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1 Introduction 

In a previous paper [CFl], we studied the Mayer problem 

minimize g(x(T)) (1) 

over all solutions of the semilinear control system 

~ ' ( t )  = Ax(t) + f (t, x(t), ~ ( t ) ) ,  u(t) E U 
x(t0) = s o  (2) 

where xo belongs to a Banach space X ,  to E [O,T] and A is the infinitesimal 
generator of a strongly continuous semigroup on X.  We have shown that 
useful information on optimal trajectories may be derived from properties 
of the value function defined as 

V(to,xo) = inf{g(x(T))(x(.) is a solution of (2)) 

for all (to,xo) E [O,T] x X. 
Under suitable assumptions, V was proved to  be Lipschitz with respect to 

x ([BDP]) and semiconcave with respect to x ([CFl]). These properties can 
be used to deduce the differentiability of V with respect to x along optimal 
trajectories ([CFI]). 

The present paper is mainly devoted to the description of the richer set 
of properties that V possesses when -A is a sectorial operator. Analogous 
properties were obtained in [CF2], [CF3] for a finite dimensional context. 

For example, we show that, if A is the generator of an analytic semigroup, 
then V is jointly Lipscl~tz (Theorem 3.1) and semiconcave (Theorem 4.1) 
in (t, x) on [0, T [ x X  (elementary examples show that this fails to be true 
on the whole domain [0, TI x X).  This increase in smoothness of V in the 
analytic case, is due to the fact that the solution x(t) of (2) belongs to  the 
domain of the fractional power (-A)@ for all a E [0, I [  and all t ~ ] t o , T ] .  

It is known that V satisfies the Hamilton-Jacobi equation (in the viscos- 
ity sense) 

-&(t,x) + H(t ,  X, -Vx(t, x)) - (Vx(t, x), Ax) = 0, 

where H(t ,  x,p) = supUEU(p, f (t, x, u)) ([CLl], [CL2]). In particular, this 
fact implies that for all (t, x) E]O,T[X D(A) and all (pt,p,j E D+V(t,  x) we 
have 

- pt + H(t ,  2, -pX) - (P,, Ax) I 0. (3) 



In this paper we show that equality holds in (3) along any optimal trajec- 
tory 5(.) in the following form: for all (pt , p,) E D+V(t, 5(t)) and a €10, I. [ 

for any t €]to,T[ , see Theorem 5.2. To justify equation (4) we note that, 
as a consequence of the Lipschitz properties of V, D:V(t,x) is contained 
in D((-A*)a) for all a E [O,1[ and all (t, x) E [0, T [ x X  (Corollary 3.4). . 

If the hamiltonian H is strictly convex with respect to p, then (4) yields 
the differentiability of V along optimal trajectories except for end points 
(Corollary 5.4). 

For a finite dimensional space X ,  equality (4) was derived in [Zh] for 
almost every t E [to, TI. Therefore, the result of Theorem 5.2 improves the 
analogous result for finite dimensions. 

Let us consider the subset D*V(t, x) of D+V(t, x), which consists of all 
weak-* limits of VV(t;, xi) where (ti, xi) -+ (t, x). We recall that D*V(t, x) 
is a set of generators for the convex set D+V(t, x), due to  the semiconcavity 
of V (see Section 2). In Section 5 we shall prove that equality holds in (3) 
at all points of D*Tr(t,x) i.e. 

* I-" 
Pt + ((-A ) P,, ( - A ) a ~ )  = H(t ,  x, -pZ) (5) 

for all (t, x) E [O,T[x D(-A)a, (pt,pz) E D*V(t, x), a €10, I[. In particular, 
(5) implies that V is (t, x)-differentiable at all points (t, x) E [0, T [ x  D(-A)" 
at which Df V(t, x) is a singleton. 

This property has in turn several applications. Suppose that V is dif- 
ferentiable with respect to x at a point (to, xo) and let ?(a) be any optimal 
trajectory for problems (I) ,  (2). Then V is differentiable with respect to 
(t ,  x) a t  (t, 5(t)) for all t €]to, TI and D*V(t, ~ ( t ) )  = {VV(t, 5(t))) (Theo- 
rem 5.6). 

Moreover, if (1) has a unique optimal solutioll 5(.), then, for all t €]to, TI, 
V is differentiable at (t, 5(t))  (Corollary 5.1 1). 

Furthermore, given any optimal trajectory 5(.) of problem (I) ,  (2), the 
corresponding co-state I S ( - ) ,  obtained in [CF.I 1, satisfies the inclusion 

for all t €]to,T] (Theorem 5.2). 
We conclude this introductioil with the outline of the paper. In Section 

2 we collect preliminary material on evolution equations and generalized 



differentials. The Lipschitz regularity of V is derived in Section 3 and the 
semiconcavity in Section 4. Section 5 contains the applications mentioned 
above. Finally, in Section 6, we investigate the closedness properties of the 
feedback map. 

2 Preliminaries 

Let X be a Banach space with norm ( 1 .  In this paper we assume that ( . I 
is differentiable away from 0. For any T > 0 and xo E X set 

We denote by X*  the dual of X and by (., a )  -the duality pairing between X *  
and X .  

Let A : D(A) C X + X be the infinitesimal generator of an analytic 
semigroup, etA(t >_ 0), in X .  Then it is well known that there exist constants 
Mo,Ml > 0 and w E R such that 

(i) JetAxl 5 MoeWtlxl 

(ii) I ~ e ~ ~ x (  5 (wMo + F ) e w t l x )  (6) 

for all x E X and t > 0 (see e.g. [Pa, p. 601). 
Suppose now that w < 0, so that 0 belongs to  the resolvent set of A, p(A). 

We denote by ( - A ) " , a  E R ,  the fractional powers of -A with domain 
D(-A)" (see [Pa, p. 691) and set 

for all x E D(-A)". Estimate (6)(ii) has the following version for fractional 
powers 

Ma ( ( - ~ ) " e ~ ~ x (  5 -1xI for all t > 0 
t" (7) 

for all x E X , t  > 0 and some constant Ma > 0 (see [Pa, p. 741). 
Let T > 0, xo E X ,  f E LP(O,T;X),p > 1. Then the Cauchy problem 

has a unique mild solution 



given by the formula 

(see e.g [Pa]). Assume further that f E Lm(O, T ;  X ) .  Then it is well known 
that x ( t )  E D(-A)" for any a € ] O , l [  and t > 0. In fact, estimates (6) and 
(7) yield 

tl-" 
t-"I~ol + - l ( f  I - a  ( I L W ( O , T ; X )  (9) 

for all t > 0 and a. € ] O , l [ .  A slightly longer - yet standard - computation 
shows that 

x(.) E c ~ - ~ ( ] o , T ] ;  D(-A)') ,v 9 ~ ] 0 , 1 [ .  (10)  

Let R be an open subset of X and cp : R -+ R. For any fixed xo E R ,  the 
semi-differentials of cp at  xo are defined as 

p E X *  1 lim sup c p ( 4  - cp(x0) - ( P , X  - so) 
X + I O  1. - xol 

and called super and subdifferential of cp at xo, respectively (see [CEL]). The 
semi-differentials D+cp(xo) and D-cp(xo) are both non-empty if and only if 
cp is Frdchet differentiable at xo. In this case we have 

where Vcp denotes the gradient of cp. 
We denote by D*cp(xo) the set of all points p E X* for which there exists 

a sequence { x , ) , ~ ~  in X with the following properties 

(i) x,  converges to xo as n + oo 

(ii)  cp is Fr6chet differentiable a t  x,, V n  E N (11) 
( i i i )  Vcp(x,) weakly - * converges to p as n + oo 

If cp is Lipschitz in aneighborhood of xo, then cp is F'rdchet diffentiable 
on a dense subset of R (see [Pr]). Consequently, D*cp(xo) # 4. 

Let now R be convex. We say that cp is semi- concave if there exists a 
function 

w : [O,+oo[x[O,+oo[+ [O,+m[ 



satisfying 

( i )  w ( r , s ) < w ( R , S ) ,  V O < r < R ,  V O I s I S  
V r > O  

and such that 

for every r > 0,X E [O,1] and x ,  y E R fl B,(O). 
The superdifferential of a semiconcave function has several useful prop- 

erties, some of which are recalled in the following 

Proposition 2.1 If cp is Lipschitz and semiconcave in  B,(xo) for some 
r > 0 ,  then 

~ + c p ( x o )  = ~ D * c p ( x o )  (13)  

where i3 denotes the closed convex hull. In particular D+cp(xo) # 4. More- %., 

over, 

for all p E D+cp(xo) and all x E B,(xo). Furthermore, if D+cp(xo) is a 
singleton, then cp is Gdteaux differentiable at xo. If, in  addition, D+cp(x) 
is contained in  some compact subset of X* for all x E B,(xo), then cp is 
Fre'chet differentiable at xo. 

The proof of the first two statements (13) and (14) is given in [CI] 
(Corollary 4.7). The third statement follows from the fact that D+cp(x) 
coincides with the generalized gradient if cp is semiconcave (see Proposition 
4.8 in [ C l ]  and [C]) .  Finally, the last statement call be obtained adapting 
the proof of Corollary 4.12 in [CS 11. 

We next give a result which relates functioils satisfying estimate (12)  for 
1 any X E [O,1] with functions satisfying estimate (12) for X = Z. 

Proposition 2.2 Let cp : R + R be locally Lipschitz and CY €]O,1]. Suppose 
that for all R > 0 there exists CR > 0 such that 



for all x,y E fl with 1x1, Iyl 5 R. Then for all R > 0 there exists Ck > 0 
such that 

for all X E [O,1] and x,y E fl satisying 1x1, Iyl 5 R. , In particular, cp is 
semiconcave. 

Proof. Let B,(x) c fl and h E X,O # Ihl < T .  Define 

From (15) it follows that 

for all t , s  E [-I, 11. Moreover, f is Lipscllitz continuous. Therefore, from 
Lemma 4.2 in [CSI] we conclude that 

for a.e. t ,  s E [- 1, :I.]. Also, 

so that 
[f1(t) - f1(s)](t - s) 5 2C;llt - sI1+" (17) 

for a.e. t ,  s E [- 1, :I.]. Now, for all X E [0, :I.], we have 

recalling (17). The above inequality reads as follows 

which is equivalent t o  (16). 



Remark. When a = 1, (16) can also be recovered from (15) by an induction 
procedure and a density argument. 

Proposition 2.3 Let cp : X + R be locally Lipschitz and semiconcave. 
Then for all z E X and 0 E X 

acp -(z) := lim c p b  + he) - cp(4 = liminf p(.' + he) - cp(zf) 
ae h+O+ h h 

=: cp! (z)(0) 
z f + x  

and the set-valued map Q : X + X defined by Q(z) = (0 E X : g ( z )  5 0) 
has closed graph and nonempty images. 

Proof. It is enough to adapt proofs of Theorem 2.9 and Proposition 2.5 
from [CF2] to  the infinite dimensional case. 

We conclude this section with the following lemma, which is a simple 
consequence of Gronwall's inequality. 

Lemma 2.4 Let cp : [a,  b] + R be an integrable function such that 

for a.e. t E [a,  b] and some constants L ,  A, B 2 0, CY €]O,l[. Then, for a.e. 

t E [a41 

Proof. Let G(r) = J: cp(t)dt. Then, integrating (19) with respect to  t yields 

Thus, the GronwaU lemma implies that 

Inserting this estimate in (18), we get (19). 



3 The optimal control problem: Lipschitz regu- 
larity of the value function 

Let X be a Banach space and U a complete separable metric space. Fix 
T > 0 and let ( to ,  s o )  E [0, TI x X .  Consider a system x(.)  governed by the 
semilinear state equation 

Let g : X + R be a given continuous function. We are interested in the 
Mayer optimal control problem below: 

minimize g ( x ( T ) )  over all solutions to (20) with measurable u.  (21) 

In this section we impose the following assumptions on the data of our 
problem: 

( i )  A : D ( A )  C X + X is the infinitesimal generator of 
an analytic semigroup, etA,t 2 0 ,  satisfying ( 6 )  for some w < 0; 

( i i )  f : [O,T] x X x U + X is continuous and such that 

I f ( t7x7u>I 5 Co(l + 1 ~ 1 ) ~  l f ( t 7 x 7 u )  - f ( t7Y7u)I  5 Colx - Y I  
for someCo > Oandall t  E [O,T],x,y E X , U E  U ;  

( i i i )  g is Lipschitz on all bounded subsets of X .  
(22) 

It is well known that, under assumptions (22),  for every measurable 
u : [to, TI + U problem (20) has a unique mild solution x(.) E C ( [ to ,T] ;  X )  
satisfying 

x ( t )  = e(t-tO)Axo + e(t-s)A f ( s ,  x ( s ) ,  u (s ) )ds  

for all t  E [to, TI. We denote this solution by 

x ( - ;  to, X O ,  21). 

Moreover, (22),  (23) and the Gronwall Lemma yield 

Remark. As is well known, the assumption that etA is of negative type 
(w < 0 in (22))  implies no loss of generality. Indeed, let ( 6 )  be fulfilled for 



some wo E R and x(-) be a solution of (20). Then y(t) = e-(wO+l)(t-tO) x(t> 
satisfies 

where 
A0 = A  - (w0+ 1 ) I  
fO(t, X ,  U) = e-wO(t-to) f (t, ewo(t-t~)~, 21). 

Notice that etA0 is of negative type, while fo satisfies (22) (ii) with the 
same constants as f .  Therefore, problem (20) is equivalent to minimizing 
g(e(w~+l)(T-to) y(T)) over all trajectories of (25). 

The value function of problem (20), (21), defined as 

V(to, xo) = inf{g(x(T; to, xo, u)( u : [to, TI + U is measurable ), 

has many properties which are relevant for the original optimal control prob- 
lem. Among these, let us recall the Optimality Principle: for all t E [to,T] 

V(to, xo) = inf{V(t; x(t; to, xo, u)) Iu : [to, TI + U is measurable ). (26) 

Theorem 3.1 Assume (22) and let R > $. Then there exists a constant 
CR > 0 such that 

for all t l , to E [O,T - h] and all xl,xo E X satisfying lxll, Ixol 5 R. 

Proof. 
Step 1: reduction to D(-A)m. 
Fix t l , to E [O,T - ~ ] , x l , x o  E X ,  1x;I 5 R. Define s; = t; + & , i  = 0,1, 

and let uO(.) be such that 

V(t0, xo) + It1 - to1 + 1x1 - xol > V(s0, x(s0; to, xo, uo)) 

(if It1 - to1 + 1x1 - X O I  = 0, then (27) is trivial). Fix B E U and define 

u(t - tl + to), t E [tl, sl] 
u d t )  = { t E [Sl,T] 

Set also 



Zi(t) = ~ ( t ;  ti, xi, Ui), Yi = Zi(Si), = O,1. 

Then, recalling (24), we have that 

where C(R) = Co[l + eMoCoTMo(R + COT)]. Therefore, by (9) we conclude 
that y; E D(-A)ff for i = 0 , l  and all a €]O,1[ and 

Moreover, setting Z(t) = Z1(t + t l  - to) - Zo(t),to < t 5 so, we have 

so that (Z(t)l < Adolxl - xo(eCoMOIR. In particular 

Now, we have by (26) 

Therefore, interchanging ( t l ,  XI) and (to, xo), 

Step 2. Estimate on V(s1, yl) - V(so, yo). 
In this step we denote by Cff,R any positive constant depending on a 

and R. Let Eo : [so, TI + U be measurable and such that 

Suppose sl 5 s o  (or, equivalently, tl 5 to ) and define 



for some constant CR > 0. Now, for all t 2 s o  

+ I L: e('-'lAf (s, ~ l ( s ) ,  ~ l ( s ) )ds l  

From (6), (7 ) ,  (28) and (29) it follows that, for all t > so, 

for all a E]O, l[. Hence, 

for all t > so. Thus Lemma 2.4 yields 

for all t > so. Therefore 

for some C a , ~  > 0. The above estimate and (32) yield 



under the extra assumption sl 5 so. 
On the other hand, if sl > so, then instead of (31) we define ul(s) = 

uo(s), t E [s,T] and repeating the above argument we obtain (33) once again. 
Therefore, interchanging (sl ,  yl) and (so, yo), we have 

for some CR > 0 (fixing, for instance, a = i). This estimate and (30) imply 
the conclusion (27). 

We note that the interest of the above result is due to the fact that 
it provides the joint Lipschitz continuity of V with respect to  (t, x). The 
Lipschitz continuity of V(t,.) with respect to x for all t E [0, TI is a known 
result (see [BDP]), even when the semigroup etA is just strongly continuous. 
Indeed, when etA is analytic, a stronger Lipschitz property holds true for V, 
as we show below. 

Theorem 3.2 Assume (22) and let R > +, a E [0, 1 [. Then there exists a 
constant C = C(a ,  R, T )  such that 

for all t E [0, T - $1 and all XI, xo E X satisfying lxl 1 ,  lxO1 5 R. 

Proof. Assuming I(-A)-Q(xl - xo)l > 0 (otherwise there is nothing to  
prove), let uo : [t,T] -t U be such that 

and set ?I(.) = x(.; t,  ~ 1 x 1 ,  UO), ?o(-) = x(.; t, xo, uo). Then, recalling (26), 

for some constant CR > 0. On the other hand, in view of (7), 



for all s € ] t , T ] .  Hence, applying Lemma 2.4 we obtain 

The conclusion (35)  follows from the above estimate and (36), since the 
argument is symmetric with respect to  X I ,  xo. 

From estimates (27) and (35) we immediately obtain the following 

Corollary 3.3 Assume (22) and let R > + , a  E [ O ,  l [ .  Then there exists a 
constant C = C ( a ,  R ,  T )  such that 

lV ( t1 ,~ l )  - v( t0 ,xo) l  5 C[l t l  - to1 + I(-A)-a(xl  - xo)l] (37)  

for all t l ,  to E [0, T - $1  and all X I ,  xo E X satisfying 1x1 1 ,  lxol 5 R. 

The result below is useful for the applications in Section 5. For Linear 
state equations, it was proved in [CDPl] .  We denote by D $ V ( t ,  x )  the 
superdifferential of V ( t  , -) at  x. 

Corollary 3.4 Assume (22) and let ( to ,xo)  E [ O , T [ x X .  Then, for all a E 

[ O ,  I [ ,  

Moreover, for each R > 0 there exists a constant C R  = C R ( a , T )  > 0 such 
that, if lxol 5 R ,  then 

I(-A*>"pl 5 CR (38 )  

for all p E D:V(to, so) U D,V(to, xo ) .  

Proof. We provide the proof for the superdifferential only, because the 
argument below applies to  the subdifferential as well. 

For all x E X , p  E D$V( to ,xo)  and X > 0 

Hence, taking lim  sup^,^ of both sides, estimate (35)  yields 



Hence 
I ( P ,  x)l < Cf f l ( -A) - f f x l  

for all a E [ O , l [ .  Thus, for all x E D(-A)O, 

which in turn implies that p E D(((-A)O)*) = D(( -A*)a )  and (38). 

4 Semiconcavity of the value function 

In this section we show that the value function of our optimal control prob- 
lem (20) ,  (21 )  is semiconcave in ( t ,  x) on [0, T [ x  X .  For this purpose we have 
to strengthen assumptions (22) as follows: 

I (i) f ( . ,  ., u )  is differentiable and 3a E ] O , l ]  such that 

II&(f,x,u) - & ( S , Y , U ) l l  5 Cn( lx  - Y I  + It - ~ 1 ) ~  
fo ra l l s , t  E [ O , T ] , x , y E  B R ( O ) , U E  U; (39) 

(i i)  3a €10, llsuch that g ( x )  + g ( y )  - 2 g ( q )  5 C R ~ X  - y l l + a  . .  

for all x, y E BR(O). 

In (i) we have denoted by ( 1 . 1 1  the standard norm of a bounded linear operator 
on X. Also, by Proposition 2.2, (ii) implies that g is semiconcave in X. 

Remark. It can be easily seen that assumption (i) above implies that 

for all X E [O,1] and all X O ,  x1 E BR(O). 

Theorem 4.1 Assume (22), (39) and let R > 0.  Then there exists C R  > 0 
such that 

V ( t 1 ,  x l )  + V ( ~ O ,  Z O )  - 2V ) _< CR(lt1 - to1 + 1x1 - ~01)"" 

for all t l ,  to E [ O ,  T - A] and all x l ,  xo E BR(0) .  
(40)  



Proof. Without loss of generality, we may assume that f is independent of 
t. 

Step 1: reduction to D ( ( - A ) ~ ) , o  < ,O < 1. 
Fix t l , to  E [O,T - A],xl, xo E BR(0) and define 

1 
s i = t i + - ,  i = 0 , 1 , 2 .  

2R 
Let u2(-) be such that 

(obviously, we may assume that Itl - to( + lxl - xol > 0). Fix also U E U 
and set 

Recalling (26) and (27), we have 

Now, 
Zl(s1) + ~ o ( s 0 )  - 222(~2) = h ( s 2 )  + Zo(s2) - 232(s2). (42) 

Moreover, for all t E [ t z , ~ ~ ]  



Therefore, by assumption (39) (i) and the remark below it, 

On the other hand, for all t E [t2,s2], 

and so, by Gronwall's lemma, 

for some constant MA > 0. Thus, (43), (44) and again Gronwall's lemma 
yield 

J5l(t)+Zo(t)-2z2(t)(<M;Ix1-xol1+", VtE [t2,sz] 

for some M: > 0 depending only on R. 
The above inequality, (42) and (41) imply in turn that, for some C > 0, 

where 
y; = Z;(s;), i = 0,1 { , = -  

Step 2: estimates on the fractional norms of yl , yo. 
We will now proceed to  estimate the rightmost term in (45). We will 

take advantage of the fact that y; E D((-A)O), i = 0,1,2, for all /3 E [ O , 1 [  
and 

(i) I~ i lp  I Mp(R),i = 071 
( 4  IYl - yo1 I Moe CoMoTlxl - xO( (46) 
( 4  l Y l  - Yelp < Mplx1 - xol 

for some Mo, A!p(R) > 0. Estimates (i), (ii) above have essentially been 
proved in Step 1 of the proof of Theorem 3.1 (see (28), (29)). To prove 
(46)(iii) we note that 



On the other hand, for all t €It2, s2], recalling (7) and (44) we obtain 

From the above inequality and (47), estimate (46) (iii) easily follows. 

Step 3: estimate on V(s1, yl) + V(so, yo) - 2V(s2, y2). 
Let i12 : [s2, TI + U be such that 

Suppose sl 5 so ( or, equivalently, t l  5 to) and define 

Then, by assumptions (39) (ii), (22) (iii) 

for some constant CR > 0. We will now estimate the first two terms in the 
right-hand side of (48) separately. 

Step 4: estimate on Igl(T) - yo(T)J. 
First, we note that, for all t €]so, TI, 



Therefore, Lemma 2.4 and (46) (i), (ii) imply that 

for all ,B € [O,1[ and t €]so,T]. 

Step 5: estimate on lyl(T) + yo(T) - 2ij2(T)I. 
For all t €]so, TI we have 

e(l-'lA f (Y1 (s), a2 o r(s))ds - 2 e(t-s) f (f&(s), a2(s))dsI $ 

Now, using (46) (iii) we obtain 

Moreover, changing the variable 17 = so - 012, we get 

f J,""-"' u\(-~)2-Pe(t-so+ ( - A ) ~ Y O ( ~ U  

S O  -S1 u 
M:-" (t  - so + f )2-8 I Yo lpdu 

2 ( s ~  - 17) 2d7 
~ p * ~ 1 ~  (t  - 17)2-B 

(SO - 17IQ 
5 4 ~ p . R  JsO (t - 17)1-P+o 

S2 
d17 

4 M p , ~  (so - ~ 2 ) " ~  
I ( t  - so)l-P+ff 1 + cr 



Let us now fix p €10, I.[ so that p > a ,  for example P = q. Then the 
above estimate and (50) yield 

Next, by a change of variable in the first integral of 11, 

f (311(2s - so), ~ z ( s ) )  - e(t-S)A f (jjz(s), az(s))]dsl 

+ 21 JSO e(t-s)A[f(8, (2s - so), a2(s)) - f(l2(s),  as(s))ldsl 
S2 

=: IIl+I12. 

Also, 

111 5 Lr ds IA~('-'+ f ( a ( 2 s  - SO), ~ ~ ( ~ ) ) l d o  

So - S 
5 cR JS010d l+  -)d~ 

S2 t - s  
So So - S 

ds 5 cR 1; - S ) c r d ~  
(t - SO)& 

To estimate 112 we note that, for all s E [s2, so], 

,(Zs - SO -O)A f ( f i  (01, ~ ~ ( T ( o ) ) ) ~ o I  + I Jse(s-u)Af(~z(s),  a2(s))dul 
S2 

5 A 4 ~ ( x l  - 5 2 1  + I(e (S-s2)A - l)e(s-S2)A~1 1 + CR12s - SO - s11 + CR(s - ~~1 
< AIoIx1 - 201 + Ccr 

It1 - to1 
- (s - s2)l-o IxlIa f CRltl - tola 

Therefore, 



Thus, (52) and the estimates on 111, 112 yield 

for all t €]so, TI. 
Finally, to bound I11 we use assumption (39) (ii) and estimate (49) as 

follows 

From the above inequality, (51) and (53) we conclude that 

for all t €]so, TI. Therefore, Leinma 2.4 implies 

The conclusion follows from (45), (48), (49) and the estimate above. 

QED 

Corollary 4.2 Under all assumptions of Theorema 4.1, suppose further 
that etA is compact for t > 0. Then V is Fre'chet differentiable at all points 
(t, x) such that D+V(t, x) is a singleton. 

The proof follows from Theorems 4.1,3.1, Corollary 3.4 and Proposition 
2.1, recalling that, since the semigroup is compact and analytic, its fractional 
powers are compactly embedded in X. 



5 Applications 

We provide here some applications of the above results to  Mayer optimal 
control problems. First we associate with the control system (2 )  its Hamil- 
tonian H : [O,T] x X x X* -+ R defined by 

Theorem 5.1 Assume that (22) (ii), (iii) hold true and that A generates 
a strongly continuous semigroup on X. Let it(.) be an optimal solution to 
problem (21). Then for almost every t E [to,T] such that ~ ( t )  E D ( A )  we 
have 

Proof. Let G(:) be an optimal control corresponding to ?(.). Consider the 
set of Lebesgue points of the function f (., it(.), '1L(-)) 

{ 
t+h 

7 := t E [to, T I I  lim / ~ f ( s ,  ? (s ) ,  ~ ( s ) )  - f ( t ,  ~ ( t ) ,  ~ ( t ) ) l d s  = 0 . 
hdO+ h t-h I 

We recall that 7 has a full measure in [to, TI.  Let t E 7 be such that 
~ ( t )  E D ( A ) ,  then it is not difficult to check that 

z f ( t>  = AZ(t) + f ( t ,  s ( t ) ,  .li(t)). (54) 

Fix (pt ,P,) E D+lr(t, Z( t )) .  Then 

0 2 lim sup V ( s ,  5 ( s ) )  - V ( t ,  ? ( t ) )  - pt(s - t )  - (p,, ? ( s )  - - s ( t ) )  
s4t+ Is - tl + I + )  - ?(t)l 

Since 5(.)  is optimal, V ( - ,  Z ( . ) )  - const. Thus the above inequality and (54) 
yield 

-Pt - (P,, AZ(t) + f ( t ,  s ( t ) ,  'lL(t))) L 0. 

By the same argument, taking s -, t we obtain 

Pt + (px, A?(t) + f ( t ,  z ( t ) ,  '1L(t))) 5 0. 

Consequently, 

V ( P ~ , P X )  E D+V(t ,  ? ( t ) ) ,  -pt - (p,, AZ(t) + f ( t ,  s ( t ) ,  i i ( t ) ) )  = 0. (55) 



We next claim that for every (pt,p,) E D + V ( t ,  Z ( t ) )  and every u  E U 

- Pt - ( P X ,  AZ( t )  + f ( t ,  Z ( t ) ,  u ) )  < 0. (56) 

Indeed ~ L X  (pt,p,) E D + v ( ~ ,  ~ ( t ) ) ,  u  E U .  Consider the Cauchy problem 

Since ~ ( t )  E D ( A ) ,  its (unique) solution x ( - )  satisfies x l ( t )  = A z ( ~ )  + 
f ( t ,  ~ ( t ) ,  u). Using the fact that t  t V ( t  , x ( t ) )  is nondecreasing, we ob- 
tain 

0  5 lim sup v ( t  + h ,  ~ ( t  + h ) )  - V ( t ,  x ( t ) )  
h+O+ h  

5 .lim sup v(t + h ,  x ( t  + h ) )  - V ( t ,  ~ ( t ) )  - hpt - h(p,, AZ( t )  + f ( t ,  ~ ( t ) ,  u ) )  
h+O+ h 

+ ~t + ( p X ,  A z ( t )  + f ( t ,  ~ ( t ) ,  u) )  pt + (p,, AZ( t )  + f ( t , z ( t ) ,  u ) )  

and (56)  follows. To end the proof it is enough to apply (55) ,  (56) and the 
definition of H. 

Remark. We recall that, when X is a Hilbert space and A  generates an - 

analytic semigroup, then Z( t )  E D ( A )  a.e.. 

Theorem 5.2 Assume (22) and (39). Let T ( , )  be an  optimal trajectory of 
problem (21). Then, for any 9 €]O,1[ 

for all t €] to ,  T [  and all (p t ,px)  E D + V ( t , z ( t ) ) .  

Notice that p, E D(-A*)  in light of Corollary 3.4. We first prove a 
lemma 

Lemma 5.3 Assunze (22) and let 9 € ] O , l [ .  Then 

for all ( t ,  z) E [ O ,  T [ x  D(-A)'-@ and all (pt,p,) E D+V( t ,  x ) .  



Proof. We use the same argument as in the second part of the proof of 
Theorem 5.1. Fix u E U and let Z(.) = x(.,t,x,u). Then, for all h > 0 

1 1 e(h-s)A* 
- (px,Z(t + h )  - 2) = (PX, (ehA - l )X)+. i  Lh ( px, f ( t  + s ,  Z(t + 4, 4) d.3 
h 

Clearly, 

lim 1 jh (e(h-s)A*pX, f ( t  + s , ~ ( t  + s), u)) ds = (p,, f ( t ,  x, u)) 
h+O+ h 0 

Moreover, in view of Corollary 3.4, 

Therefore, 

V(t+h,F(t+ h))-V(t,x) ~ , , ? ( t +  h)-x) o 5 lim suPh+,t h 5 ~t + lim suph,ot ( h 

and (58) follows recalling the definition of H. 

Remark. Estimate (58) is equivalent to  saying that V is a viscosity subso- 
lution of the Hamilton- Jacobi-Bellman equation 

In fact, modifying the argument above as one does in the finite dimensional 
case (see e.g. [PL]), one can show that V is also a viscosity supersolution of 
the above equation, i.e. 

for all ( t , ~ )  E [O,T[xD(-A)'-' and all (pt,px) E D-V(t, x). 

Proof of Theorem 5.2. From Lemma 5.3 and (9) we know that 



for all t €]to,T[ and all (pt,px) E D+V(t,l(t)) .  Hence, it suffices to derive 
the opposite inequality. Recalling Theorem 4.1, Proposition 2.2 and (14) we 
obtain, for all s €]to, T [  and (pi, p,) E D+V(t , l ( t ) ) ,  

Now, by (8) it follows that z(.) E ~ ' ( [ F , t ] ; x )  for any 0 < 8 < 1. Let us 
fix 8 = 3s- 2+2a - SO, the above inequality yields 

for any 5 s < t. Next, 

1 -- .-t (p., ~ ( s )  - ~ ( t ) )  = A (R, (e('-'IA - 1 ) ~ ( s ) )  + 
+L S-t J: (p,, e(t-o)A f (o, ~ ( o ) ,  ~ ( o ) )  do. 

Recalling (lo),  we have 

Therefore, taking lirninf,,,- in (59), we obtain 

On the other hand, 

where 3 = {(-p,, f (t , ~ ( t ) ,  u)) I U  E U). Since H(t,  ~ ( t ) ,  -px) = sup 3, the 
conclusion follows. 



An interesting consequence of Theorem 5.2 is the smoothness of the value 
function along any optimal trajectory in case H is strictly convex in p, a 
classical result for finite dimensional problems in calculus of vaiations (see 
[F:l] ) . 

Corollary 5.4 Assume (22), (39) and let 5(.) be an optimal trajectory of 
problem (21). If H ( t , ~ ( t ) ,  .) is strictly convex for some t € ] t o ,  T [ ,  the V is 
Fre'chet differentiable at ( t ,  ~ ( t ) ) .  

Proof .  The strict convexity of H ( t ,  i f ( t ) ,  .) and (57) yield that D + V ( t ,  ? ( t ) )  
is a singleton. Then Corollary 4.2 concludes the proof. 

To provide further applications we need to recall necessary conditions 
satisfied by optimal solutions to problem (21).  Let ( i f ,  21) be a trajectory- 
control pair for.system (20). Denote by G ( s ,  t )  the.solution operator of the 
linear problem 

t )  = ( A  + % ( s ,  ~ ( s ) ,  E(s ) ) )G(s ,  t )  
G ( t , t )  = Id. { aG 

Let G*(s ,  t )  denote the adjoint of G ( s ,  t ) .  

Theore in  5.5 Assume that .'X is a Hilbert space, that f is Frkchet dif- 
ferentiable with respect to x and that (22), (39) hold true. Consider an 
optimal trajectory-control pair (5 , i i )  of problem (21). Then for every p E 
D + ~ ( ? ( T ) ) ,  - the function p(t)  = -G*(T,  t ) p  satisfies the maximum principle 

and the co-state inclusion 

-p( t )  E D: V ( t ,  ? ( t ) )  for all t E [to, TI. 

Furthermore, for every 0 < cr < 1 and all t € ] t o ,  TI 

Proof .  The first two statements result from [CFl ,  Theorem 3.11 as well as 
the inclusion 



for almost all t E [ to ,T]  such that ~ ( t )  E D ( A ) .  By the maximal regularity 
result [ L M ] ,  we get 3 ( t )  E D ( A )  almost everywhere in [ to ,T] .  Fix 0 < cr < 
1. From (9) we already know that ~ ( t )  E D((-A)'-")  for all t E]to,T].  
Consequently, using Corollary 3.4, we deduce that for almost all t E [ to,T] 

Fix 5 € ] t o , T ]  and let t ,  -P 5 be such that the above inclusion holds true at 
every t,. Taking the limit we obtain 

( ( -A*)"p( f ) ,  ( - ~ ) ' - " z ( f ) ) + H ( f ,  Z ( f ) , p ( f ) ) ,  - p ( f ) )  E Lim sup D+V(t,, ~ ( t , ) )  
,400 

whenever p ( f )  E D((-A*)") .  Thanks to Corollary 3.4 it remains to show 
that 

Lim sup D+v(~,, Z(t,)) c D + v ( ~ ,  ? ( t ) ) .  
n-tm 

By Theorem 4.1 we know that V is locally Lipschitz and semiconcave at  
( f ,  ~ ( q ) .  Proposition 2.1 ends the proof. 

Theorem 5.6 Let X be a separable Hilbert space and assume that g is con- 
tinuously diflerentiable. Suppose further that (22), (39) hold true and 

i )  f ( t ,  x ,  U )  is closed and convex for all ( t ,  x )  E [0, TI x X 

i i )  etA is compact for all t > 0 
i i i )  H is digerentiable with respect to x and VR > O , ~ R  E L1(O,T) 

such that for all x ,  y E BR,p,q  E X *  with J p ( ,  IqJ _< R 
(E(~ ,x ,P)  - % ( t 7 ~ , q ) I  5 [R(t ) ( lx  - Y I  + I P -  ql). 

Then for every ( t o ,  x o )  E [0, T ]  x X 

D * v ( ~ ~ ,  x O )  = { lim V V ( t k ,  xk )  : ( tk ,  xk )  -P (to, so ) ,  3 V V ( t k , x k ) ) .  
k - t m  

Remark. From the proof given below, it is easy to realize that the same re- 
sult holds true if A generates a strongly continuous (not necessarily analytic) 
semigroup on X .  

Proof. Fix ( to,  xo)  E [O,T] x X and let ( t k ,  x k )  -P ( to ,xo)  be such that 
V V ( t k , x k )  is weakly-* converging. It is enough to  show that { V V ( t k , x k ) )  



has a strongly converging subsequence. From Theorem 5.2 and [CFl, Corol- 
lary 5.6 and Remark 3.31 there exist optimal trajectories z k ( - )  for problem 
( 21 )  with ( t o , x o )  replaced by ( t k , x k )  and solutions p k ( - )  to the backward 
Cauchy problem 

satisfying 
- 

Using [CFl, Lemma 5.41 we deduce that there exist a mild solution %(.) to  
control system ( 20 )  and a subsequence Z k j ( - )  such that 

lim sup I % ( t ) - Z k i ( t : l l = 0 .  
j-+W t€[t0,qn[tkj ,q 

Thus l i ~ n j - + ~  V g ( z k j ( T ) )  = V g ( Z ( T ) ) .  By the continuous depedence of 
solutions to ( 60 )  on data we deduce that 

where p  is the mild solution to 

In particular this yields that 

This and ( 61 )  imply that V,'(tkj, xkj  ) converge strongly. Since T/t1(tk , x  k )  E R 
it is strongly convergent. Thus we deduce that V V ( t k j , x k , )  is strongly 
convergent. 

Theorein 5.7 Assume (22), (39) and let e tA  be compact for t  > 0 .  Then, 
for every ( to ,  X O )  E [0 ,  T [ x X ,  



Proof. First notice that, since -A is sectorial and etA is compact for t > 0, 
then (-A)-' and (-A*)-' are compact opetators on X and X* respectively 
(see e.g. [He]). Hence, D((-A*)') is compactly embedded in X* and the 
conclusion follows from Corollary 3.4. 

Corollary 5.8 Under all assumptions of Theorem 5.6 for every (to, xo) E 

[0, TI x D((-A)'-o) and 0 < a < 1 we have 

Proof. Fix 0 < a < 1, (to,x0) E [O,T] x D((-A)'-") and (pt,px) E 
D*V(to,xo). By Theorem 5.6 there exist ( tk ,xk)  + (tO,xO) such that 
VV(tk, xk) converge strongly to (pt, p,). Furthermore, Theorems 4.1, 5.6 
and Proposition 2.1 imply that for all k >_ 1 

lim sup (JVV(tk, x) - pJI = 0. 
X+Xk 

p€D+V(tk,x) 

Thus there exist yk + xo, yk E D((-A)'-a) such that 

It is known (see e. g. [CFl, Lemma 5.41) that there exist optimal trajectories 
Zk(.) of problem (21) with (to, xo) replaced by (tk, yk). Let pk(-) denote the 
corresponding co-states given by Theorem 5.5. 

Since yk E D((-A)'-o) we know that vt E [tk, TI, 5?k(t) E D((-A)'-")). 
This and the last statement of Theorem 5.5 yield that 

Set 

Then 
* a  k P! t ((-A ) pX, (-A)l-a~k) = ~ ( t k ,  yk, -P:)- (63) 

Since yk converge to xo E D((-A)l-a) and, by (62) l irnk+,(p~,p~) = 
(pt, p,), taking the limit in (63) we end the proof. 



Corollary 5.9 Under all assumptions of Theorem 5.6 suppose that for some 
( t o , x o )  E [ o , T [ x D ( ( - A ) ' - ~ ) ,  D , fV( to ,xo)  is a singleton. Then V is F&- 
chet differentiable at ( to,  xo) and D*V(to,  X O )  = { V V ( t o ,  so ) ) .  

Proof. Let I I ,  denote the projection of R x X onto X. Since 

we deduce from Corollary 5.8 and the equality 

that for all (p t ,px )  E D*V(to ,  xo) ,p ,  = po and 

Thus D*V( to ,  xo)  is a singleton. Since V is locally Lipschitz and semiconcave 
at ( to ,  xo) ,  Proposition 2.1 ends the proof. 

Theorem 5.10 Under all assumptions of Theorem 5.6 suppose that A is 
self-adjoint and that the Gciteaux derivative V,'(to,xo) does exist. k t  3(.) 

be an optimal solution to problem (21). Then for all t €] to ,  T [ ,  V is Fre'chet 
differentiable at ( t ,  iE(t)) and 

Proof. Let p(.) denote the co-state corresponding to z(.) and given by 
Theorem 5.5. .From [CFl; Theorem 5.11 and [CG] we deduce that for all 
t E [to, TI 

~ ; v ( t , ? ( t ) )  = {-p( t ) ) .  

The proof follows by the application of Corollary 5.9 and using the fact that 
? ( t )  E D( ( -A) l -a )  for all t E]to,T].  

Corollary 5.11 Under all ~ssumptions of Theorem 5.6 suppose that prob- 
lem (21) has a unique optimal solution ? ( a ) .  Then for every t € ] t o , T [ ,  V is 
Fre'chet diflerentiable at ( t ,  ? ( t ) ) .  



Proof.  From [CFl,  Theorem 5.31 we know that V(t, .) is Frbchet differenti- 
able a t  ~ ( t )  for all t €]to, TI. Applying Theorem 5.10 we end the proof. 

Theo rem 5.12 Under all assumptions of Theorem 5.6 suppose that g is 
convex and for all t E [O,T] 

Gmph (f (t, ., U)) is convex. 

Then for every t E [O,T], V(t, -) is convex and continuously differentiable on 
X .  

Proof.  Fix to E [O,T[. From [CFl, Corollary 5.61 we know that for all 
xf, E X , i  = 1,2 there exist optimal trajectories zi(.) to problem (21) with 
(to,xo) replaced by (to,xb). Fix X E [0,1]. Since z ( - )  = As1 + (1 - X)s2 is 
a trajectory of the control system (20) with xo replaced by Ax; + (1 - X)xi 
we deduce that 

Consequently, V(to,-) is continuous and convex. So, its subgradient a t  xo is 
nonempty. Since, by Theorem 4.1, V(to,.) is also semiconcave, we deduce 
from Proposition 2.1 that its superdifferential at xo is nonempty. Thus 
V(to,.) is differentiable a t  xo. This and Proposition 2.1 end the proof. 

6 Optimal feedback 

We provide here a result concenlillg the optimal synthesis for problem (21). 
With any (t ,  x) E [0, TI x D(A) we associate the feedback set 

v E f (t, x, U) : lim V(t + h , ~  + h[Ax + v]) - V(t, 2) = 0} 
h h-o+ 

Clearly F ( t , x )  = 0 if the above limits do not exist for any v E f ( t ,x ,U) .  
We proved in [CFl] the following result. 



Theorem 6.1 Assume (22) and let u : [to,T] + U be measurable and 5 be 
a solution to (20) such that ~ ( t )  E D(A) almost everywhere in [to,T]. Then 
Y'(t) exists for almost all t and the following two statements are equivalent 

i) 5 is optimal for problem (21) 
ii) ~ ' ( t )  - AY(t) E F( t ,  Y(t)) a.e. in [to,T] 

Theorem 6.2 Assume that (22) and (39) hold true and that the sets f (t, x, U) 
are closed. Then the graph of the set-valued F is closed in [0, TI x D(A) x X. 

Proof. Consider the set-valued map F : [O, T] x D(A) -+ X defined by 

From Proposition 2.3 we know that g rap lz (~)  is closed in [0, TI x D(A) x X. 
On the other hand, by (55), for all x E D(A) and v E f (t, X ,  U) 

(Vv( t ,  x), (1, Ax + v)) 2 0 

This and Proposition 2.1 yield that for all ( t ,x)  E [O,T] x D(A) 

and the result follows. 

QED 

Corollary 6.3 Assume that (22), (39) hold true, that the sets f (t, x, U) are 
closed and that the set-valued map F defined above is single-valued. Then it 
is continuous. 
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