
Working Paper 
Generalized Urn Schemes and 

Technological Dynamics 

G. Dosi 
University "La Sapienza", Rome, Italy 

Yu. Ermoliev 
V. M. Glushkou Institute of Cybernetics, Kiev, 

USSR 

and 

Yu. Kaniovski 
IIASA, Laxenburg, Austria 

WP-91-9 
April 1991 

rblll ASA International Institute for Applied Systems Analysis A-2361 Laxenburg o Austria 

..I. Telephone: +43 2236 715210 Telex: 079 137 iiasa a Telefax: +43 2236 71313 



Generalized Urn Schemes and 
Technological Dynamics 

G. Dosi 
University "La Sapienza", Rome, Italy 

Yu. Ermoliev 
V.M. Glushkov Institute of Cybernetics, Kiev, 

USSR 

and 

Yu. Kaniovski 
IIASA, Laxenburg, Austria 

WP-91-9 
April 1991 

Working Papers are interim reports on work of the International Institute for Applied 
Systems Analysis and have received only limited review. Views or opinions expressed 
herein do not necessarily represent those of the Institute or of its National Member 
Organizations. 

HIIASA International Institute for Applied Systems Analysis o A-2361 Laxenburg o Austria 

Telephone: +43 2236 715210 o Telex: 079 137 iiasa a Telefax: +43 2236 71313 



Foreword 

Adaptive (path dependent) processes of growth modeled by urn schemes are important for 
several fields of applications: biology, physics, chemistry, economics. 

In this paper several macroeconomic models of technological dynamics are studied by the 
means of adaptive processes of growth. One of the models tackles the case when there is a 
separation within the pool of adopters which can be interpreted as the outcome of adaptive 
learning on the features of the new technologies by imperfectly informed agents. Others deal 
with dependence of final market shares of two technologies on the pricing policies of the firms 
which produce them. The stochasticity of the processes is caused by some mixed strategies used 
by the adopters orland imperfectness of the information which they posses. 

To study these conceptual problems some modifications of the basic results concerning the 
generalized urn scheme are given. 

Alexander B. Kurzhanski 
Chairman 

System and Decision Sciences Program 
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1 Introduction 

The competition among new technologies is clearly a fundamental aspect of the process of growth 

and transformation of contemporary economies. So it is the competition among different firms 

which embody different technologies, different expectations and, possibly, show different market 

behavior. In turn, it is increasingly acknowledged that technological innovations are likely 

to  involve some forms of dynamic increasing returns, i.e., some positive feedbacks along their 

diffusion trajectories (cf. Dosi et al. (1988) and Anderson et al. (1988); for an interpretation 

of the empirical evidence, Dosi(1988)). To study the underlying competitive process a wide 

variety of mathematical approaches has been suggested within and outside economic analysis, 

e.g., ordinary differential equations (as in Polterovich and Henkin (1988))) in particular with 

trajectories on the unit simplex, i.e., of the population type (as in Silverberg et  al. (1988))) 

and generalized urn schemes which generate stochastic dynamic systems with discrete time and 

trajectories from the unit simplex (cf. Arthur (1988) and Arthur et  al. (1983) and (1987~)) .  

In the following we shall present some extensions of the later approach able to  handle positive 

feedbacks that  are only "local" - in the sense that  they occur only under particular states on the 

diffusion trajectory -, or the co-existence of both positive and negative feedback mechanisms 

in the competitive process (the simplest variants of the models presented here can be formally 

reduced to the ones considered in earlier works (Arthur (1988)) Arthur et  al. (1983) and (1987~)) .  

We shall apply these generalized urn schemes to  two topics concerning competiilg technologies. 

In the first topic, we study the dependence of limit market shares from some inised stl.a.tegies 



used by risk-averse adopters of the technologies. Conceptually, these mixed strategies, which 

generate some separation within the pool of adopters, can be interpreted as the outcome of 

adaptive learning on the features of the new technologies by imperfectly informed agents. For 

example, one may assume that  the later decide by observing the choice of previous adopters 

and "trusting" them, to  different degrees. Such a behavior is also easily interpretable in terms 

of "bounded rationality", and/or some interdependence in the returns to  individual adopters, 

depending on the relative frequences of the chosen technologies. Economic examples of such 

interdependences are particular clear with respect t o  innovation and innovation diffusion (cf. 

Arthur (1988), David (1985) and (1991), Dosi (1988), Hanson (1985)) whereby dynamic increas- 

ing returns and various sorts of externalities are generally observed. However, the modeling 

techniques suggested here could be in principle applied, with the proper modifications, to  other 

economic domains involving interdependence of expectations (such as those discussed in e.g., 

(Frydman (1982) and Frydman and Phelps (1983))) and speculation. 

The second topics we consider concerns the dependence of final market shares of two tech- 

nologies on the pricing policies of the firms which produce them. In the following, we suppose 

that  each of the firms until they reach a certain market share (measured by the proportion 

of units of the technology they produce among all units of all technologies which have been 

sold up to  that  time). Above that  share, prices are increased. An economic interpretation of 

such a behavioral hypothesis is that  firms - as often found in the business literature - follow 

strategies aimed a t  market pre-emption and a t  learning economies until they reach a dominant 

market position which they can exploit thereafter. Whether such pricing policies can be de- 

rived from strategies of intertemporal profit maximization under imperfect information or not 

is by no means essential to  the model. In principle, it is meant to  analyze the share dynam- 

ics of different technologies with endogenous prices (no mater whether the later microfounded 

on intertemporally optimizing agents or not). At each time, prices of each technology can be 

different but adopters may not instantly switch from one to another due to  e.g., imperfect in- 

formation, network externalities, etc. Indeed, the stochasticity of the process is caused by some 

mixed strategies used by the adopters in the case of approximately equal prices on competing 

technologies. 

Well beyond the two specifications of the model which we are going to present here, one 

of our aims is to  illustrate the general applicability to  economic and technological dynamics of 

generalized urn schemes which generate discrete time stochastic dynamic systems with multiple 

equilibria. Stable of them turn out to be attainable (i.e., they realize with positive probabilities). 

They represent those limit proportions of competing technologies which are feasible. In the 

following we shall use known results (Arthur et al. (1987a), (1987b), (1988), Hill et al. (1980)) 



concerning generalized urn schemes also some further developments. 

In section 2 we shall present the basic theorems on generalized urn schemes. Section 3 studies 

technological competition with imperfect information and endogenous preferences for the two 

technologies. In section 4 we analyze the case with endogenous prices. 

2 The Theory of the Generalized Urn Scheme 

Think of an  urn of infinite capacity with black and white balls. Starting with n, 2 1 white 

balls and nb >_ 1 black balls into the urn a ball is added into the urn a t  time instants t = 1 , 2 . .  .. 
It will be white with probability f ( X t )  and black with probability 1 - f (Xt) .  Here f(.) is a 

function (it is called sometimes (Hill et al. (1980) urn function), which maps R ( 0 , l )  ( R ( 0 , l )  

stands for the set of rational numbers from (0 , l ) )  in [0, 1.1. By X t  we designate the proportion 

of white balls into the urn a t  time t .  Then the dynamics of X t  is given by the relation 

Here (t(x), t 2 1, are independent on t random variables such, that  

1 with probability f (x) , 
t t (x)  = 

0 with probability 1 - f (x)  . 

Designate &(x) - E[t(x) = (t(x) - f (2) by Ct(x), then we have 

Due t o  EC(x) = 0 the system (1) shifts on average a t  time t 2 1 and fixed Xt = x on the value 

(t + n, + nb)-'[ f (x) - x]. Consequently limit points of the sequence {Xt)  have t o  belong to  the 

set B of zeros of the function f (x )  - x (for x E [0, 11). The following statement confirms this 

hypotheses. 

Theorem 1 (Arthur et al. (1987'6)) The sequence {Xt) converges a.s .  to the set B .  

Because we do not require here continuity of the function f( .) ,  then the set B has to  be 

defined properly. Put  

B = {x E [O, 11 : [ G ( X ) , ~ ( X ) ]  3 0) , 
- 

where g(x) = inf limk ,m[ f (xk)  - xk]  and a(x)  = sup limk-m[ f (xk)  - xk]. Here "inf" and "sup" 

are taken over all sequences of rational numbers {xk) converging to  x.  

It is easy to  see that  if all of the connected component of B a r e  singleton, then the coilvergence 

to  B implies convergence of the sequence {Xt) .  As i t  was shown in (Arthur et al. (1987b) and 

Hill et al. (1980)), if the set 



G = {z E B : Vc > 0 3 ~ ; ,  y$ E R(0, l ) ,  which belong to (x - t , z )  or  ( x , z  + E ) ,  such, that 

f(y,) < Y, and f(y,+) > Y,+) 

is nowhere dense, then the sequence {Xt) turns out to  be a.s. convergent even in the case, when 

B can contain intervals. 

An isolated point 8 E B we call stable if there exist €1 > 0 and €2 > 0 such, that  for 

€1 5 1x - 81 5 c2(x E R ( 0 , l ) )  the following inequality holds 

We shall say that  an  isolated point 8 E B is unstable if there exists > 0, such that  

for x E R ( 0 , l )  n [(8 - €,8) u (8,8 + c)]. 

T h e o r e m  2 Let 8 E B be a stable point, 8 E (0 , l ) .  Also there exist €1 > 0 and €2 > 0 such, 

that the following inequalities hold 

f (x) > 0 for x E R ( 0 , l )  n (8 - cl, 8) , 

f (x) < 1 for x E R ( 0 , l )  n (8,8 + €2) . 

Then P{limt,, X t  = 8) > 0 for every X1 E (8 - c1,8 + €2). 

Proof of the theorem is essentially similar t o  ones given in the papers (Arthur et al. (1988) 

and Hill et al. (1980)). We shall note only, that  the requirements on f( .)  allow to  shift to  the left 

for X1 > 8 and t o  the right for X1 < 8 inside (8 - c l , 8  + c2) with positive probability through 

a corresponding finite number of steps. 

T h e o r e m  3 Suppose that 8 E B is an unstable point, 8 E ( 0 , l )  and one of the following 

conditions holds true: 

1 .  into a neighborhood of 8 the function f (.) is continuous; 

2. there exists c > 0 such, that for z E (8 - c ,8  + 6 )  n R ( 0 , l )  it will be 

3. into a neighborhood of 8 for z 5 8(x > 8)  one of the conditions 1 )  or  2) holds true and 

for x > 8 ( z  < 8) it will be f ( x )  = l ( f ( z )  = 0). 



Then P{limt,, X t  = 8 )  = 0 for every X1. 

Remark 1 The condition 3) diflers from conditions 1 )  and 2)  because it permits that f ( x ) [ l  - 

f ( x ) ]  equals zero in a neighborhood of 8. (Indeed, condition 2) postulates positiveness of the value. 

In the case of condition 1) from continuity o f f ( . )  at 8 we have f (8)[1  - f ( 8 ) ]  = 8(1 - 8 )  > 0 

and, consequently, the positiveness o f f  ( x ) [ l  - f ( x ) ]  take place in  a neighborhood of 8.) 

Proof The case with continuous f ( - )  was studied in (Hill et al. (1980)) .  Under condition 2 )  

we can apply results from (Arthur et al. (1988)). Let condition 3)  hold and f ( x )  = 1 for x > 8. 

We argue in the following way. 

Note, tha t  

im X t  = 8 )  = P{ lim X t  = 8 ,  X, 5 8,  s > 1)+ 
rn t-00 

im Xt = 8,  X, > 8 for some s > 1 )  
p{?'OO 

It is clear, that  the second term here equals zero. (Because the process Xt, t > 1, cannot move 

to  the left from a point lying t o  the right of 8.) If f (.) is continuous to  the left of 8 we put 

for 2 1 8 ,  
i < x )  = 

min[l, x + k ( x  - 8)]  for  x > 8 , 

where k > 1. Otherwise 

for x 5 8 ,  
i ( x )  = { ; : ~ 8 ) / ~  for x > 8 .  

Using results of the papers (Arthur et al. (1988) and Hill et al. (1980))  we have for the process 

Yt, t 2 1, corresponding to  j(.), 

for every Yl. Hence for Yl = XI we obtain 

Consequently the first term in ( 2 )  equals zero too. The case, when f ( x )  = 0 for x < 8 can be 

studied similarly. 

The theorem is proved. 

Conditions of convergence with positive probability to points 0 and 1 are given by the next 

theorem. 

Theorem 4 (Arthur et al. (1983)).If f ( n w ( n w  + nb + t ) - ' )  < 1 for t > 0 and Ct,o - f ( n w ( n w  + 
nb + t ) - l )  < m, then P{lirnt,, X t  = 0 )  > 0.  Also i f  f ( ( n ,  + t ) ( n w  + nb + t ) - l )  > 0 for t > 0 

and Ct>o[l  - - f ( ( n w  + t ) ( n w  + nb + t ) - I ) ]  < m, then P{limt,, Xt  = 1)  > 0.  



The following statement gives conditions, which ensure convergence of { X t )  with positive 

probability to  nondegenerate intervals in every point of which f (x )  = x. It can be proved by 

arguments, which are similar to  ones given in (Arthur et al. (1988)). 

Theorem 5 Let (a, b) B, a < b, and f (x) = x V x E (a,  b) n R(0, l ) .  Also suppose, that 

there exist cl > 0 and €2 > 0 such, that f (x )  > 0 for x E (a - €1, a )  n R ( 0 , l )  and f (x )  < 1 for 

x E ( b ,  b + c) n R(0 , l ) .  Then P{limtdm p(Xt, (a, b)) = 0) > 0 for every X I  E (a - €1, b + c2). 

(Here p(y, Y) is the Euclidean distance in R1 from the point y to the set Y .) Moreover, if X t  

a.s. converges to Xo, then P{Xo E (a,  b)) > 0 for every X I  E (a  - €1, b + c2). 

In conclusion we shall note, that  for f(-) ,  which depends on time, i.e., a t  time instant t 

balls are added with probabilities f t(Xt)  and 1 - f t(Xt) ,  in such a way that  C t > l  t-'crt < cm, - 
Theorems 1-5 are valid too. Here crt = S U ~ , ~ ~ ~ , ~ I ~ ~ ( ~ , ~ )  I f t(x) - f (x ) ) .  

Now we are ready to  formulate the main conceptual results of the paper. 

3 Sharing a Market of Risk Averse Adopters with Two New 
Competing Technologies 

On the grounds of the foregoing apparatus let us examine the dynamics of two competing 

technologies. Consider an adoption of a unit of the A technology as an addition of a white ball 

into an urn and an adoption of a unit of the B technology as an adoption of a black ball. The 

problem can be easily put into the framework of the generalized urn scheme. Let us generalize 

the model introduced by W.B. Arthur in (Arthur et al. (1983)). 

Suppose that  the two technologies, A and B, are identical in terms of some utility measure for 

the adopters. However, the latter are only imperfectly informed about them so that  they make 

their choices by asking an odd number m > 1 of adopters who are already using the technologies. 

An alternative hypothesis to the same effect is that there are positive (or negative) externali ties 

in adoption which change the returns to  the user along the diffusion process, but adopters in 

order t o  estimate them can only sample a fixed number of users. In both cases, we assume 

that  any new adopter will choose with probability cr the technology used by the majority of the 

sample m and with probability 1 - cr the technology of the minority of them. 

For cr = 0 or cr = 1 the model coincides with ones considered in (Arthur et al. (1983)). The 

probability to  choose A as a function of X A ,  has the following form: 

pA(xA) = ~ X A  + (1  - cr)(l - xA) = (1 - a )  + (2a  - l )xA for m = 1 

and 



Figure 1 

(2a - l)p(m, zA) + o(1) for m > 1 , 

. . 
where p(m, 2)  = CL(m+l)12 Ckz i ( l  - Z ) ~ - ' ( C &  is the number of combinations form m to i ) ,  

also o(1) goes zero as O(n-') uniformly on x E [O,1] for n -+ CCI (here n designates the number of 

consumers who have adopted one of the technologies). The function f (z)  = 1 -a+(2a- l)p(m, z) 

for m 2 1 is given graphically in Figure 1. Continuous lines correspond here t o  the case, where 

a > 112, broken lines - to  the case, where a < 112 and the horizontal line - to the case, where 

a = 112. Using results from section 2 we come to  the following conclusions. 

For m = 1 the function f ( z )  - z has for every a < 1 the only root z = 112. Consequently 

Theorem 1 shows that X t  (the proportion of the A technology on the market at time t ) converges 

with probability 1 as t -.* oo to  112. Consequently in this case the market is shared in the limit 

by A and B in the proportion 1:l. For m > 1 and a 5 1/2 completely the same arguments show 

that in the limit market is shared by A and B in the proportion 1:l. For m > 1 and a > 112 the 

function f ( z )  - z has three zeros: zo(a),  112 and z l ( a )  = 1 - xo(a). Consequently Theorem 1 



gives convergence Xi with probability 1 as t + ca to  the set B = {x,(a), 112, x l (a) ) .  As far as 

both xo(a)  and x l ( a )  turn out to  be stable, Theorem 2 assures that  Xi converges with positive 

probability to  either xo(a)  or x l ( a )  (from every initial approximation). Finally the observation 

that  112 is an  unstable point and Theorem 3 (the case when condition 1) takes place) show that  

Xi converges to  112 with zero probability (from every initial approximation). Consequently for 

m > 1 and a > 112 in the limit the market can be shared by A and B in proportions (each 

with positive probability) xo(a )  : [ l  - xo(a)] and [l - xo(a)] : xo(a).  

The arguments presented here demonstrate how results of section 2 can be used to  describe 

limit states for a given win function. Further we just mention that  corresponding results follow 

from theorems of section 2. 

Consequently the main new elements of this model comparatively with one, considered in 

(Arthur et al. (1983)), are the following: 

a) if m = 1, then for every a < 1 there is only one feasible limit market sharing in contrast 

with the case a = 1, where firstly, feasible limit market shares coincide with the whole 

closed interval [0, 11 and secondly, these limit market shares belong to  each of subintervals 

(a,  b )  E [0, 11 with positive probability; 

b) if m > 1, then for every a < 1, unlike the case a = 1, there is no monopoly market shares 

(because xo(cr) > 0 and consequently x l (a )  < 1) in spite of the fact, tha t  xo(cr) + 0 and, 

consequently, xl(cr) + 1 as cr + 1. 

From an economic point of view, the result shows, it is an "imperfect" process of information- 

acquisition (or endogenous preference formation) which curbs the tendency toward technolog- 

ical monopoly and allow an equilibrium co-existence of variety. (Note also that  this variety 

may simply be based on equilibrium distributions of diverse expectations on otherwise identical 

technologies, in terms of utility derived from them.) 

4 A Model of Competition under Implicit Preferences of Con- 
sumers in the Case of Approximately Equal Prices 

Let us now introduce a price dynamics for the two technologies. Suppose, that  two firms compete 

for a market of infinite capacity. Designate the firms and their products (technologies) by letters 

A and B. Also suppose that  they use the following strategy: until a certain level of market share, 

defined by the proportion of the product of this firm among all products which have been sold 

until the current time (usually greater than 112) they reduce the price. Above that  level they 

increase it.  Let us consider the simplest (linear) case of this policy. It is graphically represented 

in Figure 2. Here PrA(xA)  designates the dependence of the price of the technology A as 



Figure 2 

a function of its proportion z~ among adopters, who are using one of the technologies. Also 

PrB(xA) designates the dependence of the price of the technology B as a function of z ~ .  (Note, 

that the proportions of the technologies A and B are related by: z~ + x g  = 1.) By x i  and x g  

we designate the levels of market shares which switch from falling- to  rising-price rules. Hence the 

dependence of the price of the A (B)  technology on its proportion on the market xA(xB) is given 

by four parameters: PrA(0), x i ,  PrA(2X), PrA(l)(PrB(l) ,  x g ,  P r B ( l  - xb) ,  Prg(0)).  Note, 

that we account also for the circumstances, when P rA( l )  5 P r A ( x i )  (Prg(0)  5 P r g ( 1  - xg) )  

such as, when z i  = l ( z b  = 1): in this case, firm A(B)  still reduces the price on its product as 

its proportion on the market increases. 

It is natural to  suppose, that in the case when quality of the technologies is approximately 

the same and potential consumers know about it, the technology which is cheaper, has more 

chances t o  be sold, i.e., the A technology is bought if PrA(zA)  - PrB(xB) < 0. But if the 

prices differ slightly or consumers have some specific preferences (which can be characterized only 

statistically or on average), that lead sometimes to adoption of the more expensive technology, 

then the situation we can mathematically formalize in the following way (see also Hanson (1985)). 

The A technology is bought if PrA(xA)  - PrB(zA) + ( < 0, where ( is a random variable. 

Then the probability f(xA) t o  choose the A technology, as a function of XA,  equals to  P{( < 



Figure 3 

PrB(zA) - PrA(xA)) .  TO avoid unnecessary sophistications of the model, we shall suppose, the 

( possesses density with respect ot the Lebesgue measure in R1 (otherwise the event "PrB(zA)-  

PrA(zA)  + ( = 0" can have positive probability). Also, it is natural to  suppose, that [ has 

a bounded support. It means, that P{( E [-a,a]) = 1 for some a > 0. That is, adopters 

have a uthreshold" decision rule: above a certain price differential they choose deterministically; 

between they follow randomized strategies. To simplify our considerations, suppose, that ( has 

the uniform distribution on [-a, a]. Since random factors appear, when prices on A and B are 

approximately equal, then the following inequality a < mini,l,s,s,r A; holds. The probability to  

choose A as a function of ZA in this case has the form 

I 1 for PrB(zA)  - P r A  (zA) 2 a , 

f ( z ~ ) =  0 for PrB(zA) - PrA(zA)  5 -a , (3) 

[PrB(zA)  - PrA(zA)  + a] /2a for -a < PrB(zA)  - PrA(zA)  < a . 
This is graphically represented in Figure 3. Hence, the model embodies a positive feedback mech- 

anism of diffusion: prices fall with increasing market shares possibly due to learning economies, 

dynamic increasing returns, etc. and/or, on the behavioral side by market-penetration strategies. 

But the mechanism is bounded: above a certain market share, the price starts to rise, possibly 



due to  the monopolistic behaviors by the producer(s) and/or the  progressive exhaustion of tech- 

nological opportunities to  lower production costs. Finally, market adjustments as a function of 

differential prices are "imperfect": within boundaries, differently priced technologies both face 

positive demand. What can one say on the limit shares of such a bounded-increasing-returns 

process of diffusion? Using results of section 2 we have the following: 

1. convergence to  x i  with probability 1 takes place from the  domain I; 

2. from the domain I1 there is convergence with positive probability to  both x i  and xz; 

3. convergence to  xs  with probability 1 takes place from the  domain 111. 

In the terms of competing technologies these results can be conceptually treated in the 

following way. If the initial proportion of adopters of technology A belongs to  the domain I(III), 

then the technologies A and B share the market in the proportion x i  : (1 - x ; ) ( x ~  : (1 - x;)). 

Also if the initial proportion of adopters of technology A belongs to  the domain 11, then the A 

and B share the market in the proportion x; : ( 1  - x i )  or x; : (1 - xj )  (furthermore in each of 

the cases with positive probability). 

More generally: diffusion with endogenous prices and bounded dynamic increasing returns 

yields under the assumption of the model to  market-sharing rather than monopoly. Still, limit 

market shares are path-dependent: they are determined by history of the diffusion process. The 

model, however, allows a qualitative analysis - by no means restricted to  the price dynamics 

assumed here - of the ensuing limit proportions dependent on the relative frequencies of adopters 

of the  different technologies. 

Let us now turn to  the effects of different degrees of "market stickiness", as approximated 

by a ,  on diffusion dynamics. 

If a = A; for some i, then the corresponding horizontal part of the graph of f (.) converts 

into a "sharp", where f( .)  attains 0 or 1. If the distribution of ( is not uniform, then sloping 

(straight) line segments of the graph of f ( - )  convert into curve linear ones. And, finally, if a > 

max;,l,2,3,4 A; (in particular, when ( has an  unbounded support, as the normal distribution), 

then all of horizontal segments transform into "sharpsn of corresponding highness (from (0, 1)). 

In this case we can have the graph given in Figure 4. Here (as it follows from the results of 

papers (Arthur et al. (1987a) and (1988), Hill el al. (1980)) convergence with positive probability 

(from every initial approximation) takes place to both x i  and xz. Consequently regardless of 

the relation between the initial numbers of adopters of the technologies the A and B share the 

market in the proportion x i  : (1 - xi)  or xz : (1 - xz). Which one depends on chance. 

Implicit preferences of adopters (or, which is basically the same, preferences with imperfect 

information and 'market-stickiness') can be formalized in a slightly different way. Suppose that  
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Figure 4 

if the difference of the  prices is not less than a > 0, then the cheaper technology is bought. If 

the difference is less than the value, then consumers t o  choose a technology use some stochastic 

experiment (i.e., a mixed strategy). Here a < mini=1,2,3,4 A;. Consider the following examples: 

1. A is chosen with probability p E ( 0 , l )  and B - with probability 1 - p  (usually, when there 

are a priori no preferences, p = 1/2); 

2. would-be adopters sample an odd number m > 1 of adopters who have one of the tech- 

nologies and choose the technology, which is used by the majority (minority) of them. 

Then the probability f ( zA)  t o  choose A as a function of z ~ ,  is given graphically in Figures 

5 and 6 (in the last case we neglect the term, which goes zero (see section 3). Note that  in 

Figure 6 in order t o  designate those parts of the graph where f(.) does not attain 0 or 1, we use 

continuous (broken) line for the  cases, when the choice follows the majority (minority) of the 

sample. 

Using results in section 2 we see, that  in the first case: (i) from the domain I convergence t o  

2; with probability 1 takes place; (ii) there is convergence with positive probability t o  z ; ,p  and 

x; from the domain 11; (iii) convergence to  z; with probability 1 takes place from the domain 111. 

Hence, the limit market-shares properties are similar to  those considered earlier in this section. 

However, consider now the  case of endogenous prices, as above, with endogenous preferences 
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for either technology, whereby choices corresponds to the option of the sampled majority. We 

have the following limit shares: 1) from the domain I convergence to  x; with probability 1; 2) 

convergence with positive probability to  both x i  and x; from the domain 11; 3) from the domain 

I11 convergence with probability 1 to  x;. 

In all of the considered cases monopoly (i.e., the situation when one of the technologies 

conquers the market) is impossible. To obtain monopoly one must change the relation between 

prices on A and B. As it might be intuitive if systematically P rA(0)  > PrB(0),  then we can 

have monopoly of the B technology. Moreover, if P r A ( l )  < P r B ( l ) ,  then we can have monopoly 

of the A technology. 

More generally, though, the model highlights the crucial importance of specific price dynam- 

ics in the determination of limit market shares. Some (more "evolutionary" inclined) economists 

might interpret the result as an analytical collaboration of the confecture that  out-of-equilibrium 

"boundedly rational" behavioral norms do affect system-level asymptotic states. Alternatively, 

one may argue that  all this simply emphasizes the dependence of limit market shares upon expec- 

tations and intertemporal discount procedures of supposedly perfectly rational but imperfectly 

informed producers of each technology. Irrespectively of the precise microeconomic assump- 

tion, again, the model allow qualitative analyses of the relationships between endogenous price 

changes, adoption frequencies and limit market shares. 

As an illustration, suppose for example that the switch point between price-decreasing and 

price-increasing stra.tegies occurs a t  less than 112 market shares. In this case, we have the picture 

of Figure 7.  Moreover, if price-dependent choice involve a random error uniformly distributed 

on [-cr,a] (with a < min;=1,2,3,4 A;), then the probability to  choose A as a function of XA is 

illustrated in Figure 8. Using results from section 2, we have: 1) if the initial proportion of 

adopters of the technology A belongs to  the domain I (V), then B ( A )  conquers the market; 2) 

if the proportion belongs to  the domain 111, then A and B share the market in the proportion 

x; : (1  - x;); 3) if the initial proportion of adopters of the technology A belongs to  the domain 

I1 (IV), the B ( A )  conquers the market in the proportion x; : (1  - x;). 

Consequently, under the given hypotheses concerning the behavior of adopters, massive 

introduction of one of the technologies (domains I and V), which is essentially cheaper in the 

domain, leads t o  its monopoly. Under less massive introduction (domains I1 and IV) we can 

have monopoly or alternately, A and B share the market in the proportion x; : (1  - x;). In 

the case of comparable initial numbers of adopters of A and B (domain 111) these technologies 

share the market in the proportion x; : (1 - x;). 

Note also that  the formal apparatus developed here can be used to  study all cases, whereby 

prices depend on the current concentration of one of the technologies on the market in an 
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arbitrary way (while here for the sake of simplicity we restricted the discussion t o  cases where 

these functions are piecewise linear). 

5 Conclusions 

Innovation and technology diffusion generally involve competition among different technolo- 

gies, and, most often, endogenous changes in the costs/prices of technologies themselves and in 

adopters' choices. In the economic domain (as well as in other disciplines) the formal represen- 

tation of such processes involves some dynamics of competing "populations" (i.e., technologies, 

firms, or  even behavioral traits and "models" of expectation formation). A growing literature 

on such dynamics has begun studying the properties of those (generally non-linear) processes 

that  innovation and diffusion entails. As by now robustly established, multiple equilibria are 

normally t o  be expected and "history matters", also in the sense that  out-of-equilibrium fluc- 

tuations may bear system-level consequences on notional asymptotic outcomes. Developing on 

previous results showing - under dynamic increasing returns - the likely "lock-in" of diffusioil 

trajectories onto particular technologies, we have presented a formal modeling apparatus aimed 

a t  handling the interaction between diffusion patterns, on the one hand, and endogenous pref- 

erences formation and/or endogenous price formation, on the other. As examples, we presented 

two stochastic models of shares dynamics on a market of infinite capacity by two competing 

new technologies. In the first of them, we assumed that  the adoption dynamics is essentially 

driven by endogenous changes in the choices of risk-averse, imperfectly informed adopters (or, 

in a formally equivalent analogy, by some positive or negative externality imperfectly estimated 

by would-be users of alternative technologies). In the second example, we considered an en- 

dogenous price dynamics of two alternative technologies, driven by e.g., changes in their costs 

of production and/or by the intertemporal behaviors of their producers. 

In both cases, the diffusion process is allowed t o  embody some stochasticity, due to  e.g., 

"imperfect" learning from other people's choices, marginal and formally undetectable differences 

in users' preferences, or some inertia in adjusting between differently prices but identical-return 

technologies. 

The formal apparatus presented here, based on a few refinements on generalized urn schemes, 

allows quite general analytical accounts of the relationships between some system-parameters 

(e.g., proxies for information "imperfection" by adopters; dynamic increasing returns and mo- 

nopolistic exploitation of new technologies by their producers) and limit market shares. While 

path-dependency (i.e., "history matters") applies throughout, the foregoing analytical techniques 

appear to  be able, a t  the very least, to discriminate those which turn out t o  be feasible limit 



equilibria (i.e., those which are attainable with positive probabilities) and, also, t o  "map" them 

into relative frequences of adopters. 

As the  foregoing modeling illustrations show, "market imperfections" and "informational 

imperfections" often tend t o  foster technological variety, i.e., the equilibrium co-existence of 

different technologies and firms. Moreover, stochasticity in the choice process may well bifur- 

cate limit market-shares outcomes. Finally, i t  is shown, corporate pricing strategies-possibly 

based on rationally-bounded procedures, imperfect informational and systematically "wrong" 

expectation-formation mechanisms - are generally bound t o  influence long-term outcomes. Un- 

der all these circumstances, the foregoing modeling techniques allow, a t  the very least, a "quali- 

tative" analytical assessment of diffusion/competition processes by no means restricted t o  those 

circumstances whereby microeconomic expectations, on average, represent unbiased estimations 

of the  future. 

If all this analytical representation is empirically adequate, there seem to  no a priori reasons 

t o  restrict i t  t o  technological dynamics. In fact, under suitable modifications, it may apply as 

well to  interdependent expectations, decisions and returns on e.g., industrial or financial markets. 

Ultimately, what we have tried to  implemeilt is a relatively general analytical apparatus a.ble t o  

handle a t  least some qualitative properties of dynamic stochastic processes characterized by both 

positive, and, possibly negative, feedbacks of a functional form as "badly-behaved" as possible. 

Indeed, we believe, quite a few of the processes of economic change fall into this category, related 

to  technological change but also to  interdependent (possibly "disequilibrium") changes in e.g., 

industrial structures, but also financia.1 or product-market expectations and behaviors. 
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