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ABSTRACT 

The calculated life expectancy (whether by subpopulation-specific characteristics 
or by age-specific mortality rates) for aggregated subpopulations need not lie within 
the limits of the individual subpopulations' life expectancies. For two subpopulations 
and two age groups, we present a geometric interpretation of exactly what happens and 
indicate how this generalizes. Also, we give a complete algebraic characterization of 
when paradoxes can and cannot occur for the case of two subpopulations and two age 
groups. 
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PARADOXES WHEN COMPUTING LIFE EXPECTANCY 
OVER AGGREGATED SUBPOPULATIONS 

Deanna B. Haunsperger 

1. INTRODUCTION 

In a recent paper Andreev, Lutz, and Scherbov (1989) report on a paradox that 
can occur when computing life expectancy over aggregated subpopulations. Specifically, 
they discuss several occurrences of data for which the life expectancy of aggregated 
subpopulations, calculated by weighting the given age-specific mortality rates, need not 
lie within the range of the life expectancies of the subpopulations. They cite an example 
where, in the Soviet Republic of Azerbaydzhan, the life expectancy is 64.13 years for the 
male population, and the Baltic Republic of Estonia has a life expectancy of 64.23 years. 
Yet, when the two republics are combined into one, the life expectancy is 63.76 years, 
below that of either population. This aggregation problem - aggregated data sets giving 
unexpected (and seemingly impossible) conclusions when compared with the individual 
data sets - is not one peculiar to life expectancy calculations. It occurs in many aspects 
of the social and natural sciences (recent literature shows examples in decision theory 
(Haunsperger and Saari 1991) and nonparametric statistics (Haunsperger, to appear)) 
where non-linear methods are used when aggregating data sets. 

In this paper I will present a method of mathematically investigating when this 
phenomenon can occur. Specifically, in section three, I examine the case of two sub- 
populations separated into two age groups and characterize precisely when this paradox 
will and will not occur for this situation. 

2. WHEN AN AGGREGATION PARADOX CAN OCCUR 

Is the phenomenon which Andreev, Lutz, and Scherbov (1989) observed in the 
life expectancy calculations for the Soviet republics merely an anomaly? If this is the 
case then it should be of no concern when calculating life expectancies in this manner; 
however, if it is not an anomaly could further subclassification of the populations give an 
even lower life expectancy when aggregated? To begin to answer this question, assume 
one is given a set of k mortality vectors, one for each subpopulation, each mortality 
vector having as its ith component the mortality rate for the ith age group. Also, 
assume one is given a set of probability vectors, one vector pa for each age group a, 

( k )  where p, = (pb'),pb2), ,pa ), p?) = 1, and p?) is the fraction of the total 
h number of people in age group a t at are in subpopulation j. For this given set of 

mortality vectors and probability vectors, say a paradox occurs if the life expectancy of 
the aggregated subpopulations computed with the probability vectors lies outside the 



range of life expectancies computed for the subpopulations individually. Furthermore, 
say a mortality vector bounds from above (below) another mortality vector for the same 
age groups if each component of the mortality vector for the first is greater (less) than 
or equal to the corresponding component of the mortality vector for the second. 

Now, given a set of mortality vectors for subpopulations, a simple test to check if 
there exist probability vectors that give a paradox is the following: 

Theorem 1. Given a set of mortality vectors, one for each subpopulation of a 
population, there do not exist probability vectors (one for each age group) that give a 
paradox when computing the life expectancy of the aggregated subpopulations if and 
only if there exists a subpopulation whose mortality vector bounds all others from above 
and there exists a subpopulation whose mortality vector bounds all others from below. 

This condition on mortality vectors to avoid the possibility of a paradox is quite 
strict: only those sets of mortality vectors where one subpopulation has lower mortality 
rates in every age group than every other subpopulation and one subpopulation has 
higher mortality rates in every age group than every other subpopulation can avoid 
this paradox. As an example, consider the following set of mortality rates for five 
subpopulations, each with four age groups: 

For this set of mortality vectors no paradoxes are possible, as the mortality vector for 
subpopulation two bounds all others from above, and that for subpopulation one bounds 
all others from below. However, if 

instead, then a paradox would be possible. Perhaps the easiest way to see one is to let 
pb:) = = l,pb2,) = 1, and pb:) = 1, (with all other components of the probability 
vectors equalling zero). Then the mortality vector for the aggregated population is at 
least as high as the mortality vector for the second subpopulation in every age group 
and strictly higher in one age group. Since increasing any one mortality rate decreases 
life expectancy, the life expectancy for the aggregated population will be less than that 
for any subpopulation. 

The probability vector created to give the example above may be the easiest to 
see quickly, but it is not the only probability vector to give a paradox with those 
mortality rates. On the contrary, if there does not exist a subpopulation whose mortality 



vector bounds all others from below or there does not exist a subpopulation whose 
mortality vector bounds all others from above, then there is a positive probability of 
obtaining counter-intuitive results (a  paradox). This is proved for k = 2 subpopulations 
in Andreev, Lutz, and Scherbov (1989). An alternate proof for this is given in section 
three, and a geometric proof for any number of subpopulations and age groups is given 
in section four. 

3. A G E O M E T R I C  I N T E R P R E T A T I O N  F O R  T W O  SUBPOPULATIONS 
A N D  T W O  A G E  G R O U P S  

Consider the simplified situation where a population is split into two subpopula- 
tions, and mortality rates are given for each subpopulation for each of two age groups, 
a1 and a?. Let the first subpopulation (P I )  have mortality vector (mh:),mhy) = (a,c) 
and the second subpopulation (P2) have mortality vector (mi:), m g ) )  = (b, d). If p is 
the fraction of all the people in the first age group who come from PI, and q is the 
fraction of all the people in the second age group who come from P2, then 1 - p is the 
fraction of all people in the first age group who come from P2 and 1 - q is the fraction 
of all people in the second age group who come from PI .  The mortality vector for the 
whole population then is equal to (mhO,), mg) )  = (pa + (1 - p)b, (1 - q)c + qd), for any 
0 < p 5 1 and any 0 5 q < 1. Therefore, the possible mortality rates for the whole 
population define a rectangle in the positive quadrant of R2, where the mortality rates 
for a1 are on the horizontal axis, and the mortality rates for a2 are on the vertical axis. 

For example, let PI have the mortality vector m(') = (0.003,0.010), and let P2 
have mortality vector m(2) = (0.001,0.020). Then the rectangle in R2 is as in Figure 1. 

F I G U R E  1 

The rectangle of possible mortality rates for the aggregated subpopulations. 



There exists a one-to-one correspondence between the coordinates of points in the 
rectangle and the possible mortality vectors for the total population when weighting 
by age groups: the point ( r l ,  r2)  in the rectangle corresponds to (poa + (1 - po)b, (1 - 
qo )c + qod) for exactly one po and one qo . Also, there exists a one-to-one correspondence 
between the set of mortality vectors for the aggregated subpopulation and points of the 
rectangle. Therefore the point (rl , rg ) corresponds to using the mortality rate r l  for 
the first age group in the aggregated population and using rg for the second. Associate 
with every point of the rectangle the life expectancy calculated for the whole population 
using the coordinates as the mortality rates. The maximum life expectancy occurs when 
the mortality rate used for each age group is at a minimum, so at the point closest to 
the origin. Call this vertex Pmaz and the life expectancy calculated there Em,,. The 
minimum life expectancy, Emin, occurs when the mortality rate used for each age group 
is at a maximum, so it occurs at the vertex farthest from the origin, Pmin. 

Life expectancy is a continuous function of mortality rates, E = f (ma, , ma, ), so 
its value must vary continuously as a point moves through the rectangle. Given any 
continuous curve y(r l )  = rg from Em,, to Emin where dy/drl 2 0 for 0 5 r l  5 1, the 
life expectancy decreases continuously along it. Let Ei equal the life expectancy of Pi, 
i = 1,2. Continuous functions y cover the rectangle, and life expectancy E is defined 
for every pair of mortality rates, so consider the level sets Li, i = 1,2 for life expectancy 
where L, corresponds to E = E,, i = 1,2. 

Proposition 1. The level curves Li, i = 1,2 are continuous, non-intersecting 
curves that have the property: if ( r l ,  7-2) and ( r i ,  rk) are two points on Li, and if 
r l  > r i ,  then r2 < rb. 

From this characterization of these level curves comes an alternate proof to the 
result of Andreev, Lutz, and Scherbov (1 989): 

Theorem 2. Given mortality vectors for two subpopulations, each with two age 
groups, of which neither is bounded above (or below) by the other. There is a posi- 
tive probability of obtaining a paradox. That is, the Lebesgue measure of the set of 
probability vectors for the mortality functions which give rise to a paradox is positive. 

Proof. Let Lma, be the level curve where the life expectancy function has the value 
max{El, Eg). Similarly, let Lmin be the level curve where the life expectancy function 
has the value min{E1, E2 ). Neither mortality vector bounds the other either below or 
above; therefore, Em,, # {El, E g ) ,  Emin # {El, Eg). This implies Lma, # {Pma,) and 
Lmin # {Pmin). Now Lma, being a one-dimensional, smooth, nontrivial curve in the 
rectangle must separate the two-dimensional box into two nontrivial pieces of two-space: 
one which corresponds to life expectancies greater than that on L,,, and one which 
corresponds to life expectancies less than that on Lma,. The former, in particular, must 
have positive Lebesgue measure. A similar statement is true for Lmin. 

The life expectancy varies throughout the rectangle, and as each point of the rectan- 
gle uniquely identifies values for p and q, one could think of the value of life expectancy 



as being a function of p and q, E(p, q). If E(p, q) = El, where El is the life expectancy 
for the first subpopulation, this produces a level curve of the life expectancy function. 
Projecting this onto the plane of the rectangle, one sees a smooth curve emanating from 
Pl that shows precisely the values of p and q that will give a joint life expectancy of E l .  
Similarly, one sees a smooth curve emanating from P2 in the rectangle from projecting 
E(p, q) = Ez onto the plane of the rectangle. 

This allows for a geometric proof of the following result of Andreev, Lutz, .and 
Scherbov (1989): 

Proposition 2. The Lebesgue measure of the set of pairs (p, q) that give rise to 
El in the joint life expectancy calculation is zero. 

Proof. The Lebesgue measure of a smooth, one-dimensional curve in RZ is zero. 

More can be shown about the two level curves, E(p, q) = El and E(p, q) = E2. In 
particular, the concavity of their graphs follows from an investigation of the functions. 

Proposition 3. Thinking of q as a function of p (that is, q(p)), E(p, q) = El and 
E(p, q)  = E2 are both concave up. 

That is, the only graphs of these two level curves possible are those similar to the 
graphs of Figure 2. 

Assume for the moment that El > E2. This implies the level curve E(p, q) = E2 
lies above and/or to the right of the level curve E(p, q) = El, (as in Case 1 of Figure 
2). Any point of the rectangle that lies above and/or to the right of the level curve 
E(P, q)  = E2 has a life expectancy associated with it that is less than E2, and, hence 
gives rise to a paradox. Any point of the rectangle that lies below and/or to the left of 
the level curve E(p, q)  = El has a life expectancy associated with it that is greater than 
El, and, hence, gives rise to a paradox. Similar statements are true if E2 > El, (as in 
Case 2 of Figure 2). Thus, the only points of the rectangle that do not give rise to a 
paradox are those between or on the two level curves E(p, q) = El and E(p, q) = Ez 
(which corresponds to the white area in the graphs of Figure 2). 

When weighting life expectancy by subpopulation-specific characteristics such as 
birthrate, available resources, industrial development of the area, etc., the life expectan- 
cies that are calculated fall into a (possibly) more-restricted range. In particular, 
weighting by subpopulation-specific characteristics corresponds, geometrically, to the 
convex-hull of (that is, the line segment joining) the points Pl and P2. 

One might wonder if weighting life expectancy by subpopulation-specific charac- 
teristics would avoid this paradox. However, from the graphs in Figure 2, one can see 
that 



FIGURE 2 
Case 1. E2 < El .  

I 
I 

b 4 
n?% 

Case 2. El < E2. 

The dotted areas correspond to mortality rates whose calculated life ex- 
pectancy is less than either El or E2. The shaded areas correspond to 
mortality rates whose calculated life expectancy is greater than either El 
or E2. 

this is not the case: a paradox from weighting by subpopulation-specific characteristics 
(that is, along the convex hull) occurs whenever either of the two level curves E(p, q) = 
El or E(p, q) = E2 crosses (or "cuts through") the convex hull of {PI, P2). For the 
following, one can assume, without loss of generality as  neither the mortality vector for 
Pl nor the mortality vector for P2 bounds the other from above or from below, a > b 
a n d d > c .  



Theorem 3. 
a) A paradox arises from E(p, q) = El crossing the convex hull w El < E2 and 

(d - c)(4 - n2a2) > (a - b)(12 + 8nc + n2c2). If such a paradox does arise, the Lebesgue 
measure of the set of points along the convex hull that gives paradoxes is: 

i i )  A paradox arises from E(p, q) = E2 crossing the convex hull w El > E2 and 
(d - c)(4 - n2b2) < (a - b)(12 + 8nd + n2d2). If such a paradox does arise, the Lebesgue 
measure of the set of points along the convex hull that gives paradoxes is: 

These two statements characterize precisely when paradoxes can and cannot occur along 
the convex hull, that is, when weighting using subpopulation-specific information. The 
first of the two statements (3i) says that a paradox can only occur from the convex hull 
crossing E(p, q) = El if El < E2. This says that the only type of paradox that can occur 
in (3i) results in the life expectancy calculation being lower than either El or E2 (see 
the first and third graphs of Figure 2). The second statement (3ii) says that a paradox 
can only occur from the convex hull crossing E(p, q) = E2 if E2 < E l .  This implies that 
the only type of paradox that can occur in (322) results in the life expectancy calculation 
being lower than either El or E2. AS the only types of paradoxes that can occur along 
the convex hull are the result of E(p, q) = El or E(p, q) = E2 crossing the convex hull, 
a corollary to Theorem 3 follows: 

Corollary 3.1. If a paradox occurs from weighting according to subpopulation- 
specific information, then it must result in a life-expectancy calculated for the aggre- 
gated subpopulations that is lower than either individual life expectancy. 

Further, as it not possible for both El > E2 and E2 > El at the same time, 

Corollary 3.2. For fixed a, b, c, d it is not possible to get paradoxes both from 
E(p, q) = El crossing the convex hull and from E(p, q) = E2 crossing the convex hull. 

Moreover, there are many examples of mortality vectors where neither (3i) nor (3ii) 
hold. In particular, the algebraic conditions of Theorem 3 require the following: 

Corollary 3.3. A necessary condition for the existence of a paradox when weight- 
ing by subpopulation-specific characteristics is (d - c)/(a - b) > 3. 

See, for example, the second and fourth graphs of Figure 2. If neither of the 
two mortality vectors bounds the other from above or from below however, then para- 
doxes can arise when calculating the life expectancy for the aggregated subpopulations. 
Therefore we have: 



Corollary 3.4. There exist mortality rates whereby weighting with age-specific 
populations gives a paradox, yet weighting by subpopulation-specific characteristics (the 
convex hull) does not. 

On the other hand, it follows from an earlier proposition, as the level curves are 
concave up (see Figure 3), that the level curve for E(p, q) = El when El = E2 touches 
the convex hull only in the two points PI and P2. Thus, 

Corollary 3.5. If El = E2 and mortality vectors for the two subpopulations are 
different, then each point of the convex hull, except { P I ,  P 2 )  yields a paradox. 

FIGURE 3 

When El = E2 but PI and P2 have different mortality vectors. 

Finally, as the calculation of life expectancy is continuous in the variables a, b, c, d,  
one can conclude: 

Theorem 4. When weighting by characteristics specific to the subpopulations, the 
Lebesgue measure of the set of probability vectors that gives a paradox can be anything 
between 0 and 1 (depending on how close El and E2 are.) 



4. MORE THAN TWO SUBPOPULATIONS AND MORE THAN TWO 
AGE GROUPS 

Extend this idea of a rectangle containing the level curves of life expectancy to mul- 
tiple subpopulations and multipe age groups. More subpopulations define a rectangle by 
letting the sides of the rectangle, or the length in each direction, be determined by the 
smallest and the largest mortality rate in each age group. No longer do subpopulations' 
mortality rates need to occur on the vertices or even on the edges of the rectangle. (By 
definition, however, every edge must contain at least one point.) Now, each axis of the 
plane holding the rectangle corresponds to an age group. Therefore, adding age groups 
corresponds to adding dimensions: for w age groups, where the mortality rates in each 
age group are not constant, the rectangular box has w-dimensions. 

As in Proposition 1, the level sets Li = Ei, i = 1,2,. a s ,  k (where k is the number 
of subpopulations) are smooth (since the life expectancy function has infinitely many 
derivatives), non-intersecting hypersurfaces of co-dimension one in the w-box. They, 
too, have the property that if lines parallel to all of the axes are drawn through any 
point r of level surface Ej, for any j, then they each touch Ej only in r .  

Given k subpopulations and w age groups, create the w-dimensional box with points 
PI,  P2, - - - , Pk and corresponding level sets through those points L1, L2,.  . . , Lk. Let 
L,,, denote the level set that is closest to the origin and Lmi, denote the level set that 
is farthest from the origin. L,,, and Lmi, are unique since level sets do not intersect. 

A generalization of Theorem 2 to more than two subpopulations and more than 
two age groups gives the following: 

Theorem 5. The probability of a paradox occuring when given subpopulations 
whose mortality vectors are not bounded from above and from below by mortality 
vectors has positive Lebesgue measure in the space of all combinations of mortality 
vectors possible for the aggregated subpopulations. 

5. PROOFS 

Proof of Theorem 1. Assume there exists a subpopulation whose mortality vec- 
tor bounds all others from below and a subpopulation whose mortality vector bounds all 
others from above. The mortality vector for the aggregated subpopulations is computed 
in each component by a linear combination of the mortality rates from the subpopula- 
tions in that age group. For any particular age group, the minimum mortality rate for 
the aggregated subpopulations is attained by the subpopulation whose mortality vector 
bounds all others from below. Similarly, the maximum mortality rate for the aggre- 
gated subpopulations is attained by the subpopulation whose mortality vector bounds 
all others from above. Now, as the life expectancy function has negative first partial 
derivatives with respect to the mortality rates for the age groups, the minimum life ex- 
pectancy for the aggregated subpopula.tion occurs when the mortality rate for each age 



group is at its maximum. However, the subpopulation whose mortality vector bounds 
all others from above attains this minimum life expectancy. Similarly, the subpopu- 
lation whose mortality vector bounds all others from below attains the maximum life 
expectancy possible for the aggregated subpopulations. Therefore, all life expectancies 
calculated for the aggregated subpopulations, no matter what probability vectors are 
used, fall between this maximum and minimum. Hence, no paradoxes can occur. 

Assume now there does not exist both a subpopulation whose mortality vector 
bounds all others from below and a subpopulation whose mortality vector bounds all 
others from above. First, assume that no subpopulation has a mortality vector which 
bounds all others from below. Then assign probablities so that in each age group 
the subpopulation with the lowest mortality receives full weight. This yields a set of 
probability vectors which give a mortality vector for the aggregated subpopulations 
whose calculated life expectancy is higher than the life expectancy calculated for any 
one subpopulation. A similar result is obtained if one assumes that no subpopulation 
has a mortality vector which bounds all others from above. 

The calculation of life expectancy using age-specific mortality rates when 
in the situation of two subpopulations and two age groups. Using standard 
notation, see Keyiitz (1977), life expectancy for two age groups is computed as follows: 

where eo is the life expectancy for a person at age 0, To is the total number of person- 
years lived, 1, is the number of people alive at age x, L, is the total number of person- 
years lived in the interval from x to x + n, d, is the number of people who die in the 
interval from x to x + n, and q, is the probability of dying in the interval from x to 
x + n. Now, q, is calculated from m, by the following: 

nmz 
qz = 

1 + fm, '  

Therefore, if a population has mortality vector (ma,, ma,) = (a, c), say PI, then 
qo = na/(l  + (n/2)a) and qn = nc/ ( l+  (n/2)c), so 



Similarly, if, say, P2 has mortality vector (ma,, ma,) = (b, d), then 

Recall that the fraction of people in the first age group that are in the subpopulation 
PI is p. This implies that the fraction of people in the first age group that are in the 
subpopulation P2, is 1 - p. Also recall that the fraction of people in the second age 
group that are in PI is 1 - q. Similarly, then, the fraction of people in the second age 
group that are in P2 is q. This gives age-specific mortality rates for the aggregated 
subpopulations of (pa + (1 - p)b, (1 - q)c + qd). This implies: 

Hence, E(p, q)  equals 

Proof of Proposition 1. This follows from the fact that the life expectancy 
function has negative first partial derivatives with respect to the mortality rate for any 
age group. That is, if E = f (ma,,  ma,) then df /dma, < 0 and df /dma2 < 0. 

Lemma. Each of the mortality rates a, b, c, d is less than !. 

Proof of Lemma. As qo and q, are each between zero and one (they are proba- 
bilit ies) , this implies, for example, that 

This, in turn, implies that 0 5 a < !. The same is true for each of the other mortality 
rates. 

Proof of Proposition 3. Without loss of generality, as there do not exist mortality 
vectors which bound from below or from above, assume a > b and d > c. First, consider 
the level curve E(p, q )  = El .  That is, 



Letting B = pa + (1 - p)b and D = (1 - q)c + qd ~ ie lds  

Multiplying both sides by (2 + nB)(2 + nD)(2 + na)(2 + nc) then simplifying reduces 
t 0: 

( B  - a)(12 + 4nc + 4nD + n 2 c ~ )  + ( D  - c)(4 - n 2 a ~ )  = 0. 

After substituting back in for B and D and simplification, one can solve for q in terms 
of p: 

Taking the derivative of this function, one sees that, 

Note that (n2a2 - 4) is negative, and all other terms are positive, so the first derivative 
of q(p) is always negative. This implies that the function q(p) is decreasing. 

Taking another derivative and simplifying, one obtains the expression: 

for the second derivative of q with respect to p. 

The numerator of dZq/dp2 is always negative. (The factor (n2a2 - 4) is negative by 
the lemma above and all other factors are positive). The second derivative can change 
sign, however, if the denominator is zero. We are interested only if the concavity changes 
within the boundaries of the rectangle. 

Call the point where the function q(p) crosses the line q = 1, (p*, 1). As the 
function q(p) is always decreasing, the value of p that makes the denominator of the 
second derivative zero, call it pcr,t, must lie between p* and one for the concavity change 
to occur within the rectangle. Now, 



Thus, p* 5 peril implies, with simplification, n2a2 2 4, which is a contradiction by the 
lemma. Therefore, the second derivative does not change sign within the rectangle, and 
hence the function does not change concavity. 

To discover the concavity of the function, it is enough to check the sign of the 
second derivative at one point within the interval [p*, 11. (It is easiest to check when 
p = 1.)  One finds the sign of the second derivative positive, and thus, the graph of the 
level curve projected into the plane of the rectangle is concave up. 

Now consider the level curve E(p ,  q)  = E2.  That is, 

Making substitutions similar to above and simplifying, one can again solve for q in terms 
of p: 

-p(a - b)(12 + 4nd + 4nc + n2cd + n2b(d - c ) )  + ( d  - c)(4  - n2b2) 
= p(a - b)(d - c)(4n + n2d - n2b) + ( d  - c)(4 - n2b2) 

Taking the derivative of this function, one obtains 

Note that all factors are always positive, so the first derivative of q(p) is always negative, 
which implies that the function q(p)  is decreasing. 

Taking another derivative and simplifying, one sees that the second derivative is 
given by: 

The numerator of dZq/dp2 is always positive. The second derivative can only change 
sign, therefore, when the denominator is zero. Again, we are only interested if the con- 
cavity changes within the boundaries of the rectangle. The point where the denominator 
is zero is 

- (4  - n2 b 2 )  
Pcrit = ( a  - b)(4n + n2d - n2 b )  ' 



This critical value is negative, however, and therefore does not correspond to a point 
within the rectangle. 

One sees by substituting a point (say, p=O) into the second derivative that the sign 
of the second derivative is positive, and thus, the graph of this level curve projected 
into the plane of the rectangle is concave up. 

Lemma. El > E2 (b - a)(12 + 4nc + 4nd + n2cd) + (d - c)(4 - n2ab) > 0 

Proof of the Lemma. If El > E2 then 

Therefore, 

Which yields, after simplification, 

If El < E2 then a similar simplification shows 

(b - a)(12 + 4nc + 4nd + n2cd) + (d - c)(4 - n2ab) < 0. 

Proof of Theorem 3i). Consider the level curve E(p, q) = El in the rectangle. It 
crosses the convex hull of {PI,  P2) in the point PI and in at most one other point. (At 
most because the level curve in concave up.) Thus, the three cases possible are as in 
Figure 4. Notice that if E(p, q) = El touches the convex hull only in the point PI, then 
no paradoxes arise along the convex hull from that level curve. Therefore we want to 
investigate what can happen when E(p,q) = El touches the convex hull in two points. 



FIGURE 4 

The three cases possible for E(p ,  q )  = E l .  

The convex hull of {PI, P2) is precisely the line segment connecting PI and P2, or 
part of the line q = 1 - p. Therefore, these two curves cross when E(p,  1 - p) = E l .  
That implies 

Simplifying, one reduces it to: 

Rearranging leads to: 
2 

P2 [ (a  - b)(d - c)(n2a - 4n - n c)]  

+p[ (a  - b)(d - c) ( -n2a  + 4n + n2c) + ( a  - b)(12 + 4nc + 4nd + n2cd) - (d  - c)(4 - n2ab)] 



As p = 1 is a solution to this quadratic equation (p = 1 corresponds to the point Pl 
which we know is on the convex hull of {PI, P2)), then long division yields the other 
solution: 

- -(a - b)(12 + 4nc + 4nd + n2cd) + (d - c)(4 - n2ab) Pcross - (a - b)(d - c)(n2a - 4n - n2c) 

Now pcross corresponds to a point inside the rectangle if and only if 0 < pcross < 1, 
which is true if and only if: 

and 
(d - c)(n2a2 - 4) < (b - a)(12 + 8nc + n2c2). 

Finally, if pcross is a point within the rectangle, then the Lebesgue measure of the points 
of the convex hull of {PI, P2) that gives paradoxes is 1 - pcross. 

Proof of Theorem 3ii). Consider the level curve E(p, q) = E2 in the rectangle. 
Similar to the proof of (3i), we note that this level curve crosses the convex hull of 
{PI, P2)  in the point P2 and in at most one other point. Again, if E(p, q) = E2 touches 
the convex hull only in the point P2, then no paradoxes arise along the convex hull from 
that level curve. Therefore, we will again look at what happens when E(p, q)  = E2 
touches the convex hull in two points. 

The convex hull of {PI, P2)  and the projection of the level curve E(p, q )  = E2 into 
the rectangle cross precisely when E(p, 1 - p) = E2. That implies 

Simplifying and rearranging leads to: 

As p = 0 is a solution to this quadratic equation (p = 0 corresponds to the point P2 
which we know is on the convex hull of {PI, P2)), then the other solution is: 

- -(a - b)(12 + 8nd + n2d2) + (d - c)(4 - n2b2) Pcross - (a - b)(d - c)(-4n - n2d + n2b) 

Now, pcross corresponds to a point inside the rectangle if and only if 0 < pcross < 1, 
which is true if and only if: 

(b  - a)(12 + 4nc + 4nd + n2cd) + (d - c)(4 - n2ab) > 0 
and 

(d - c)(4 - n2b2) < (a - b)(12 + 8nd + n2d2). 

Now, if pcroSs corresponds to a point inside the rectangle, then the Lebesgue mea- 
sure of the set of points of the convex hull of {PI, P2)  that corresponds to paradoxes is 
Pcross . 
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