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Foreword 

This is the third of a series of papers giving an early account of the application of ellipsoidal 
techniques t o  various problems in dynamical systems. It deals with guaranteed state estimation 
- also t o  be interpreted as a tracking problem - again under unknown but bounded disturbances. 
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Ellipsoidal Techniques: 
Guaranteed State Estimation 

A .  B. Kurzhanski, I. Va'lyi 

Introduction 

This paper gives a concise description of effective solutions to the "guaranteed7' s tate estimation 

problems for dynamic systems with unknown but bounded uncertainty. It indicates a rather 

unconventional, rigorous theory for these problems based on the notion of evolution equations of 

the "funnel77 type which could be further transformed - through ezuct ellipsoidal approximations 

- into algorithmic procedures that  allow effective simula.tion particularly with computer graphics. 

The estimation problem is also interpreted as a problem of tra.cking a partially known systeill 

under incomplete measurements. 

Mathematically, the technique described in this paper is based on a theory of set-valued evo- 

lution equations with the approximation of solutions formulated in terms of set-valued calculus 

by ellipsoidal-valued functions. 

1 Uncertain Systems 

An uncertain systein is sa,id to  be one of type 

x ( ~ )  E A ( t ) ~ ( t )  + u ( ~ ) ,  to I t 5 f l ,   to) = x ~ )  ( I )  

where u = u(t) is the uizkizown but bounded input (disturbance). It is presumed that  tlle initia,l 

state xo is also unknown but bounded, so that 

where the set Xo C conv Rn and the continuous set-valued function P ( t )  E conv Rn are given 

(conv Rn stands for the variety of all convex compact subsets of R n ) .  

Equa,tion (1) of the plant may be complemented by a state constraint 

G(t)x(t)  E Y(t), to I t I t l  (3) 

where Y(t)  E conv Rm , m < n. The constraint (2) may be particularly generated by a 

measurement equation 



with an unknown but bounded error 

where Q ( t )  E coilv Rm is a Lipschitz-continuous set-valued map, [ I ] .  \\'it11 the realizatioll 

y = y[t]  being known, restrictioil ( 4 ) ,  ( 5 )  turns into 

so that y[ t]  - Q ( t )  now substitutes for y ( t )  (the function y[t] may however not be known in 

advance, arriving on-line). 

Our objective will be to  estimate the system output 

a t  a prescribed insta.nt of time 8,  - either for the system ( I ) ,  ( 2 ) ,  (3) ( the  attainability prob- 

lem under state constra.ints) or for the system ( I ) ,  ( 2 ) ,  ( 7 )  (the problem of gua.ranieed state 

estimation). 

The solutions to both problems are well known (see e.g. [14],  [5] ,  [ i ] ) .  Our aim however is not 

to  repeat this information but to  rewrite the theoretical results focusing on the main objective 

- a constructive algorithmic procedure based on ellipsoidal techniques that  allows a simulation 

wit.h graphical representations. We will now specify the problems considered here. 

2 The Estimation Probleins 

We start with the attai~za.bility problenz. Let x[ t ]  = x ( t ,  t o , xO)  stand for an isolated solutioi~ 

of system (1.1)  that  starts  a t  point 2' = z ( t o ) .  As is well kllown the attainability donzain for 

( I ) ,  ( 2 ) ,  ( 3 )  a t  time 8 from point xO is the cross-section a t  t = 8 of the tube X ( t ,  to ,  2") of all 

trajectories x[ t ]  = x ( t ,  to,  xO)  tha t  satisfy ( I ) ,  ( 2 ) ,  ( 3 ) .  The union 

U ( x ( 8 ,  to, x O )  1 x0 E Xo} = X(B,to,  Xo) = X[B] 

is the attainability domain at  time 8 front set Xo. 

The multivalued map X [ t ]  generates a generalized dynamic system. Namely the mapping 

X ( t l ,  t ,  -) : conv En -, conv En 

satisfies a semigroup property: whatever are the values t < r < 8,  ( t o  < f ,  8 5 t l )  we lmve 



The set-valued i m p ,  or in other words, the tube X[t], (X[to] = Xo) satisfies an evolutioil 

equation - a LLfunnel" equa.tion, ([14], [7]) - which is 

lim U-' h ( , ~ [ i  t u], [ ( I  t A(t)o),Y[t] t oP( t ) ]  n Y(t t a ) )  = 0, tu I t I t i ,  u++O (9) 

Here h(XIX") stands for the Hausdorff distance between XI, X" E conv Rn, namely 

h(xlX")  = max{h+(X1, Xu) ,  h-(XI, X")), 

where 

and h-(XIX") = h+(X", XI) are the HausdorfJ semi-distances, S is a unit ba.11 in Rn. 

Equation (9) is correctly posed and has a unique solution that  defines the tube X[t] = 

X(t,  to, Xo) for system ( I ) ,  (2), (3) if tlie map y ( t )  is such that  the support function 

f(t,!> = max{(!,p) I P E Y(t)) = I Y(t)) 

is Lipschitz continuous in t,  [7]. 

Using only one of tlie Hausdorff semi-distances in (9) leads to  the loss of uniqueness of the 

solutions, but complemented with an extremality condition we obtain alternative descriptions 

the multivalued ma.p X[t]. 

On one hand, consider 

lim ~ - l h + ( Z [ t  + a],  [ ( I  + A(t)u)Z[t]  + up] ( t )  n y ( t  + 0 ) )  = 0, to 5 t 5 ( l o )  u++o 

A set-valued map 2,[t] will be defined a.s a nzinimal solu.tioiz to  (10) if it sa.tisfies (10) for almost 

all t E [to,tl] and if there exists no other solution Z[t] to (10) such that  Z,[t] 3 Z[t]  for all 

t E [to,tl] and &[t] $ Z[t]. 

Equation (10) has a unique minimal solution under tlie conditions required for the existence 

and uniqueness of tlie solutions t o  (9). In this case X[t] E 2,[t]. 

On the other hand, by [8] we have that  

lim a - ' h - ( ~ [ t  + u], [ ( I  + A(t)u)W[t] n y ( t )  + o P ( t ) )  = 0, to < t < t l ,  u -++o  (11) 

has a unique masi1na.l solutio~l W*[t] - defined analogously to  tlie minimal solutiolls to  (10) - 

if, for example, y ( t )  is "upper semicontinuous" in t,  [I.]. and then X[t] r W*[t]. 



The Gua.ranteed State Estimatio~z problem may now be solved as follows. Suppose the 

measurement function y[t],tO I t I t l ,  of (6) is given and 

Denote X[t] = X(t ,  to, Xo) the attainability domain for system ( I ) ,  (2), (3), (12). Then 

X[t]  is known as the "informational domain " [3], (the "domain of consistency", the "feasibility 

domain", etc. [15], [12], [17]) for the state estimation problem ( I ) ,  (2), (4) ,  (5). In other words 

it is the set of states x[t] of system (1) a t  time t that  are coilsistellt with the constraints (2), 

(6), y(t) being given. 

If measurement y[t] = y, [t] is generated by an unknown triplet C, (2) = {xo, , u, (t ), v, (t)) due 

to  system (I ) ,  (4), tha t  is now 

where 

then the tube X,[t] generated by ( I ) ,  (3), (12), y[t] = y,[t] does always contain the unknown 

actual trajectory x,[t.] of the system. The tube X,[t] therefore gives a "gua.ranteed estimaten of 

the state of system (1) on the basis of a measurement y[t] of (4). 

In this paper we presume that  y[t] is Lipschitz-continuous in t ,  in order t o  coilform with the 

assertions of the above. The situation however allows a generalization t o  the case when y[t] is 

a function measurable on [to, tl]. Tlle respective mathematical details are beyond the scope of 

this paper. 

The solutions to  the Estimation Problems of this paper are therefore given through the 

evolution equations (9), (10). The objective is now t o  devise an algorthmic scheme for solving 

these equations. 

Equations (9), (10) yield a natural discrete-time scheme. 

3 The Discrete-time Scheme 

The discrete-time scheme can be given in two versions reflecting (9), (10) and ( l l ) ,  these are 

"first-order" schemes. 

X[t  + a] = [ ( I  + aA(t))A'[t] + a P ( t ) ]  n Y(t + 0 )  (15) 



that yield a convergence to  the continuous-time solutions. The inaiil problem, however, is that 

the X[t]'s are arbitrary convex compact sets being mathematically described through infinite- 

dimensional elements (e.g. through their support functions p ( l  I X[1]) = y( t , l ) ) .  Our objective 

is to  give a constructive scheme for their description by approxiinating them through finite- 

dimensional elements which, in this pa.per, are taken as ellipsoids and further, through ellipsoidal- 

valued functions. 

4 The Ellipsoidal Techniques 

Denote a nondegenerate ellipsoid as 

where a is its center and the symmetic matrix P > 0 determines its configuration. From here 

we have 

p(e I &(a, P)) = (t, a )  + (t, pe) l t2  

where the latter description also allows det P = 0. 

Suppose the sets Xo, P ( t ) ,  Q(t), y ( t )  to 5 t < t l ,  are ellipsoids, so that 

and the matrices 

The discrete-time scl~emes (15), (16) then make it necessary t o  handle the following opera- 

tions. 

and 

where &(a;, Q;), are given ellipsoids, Q; > 0, i = 1,2,3. 

This could be done through a combination of the following relations: 

(i) The sunz of ellipsoids 

Given ellipsoids &(a;, Q;), i = 1 , .  . . k, their sum 



which need not be an ellipsoid, could be approximated from above as 

where 

Lemma 4.1 The inclusion (18) is true whatever are the coefficients a; > 0, i = 1 , .  . . k. The 

following relation holds: 

(ii) The intersection of ellipsoids 

The intersection 

could be approximated from above as 

where B; is an ( n  x n)-matrix and the prime stands for the transpose. 

Lemma 4.2 The inclusion (21) is true, whatever are the (n  x n)-matrices B;, i = 1,. . . k that 

satisfy (22). The following equality is true 

A particular case of (22) is wheil the matrices B; are selected in the form of B; = o;I, 

i = 1 , .  . . k . The equality (23) is then transformed into 

The combination of (19) and (23) gives an exact external approxima.tion of ti by a family 

of ellipsoids that  ca.n be simulated through parallelization. Alnong these one may also select an 

optimal ellipsoid. 

A somewhat different scheme could be given along the lines of [15], [ l G ] ,  [2]. 

Under the constraints of (17) we coiue t o  the a.ttainability problem for the system 



The set X[t] for (25)) (2G), (27) may be approximated both externally and internally by 

ellipsoidal-valued functions. We will further deal only with the former case. (The schemes of 

internal ellipsoidal approximation for various attainability problems could be found in [13], [16]). 

Consider an evolution equation 

lim a-' . h-,(&[t + a],  (I + A(t)a)&[t] n &(y(t), Y(t)) + a&(p(t) ,  ~ ( t ) )  = 0, u++o (28) 

A function &[t] will be defined as a solution to  (28) if it satisfies (28) for almost all t E [to, tl] 

and is ellipsoidal-valued. Obviously the solution &[t] is non-unique and satisfies the inclusion 

Moreover 

X[t] = {E[t] / 6[t] is a solution to  (28) ) , to 5 t 5 t l .  

The ellipsoidal solutions &- [t] = I (x - ( t ) ,  X-(t))  to  (27) allow explicit representatiolls through 

appropriate systems of ODE'S for the centers x-(t) and the matrices X-(t)  > 0 of these ellip- 

soids, (see for example [2], [lG], [9], [lo], [l I.]). 

5 Guaranteed State Estiination as a Tracking Problem 

The center x+( t )  of the tube &+[t] allows a representation 

where f ( t ,  yt(-) ,  Mt(.)) is a nonlinear functional with memory on the actual measurement y,[t] 

of (12) and the para,metriza,tion A4(t). (For a given function h(.), the index t in h t ( . )  refers to  

the function defined by ht(s)  = h(t + s), to - t < s 5 0). 

According to  (13), the actual trajectory to  be estima.ted is x,[t]. The result of the (approxi- 

mate) estimation procedure is that  vector x-(t) tracks the actual trajectory x,(t) on the basis 

of the measurement y,[r] wit11 to 5 T I t .  This procedure is similar in nat,ure with a differential 



game of observatioiz, [3]. (A feedback duality theory for differential games of observation and 

control was indicated by [4]). 

What follows are the results of numerical simulatiolls for the estimation problems of the 

above, including the "tracking type" representation for the solutions. 

6 Numerical Examples 

We study a 4 dimensional system (1) over the time interval [O, 51 considering first the attainability 

problem under state constraints. 

The initial s tate is bounded by the ellipsoid XO = &(xo, Xo) a,t the initial moment to = 0 

with 

and 

M'e consider a case when the right lla,lld side is consta.nt: 

describing the position and velocity of two independent oscillators. Inputs u ( t )  are also bounded 

by time independent constraints P ( t )  = &(p(t), P(t)) :  



(this form of the bounding sets ma.kes the system coupled). State constraint (3) is defined by 

the data  

G(t )  = 

a projection, and y ( t )  = f (y( t ) ,Y(t ) )  with y(t) = 0 and 

Estimation Problem 1 

Figure 1: Tube of external ellipsoidal estimates of attainability sets. 

In Figure 1 we show the graph of external ellipsoidal estimates of the systenz outputs - with 

and without constraints - presenting them in four windows, accordiilg to  II of (7)  being equal 



to projections onto the planes spanned by the first and second, third and fourth, first and third, 

and second and fourth coordinate axes, in a clockwise order starting from bottom left. The 

drawn segments of coordinate axes corresponding to the output variables range from -30 to  30. 

The skew axis in Figure 1 is time, ranging from 0 to  5. 

Calculations are based on the discretized version of (25) and scheme (15), as well as analogous 

estimates in the case when y(t)  G Rn, that  is in the absence of state constraints. Trajectories 

of the centers are also drawn, the thick line corresponding t o  estimates of the nonconstrained 

outputs. 

Estimation Problem 'r 

\ 

Figure 2: Trajectories of the centers and final estima.tes in phase space 

Approsimating a general convex set by an ellipsoid means a compromise. This is seen in 

the right top window, where contrary to  one's expectation, the constra.ined estimate is "bigger" 



than the nonconstrained. Note however that  it is exactly these coordi~lates where the phase 

constraints are inactive, see (31). A modification of the scheme (15) or (16) would allow us to 

eliminate this "anomaly", but then we would loose accuracy in other directions. 

Figure 2 shows the trajectory of the centers, initial sets and the ellipsoidal estimates of the 

outputs in phase space, with the coordinate axes ranging from -10 to 10. 

We turn now to  the guaranteed state estimation problem interpreted as a tracking problem, 

of the form (13), (14) and (7) .  We keep the above parameter values of the time interval, A(t), 

& ( ~ ( ~ ) 1  P(t)) and ~ ( x o ,  X ~ ) -  

Tracking Problem 'I 

Figure 3: Time representation of ellipsoidal tracking - "worst" noise. 

W'e model the traject0l.y x*(t) of (14) - the one to be tracked - by using tile follorving 

for the triplet (*(t) = 0 ,  ( t )  ( t ) } .  The iiritial value 20. is a (ralldomly 



selected) element at  the boundary of the initial set Xo = &(xo,Xo),  and the input u,(t) and 

the measurement error v,(t) are so called extremal bang-bang type feasible disturbances. Tlie 

construction for u,(t) is the following. The time interval is divided into subi~ltervals of constant 

lengths. A value u is chosen randomly a t  the boundary of the respective bounding set, that  is 

here of P ( t )  = &(p(t), P ( t ) )  and its value is then defined by u,(t) = u over all the first interval 

and by u,(t) = -U over the second. Then a new value for u is selected and the above procedure 

is repeated for the next pair of intervals, etc. In equation (13) we take, for technical reasons, 

G(t)  to  be a 4 dimensional identity matrix. In the case of u,(t) we chose this interval to have a 

length of 0.25. 

Tracking Problem 'I 

L J 

Figure 4: Phase space representation of ellipsoidal tracking - "worst" noise. 

Tlie disturbance v,(t) on the illeasurelllellt y,[t.] is constructed in an analogous way, to be 



bounded by Q(t)  = &(q(t), Q ( t ) ) ,  lvitll q(t) - 0 and 

According to  the terminology used in identification theory, the set X*[t] is the error set of 

the estimation process, its size clearly depending on the nature of the measurement noise v,(t). 

As is expounded in 161, if we chose it in such a way that it takes a constant value a t  the boundary 

of &(q(t),Q(t)) over all the time interval under study, then it corresponds t o  the "worst case". 

This results in "large" error sets. 

In Figures 3 and 4 we see the same four cases of system outputs as before, in the respective 

four windows. The trajectory drawn with the thick line is of x,(t). The thin line represents the 

trajectory of the centers x+( t )  of the tracking ellipsoids. Figure 3 shows the process developing . 

over time, - the drawn segments of coordinate axes corresponding to the output variables range 

from -20 to 20. and Figure 4, displaying the initial sets of uncertainty (appearing as circles) 

and the confidence region at  the final moment only, in phase space. Coordinate axes range here 

from -10 to  10. 



Tracking Problem 'r 

L 

Figure 5: Phase space represelltation of ellipsoidal tracking - "better" noise. 

Figures 5 and 6 show how much the estinlation can improve if the noise changes from worst 

to  better - although we obtain here oilly external ellipsoidal estimates of the "true" error sets. 

Opposed to  the above where the interval of "stationarity" of the noise was longer than the 

interval [0,5] under consideration, we chose its length to  be 0.5 and 0.05, respectively. The 

range of coordinate axes is here again -20 to  20. 



Tracking Problem -I 

Figure 6: Phase space representation of ellipsoidal tracking - "even better" noise. 

Conclusions 

This paper indicates constructive algorithmic "ellipsoidal" procedures for the state estimation 

problem for dynamic systems under uilkllowll errors bounded by given instantaneous constraints. 

The "guaranteed" estimator may be presented as a tracking system that  tracks the un- 

known actual trajectory of the system. The procedures allow effective graphic simulation that  

is demonstrated here on a system of order four. 
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