea of the proof is based on the fact that results of the previous section exploit 

measurement data taken only at the countable set of instants of time. Furthermore,these instants 

can be allocated arbitrarily in the interval T,. 

Indeed, let {ti)gl be an arbitrary subset of the time interval T, that is dense in the latter 

and let {bj)Z1, bj > 0 denote an arbitrary sequence such that 

lim 6j = 0. 
j+m 

Now for each interval (ti - bj, ti) nT, we can select a sequence of pairs according to 

Procedure 2.1 

it:, .:,1;"=1 (3.4) 

with /3 > 0 given. 

In addition we assume that the sequence {tk) is monotone and 

k . . lim t . .  = ti ; z , ~  = 1, .... 
k--roo '3 

We note next that countability of the set of indices i, j, k = 1,2 . . . allows one to select all 

of the instants t;kj t o  be distinct. This means that by an appropriate relabelling, we can obtain 

an increasing sequence of instants of time (dense in T,) 

and a corresponding (due to (3.4)) sequence of points {zm)+z.  



The sequence of pairs 

ensures strong observability for the system (1.1), (3.1), (3.2) , as well as its restriction on an 

arbitrary time interval (a, b)  E T,. 

Remark 3.1.Theorem 3.1 ensures a priori some guaranteed result for solution of the state 

estimation problem defined by (1 .I), (3.1), (3.2). 

Indeed , the sequence (3.5) allows one to start the process of observation at any instant of 

time t* from T, and to  end it a t  any time t** > t*. The measurement data obtained from the 

time interval (t*, t**) ensures the estimate (3.3). 

4. One - Dimensional Case. 

Disturbances from L,(T,). In this section let us consider the initial - boundary value problem 

au(z7t) = Au(z, t)  - a(z)u(z, t), 0 < z < 1, t E T, 
a t  (4.1) 

a(z) L 0 

u(t, 0) = u(t, 1) = 0, u(2,O) = uO(z). 

The observability problem for the system (4.1) under stationary pointwise observations 

has been studied by many authors [20, 2, 41. 

In particular, it is well-known [20, 2, 41 that (4.1) and (4.2), with a(z)  = 0 , is observable if 

the point Z is taken to be irrational, and it is strongly observable if Z is an irrational number of 

a special type. 

Let us now consider the dynamic measurement equation 

assuming at the begining that disturbances ((t) are subjected to the restriction (2.2). 

Suppose that the trajectory 5( t ) , t  E T, is a monotone (increasing) smooth function of time 

connecting ends of the interval [0,1], so as 

Then, applying the maximum principle (see Remark 1.2) [7, 151 to the domain 



D = { ( x , t )  10 I x  < i ( t ) , t  E T , ) ,  

one can obtain the estimate 

which ensures strong observability for the system ( 4 . 1 ) ,  ( 4 . 3 ) ,  (2 .2 )  with B = C[E, 91. 

The estimate ( 4 . 5 )  is the same for an arbitrary monotone trajectory i ( t ) , t  E T, satisfy- 

ing ( 4 . 4 ) .  The latter makes such a class of trajectories stable with respect to those possible 

perturbations that force perturbed measurement curve to stay in the mentioned class. 

Now let us multiply both sides of equation (4 .1 )  by u ( x ,  t )  and apply Green's formula for the 

domain D : 

where t ( x )  is inverse to x ( t ) .  

Combining (4 .6 )  with the boundary condition in ( 4 . 1 ) ,  we obtain 

Note next that 

with & ( t )  2 0. 

Finally, if we introduce the additional constraint for the derivative of i ( t )  : 

for any trajectory that satisfies ( 4 . 7 )  we obtain 

where the constant C  is the same for an arbitrary monotone smooth curve 2 ( t )  such that 

conditions ( 4 . 4 ) ,  ( 4 . 7 )  are fulfilled. 

Denote the latter class of trajectories by X ( C ) .  



Thus we have proved 

Theorem 4.1 . An arbitrary trajectory i ( t )  , t E T, from the class X ( C )  ensures strong 

observability with the estimate (4.8) for the system (4.1) , (4.2) complemented by one more 

observation equation 

z(t) = au(i(t),t) + [(t), t E T., az 
under constraints 

Remark 4.1. As an advantage of scanning observations itroduced above in this section (with 

respect to stationary sensors) one may consider a principal possibility to construct simple classes 

of them that are stable with respect to  some reasonable perturbations. 

Remark 4.2. We note next that stationary property of elliptic operator in (4.1) was not used 

in this section. 

Remark 4.9. The results of this paper can be extended to  the special class of spatially- 

averaged scanning observations [13, 141: 

where 

Sh(t)(i(t))  is the Euclidean neighborhood ( in Rn) of radius h(t) of point f (t); P(t), t E T is a 

trajectory in the domain SZ; the function P(t) is given. 

This type of observations does not require continuity of solutions to  the system (1.1). Instead 

of this, propeties of Lebesque points play the crucial role in the construction of measurement 

trajectories. 
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