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Foreword 

Ln recent years, significant progress has been made in the guaranteed treatment of mathematical 
models. It concerns all phases between the process of modelling and computer processing. The 
paper presents the basic components of a methodology for computation with automatic result 
verification, involving interval data. A full control over the computational errors and the uncer- 
tainty in the data  is achieved by using well-defined interval computer arithmetics and dynamic 
accuracy of the data representation. The approach and its impact on the development of nu- 
merical algorithms is illustrated by interval versions of the problems of polynomial interpolation 
and least-square approximation. 
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Chairman 
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Mat hemat ical Modelling of 
Dynamical Processes Under 
Interval Experimental Data 

Svetoslav Markov 

A brief discussion on a new methodology for solving mathematical problems involving 

interval input data and for scientific computing with result verification is presented. 

Some examples for the impact of this methodology on particular mathematical mod- 

elling situations are given. A brief report on a newly developed program system 

MODYNA, which is designed according to the new methodology, is presented. 

1 Introduction 

The development of a new methodology for numerical treatment of mathematical problems 

involving interval-valued (and more general set-valued) input data  and for scientific comput- 

ing with result verification has a strong impact over the mathematical modelling of dynamic 

processes. Recently developed problem solving environments designed according to  this new 

methodology enables us to solve many mathematical problems involving interval-valued input 

data,  obtaining thereby highly accurate and guaranteed bounds for the true solution sets. This 

1ea.d~ t o  the possibility of rigorous evaluation of the effects of the imperfect modelling and to a 

mathematically clean motivation for the rejection of an incorrect mathematical hypothesis in a 

particular modelling situation. 

In traditional numerical analysis, numerical algorithms are formulated in terms of famil- 

iar arithmetic operations between real numbers, as defined in the textbooks on real analysis. 

However, real arithmetic is unrecognizable to computers: they cannot execute real arithmetic 

operations in general (and who can?). The disability of computers to  execute the real-arithmetic 

operations prescribed by the traditional numerical algorithms has led to  various and rather ar- 

bitrary realizations of the arithmetic and conversion procedures on various types of computers. 

As a consequence it often happens that  an algorithm produces (sometimes completely) different 

results when run on different types of computers even when these computers operate with the 

same precision. This ridiculous situation contradicts the basic idea incorporated in the concept 

of algorithm, namely the strict and accurate definition of the whole computational processes. 



Because of the above mentioned uncertainty and arbitrariness of the computational process, 

the users of numerical algorithms are faced with the tedious problem of establishing a reliable 

connection between the correct solutions of the problem and the computational results practically 

obtained when running the particular numerical algorithm on a computer. The estimation of 

the global computational error is usually done through laborious independent estimations of 

both the truncation and the round-off errors. 

Some intuitive techniques that  are often used in practice for the estimation of the rounding 

errors are: 

i) computation of residuals (which are expected to  be close t o  zero); 

ii) repeating the computational process with slightly changed data  and comparing the results 

with the previous one; 

iii) repeating the computations in several various precisions (single, double, extended etc.) and 

comparing the results. 

However, it can be shown [21.] that  none of techniques i) - iii) are reliable. Amongst other 

techniques of error control we should mention forward and backward analysis [41]. These tech- 

niques require the computation of a large number of error estimates and so-called condition 

numbers. We share the opinion (see [21], p.15) that  they are rather complicated and are still of 

limited practical usage. 

For many years it has been believed that  some wonderful programming tools can be designed 

in such a way that  the application of these tools on traditional numerical methods should produce 

safe and accurate results. In the last decade it has become clear that such software tools hardly 

exist. The investigations took a new path: not only new types of software-hardware tools are 

needed now, but also numerical methods of a completely new type have to  be designed, and 

then, a revolutionary new methodology arose putting together the new numerical methods and 

the new software-hardware tools. 

That  is why we are now talking not just of new programming tools or of new numerical 

algorithms, but rather of a new methodology for scientific computing that  has as its goal the 

design of problem solving environments with automatic result verification, providing thus full 

control over the effects of the computational errors and the uncertainties in the data. The 

basic features of this methodology can be found in the recent volumes of the journal Computing 

(papers 141, [7], [22], [23], [32], and [36] are from such volumes). 

The new methodology makes use of, e.g. 



r a mathematically precise definition of computer arithmetic operations in all computational 

spaces (real and complex numbers, intervals, vectors, matrices, interval vectors, functions 

etc.) and the implementation of these operations in the computer, 

r suitable formulation of the numerical algorithms using the above mentioned extended 

arithmetic facilities. The usage of a well-defined computer arithmetic in all necessary 

computational spaces allows the construction of numerical algorithms that  always produce 

well-defined intermediate and final results depending only on the chosen computational 

precision. 

r new algorithmic techniques needed to  comprise the computational errors and t o  compute 

with interval input data  (or a more general type of set-valued data). 

The new type of numerical algorithms possess (some of) the following properties: 

r problems involving interval input data  (or other types of set-valued data)  can be success- 

fully handled; 

r the numerical algorithms produce guaranteed bounds for the ideal solution of the numerical 

problem; 

r these bounds are the smallest possible within the chosen precision of the floating-point 

screen, 

r the above mentioned bounds can be made arbitrarily sharp ( that  is close t o  the true ones) 

by using the so-called staggered correction format (STC format) techniques [36] in order 

t o  serve as input data  for exceptionally ill-conditioned mathematical tasks. 

In the frames of the new methodology some new mathematical tools such as interval analysis 

and computer arithmetic [2], [19], [29], [34] and some new application of well known iteration 

techniques, differential inequalities, monotonicity theorems, fixed-point theorems etc. [l-12, 

32, 35, 361 have been developed. The new standards for the implementation of computer and 

interval arithmetic on arithmetic processors provide the necessary support for the computational 

approach (see 181, [15], 1161, [42] and the IMACS-GAMM resolution of computer arithmetic 

([39], p. 301) ). The design and the practical use of the new problem solving environments have 

a strong impact on mathematical modelling since they permit an  evaluation of the effects of 

imperfect modelling and a reduction of the computational errors below certain (well-known in 

a.dvance) bounds. 



In numerical computations, two goals have always been pursued: guaranteed accuracy and 

speed. Here we will not be concerned with problems related to acceleration of the computations. 

Let us mention that  the new methodology for safe and accurate computations can be successfully 

combined with parallelization techniques [38]. 

2 Numerical algorithms with result verification for mat hema- 

tical problems involving interval input data. 

Let us make some general considerations in relation to  the numerical solution of a scientific 

problem. A solution y of a well defined mathematical problem can be considered as a function 

(or operator) of the input data  x for some domain D of variation of the data: y = f (x). For 

simplicity let us consider the situation when f is a function (for instance, y can be a real number, 

D can be a subset of Rn etc.). (The situation when x and y are functions and f is an operator 

is studied in [17].) When using a conventional numerical procedure for the computation of y we 

traditionally speak about three possible types of errors: 

i )  errors in the input data  x; 

i i )  errors from the numerical method (e.g. due to truncation of an  infinite iterative process); 

iii) errors from the finite representation of floating-point numbers. 

The origin of the errors from the first type may lie in the imprecise experimental measure- 

ments. Usually the experimental scientist is able to read-off an interval for the true value of the 

measured quantity. In some cases this interval may contain the true value with a guarantee. It 

may turn out that  this is a very common situation, despite of the fact that  the usual praxis is to  

read-off numerical data. The new developments should encourage the experimenters to  read-off 

interval-valued experimental data. We shall further assume that  for the input data  we are given 

some (interval) bounds. In such a situation there is not much reason t o  talk about "errors" in 

the input data  (especially when the bounds are guaranteed) so we shall instead speak of interval 

input data  (or more general set-valued data  like ellipsoids, etc.) 

Even if the bounds for the input data  are small, i t  may happen that  they cause large devia- 

tions in the final results (by ill-conditioned problems). That  is why the safest way t o  treat such 

problems is t o  consider them as set-valued problems never mind how small the input intervals 

are. A problem P (X) involving interval input data  X is thus considered as a set of problems 

P ( x )  with numerical data  x, such that  x E X , i.e. P ( X )  = { P ( x )  : x E X ) .  The solution 

Y ( X )  of P ( X )  is then by definition the set of solutions Y (x)  of P (x) whenever x E X , i.e. 



Y ( X )  = {Y (x) : x E X ) .  An efficient tool for the treatment of problems involving interval 

input data  is interval analysis [2], [23], [25], [28-301. 

In the same manner we can treat the errors due to  the necessarily finite representation of 

numerical input data  (e.g. 113 is represented in a base 10 floating-point system by an interval 

of the form [0.33 . . .33, 0.33 . . . 341). In such cases we replace the numerical input data  by 

interval data, but now we also may interfere to  make these bounds as tight as we wish (using 

e.g. extended precision formats). This situation takes a n  intermediate place between the first 

and the other two error type situations. Here we have a problem with set-valued input data,  

but the bounds for these data  can be made arbitrary s m d ,  e.g. by using the STC-formating 

technique. 

Let us turn our attention t o  the errors of types ii) and iii). To this end we may assume that  

the argument x takes values from the computational space S so. that  there are no errors from 

the first type. Our ultimate goal is t o  design a computational algorithm that  do not introduce 

any unpredictable errors of types ii) and iii), that  is t o  obtain a solution that  lies within known 

bounds. For instance the numerical algorithm may produce the optimal (best) approximation 

in the floating point system S of the real result y as defined by the equality y = f (x) in real 

arithmetic. When talking a t  this point about the value of y, we do not mean the result of some 

computational process producting y; we just define the real number y by the equality y = f (x) 

in the sense of analysis. Since we do not have real numbers in the computer a t  our disposal, 

the best that  could be expected is to  obtain the shortest machine interval on the floating-point 

screen that  contains the ideal result y = f (x). In this case we may say that  y is computed 

within the maximum accuracy allowed by the system S. 

The new methodology for scientific computing and for design of numerical methods with 

result verification can not be outlined sufficiently well without some elementary knowledge of 

computer and interval arithmetic. These two mathematical tools are a substantial part of the 

necessary mathematical background for the construction of such methods. 

3 Computer and interval arithmetic 

In what follows S = S (b,p) denotes the standard set of floating-point numbers expressible in a 

base b number system with a mantissa of some fixed length p (called precision), tha t  is S(b ,p)  

is the set of all real numbers of the form m x bn , where n is an  arbitrary integer but m is an 

integer of absolute value less than bP [19]. 

Let us denote the shortest machine interval containing the real result y by [ v y ,  Ay] =: Oy , 

wherein v y = m a x { x : x ~  S , x  5 y ) , A y = m i n { x : x ~  S , x L  y). 



Note that  the interval Oy does not contain any computer numbers as inner points. We shall 

further consider the symbols v, A as functions (called also rounding functions), mapping R into 

itself. The screen S is the range of these functions. The rounding functions v, A are monotone 

projections. A function 0 : R - S, S c R is called a monotone projection, if [19]: 

i )  0(0(x)) = 0(x) for all x E R; 

ii) x 5 y implies 0 (2) I 0 (y) for all X ,  y € R; 

We see that  the result of a computer arithmetic operation or procedure should be the smallest 

floating-point interval containing the true result. Since we further have t o  operate with such 

interval results we thus arrive to  the necessity of using interval arithmetic operations. After 

introducing interval arithmetic, we shall be able to consider the rounding 0 as a rounding 

interval-valued function mapping I R  (and, in particular, R ) onto IS, where I R ,  resp. IS, is 

the set of all intervals with end-points in R resp. in S, symbolically, 0 : I R  - IS . In this 

case the order relation should be taken to  be that  of inclusion. 

The rounding function can be defined in an abstract way as a mapping satisfying the above 

three relations over an ordered field or over more general algebraic structures. The properties 

of 0 in such setting are studied in detail in [19]. 

From a practical point of view, it is important that  a monotone projection 0 always produces 

machine numbers or intervals of best (optimal) approximation. The rounding 0 possesses the 

above mentioned optimality property. By means of the rounding 0 we can define the basic 

computer operations for addition, multiplication, scalar product and others in the corresponding 

computational real arithmetic results x + y, x y, u o v. This principle of definition was adopted 

for the arithmetic operations in S in the IEEE resolutions on computer arithmetic from 1979 

and 1985 [8] and was further extended for higher computational spaces (such as S n )  in the 

IMACS-GAMM resolution on computer arithmetic from 1987 (see e.g. [39], p.301). 

For simplicity we shall assume the computational spaces to  be the corresponding floating- 

point spaces (and not the finite spaces of machine elements). In programmer's slang we may say 

that  for the moment we shall not be interested in overflow and underflow. In practice overflow 

and underflow occur rarely and does not cause so much trouble. 

Computer arithmetic operations. Let x, y E S be floating-point numbers and 

u = (u l ,  '112, - - - , u,) , v = (vl, 02 ,  . . . , v,) E Sn are floating-point vectors. We define the computer 

operations corresponding to  the real operations x + y, xy, u o v for addition, multiplication and 

scalar product t o  be the shortest machine intervals containing the real (ideal) result of the 

corresponding operation: 



i )  addition in S: x 8 y  = O ( X  + y) = [V(X + y ) , A ( x  + Y)] = [ x V  Y,XAYI; 

ii) multiplication in S : x@y = 0 (xy) = [v (xy)] = [v (xy) , A (xy)] = [x y, x A y]; 

iii) scalar product in Sn : u 0 v  = 0 (u o v) = [v (u o v) , v (u o v)], wherein u o v = C7=l uivi . 

We note that  all the above intervals contain no elements of the floating-point system S inside 

(as inner points) and in this sense these results are optimal (i.e. with maximum accuracy). 

7 Example 1. Compute (z+y)$z and x e ( y e t )  for x = 5, y = 10 , z = -lo7 in the 

computational space S (10,7). 

Solution. We have 

and therefore xQy = [10000000,10000010]. 

We now compute ( x 8 y )  Qz which is 

by the definition of interval addition (see the definition below). From (x y ) v t  = 1 o 7 ~ -  lo7  = 

0, (x A y) ,4 t = 10000010 A -10000000 = 10 we obtain ( z e y )  $t = [O, 101. Similarly, we 

compute x 6  ( y 8 z )  = 5. 

This example shows that  it is useful to  define operations between intervals. This will be 

outlined in the next section. The example also shows that  addition in S does not fulfill associative 

low. 

Example 2. Compute in S3 (10,7) the scalar product u 0 v  with u = (5, lo3, lo4) , v = 

(1, 104, -103). 

Solution. The ideal result is u o v = 5 x 1 + lo3 x l o4  + lo4 x (-lo3) = 5 + lo7  - lo7 = 5, 

and therefore u 0 v  = 5. 

Remark. The absence of the operation O in S3 (10,7) could lead to  a very bad approxi- 

mation of the correct value of the scalar product u o v. Indeed, without this operation for the 

scalar product we have ( 5 9 1 0 ~ )  $ (-lo7) = [O, 101 (see Example 1). Note also that  the scalar 

product in Sn provides the space S with an exact sum of n summands, since C:=, u, = u o v, 

with u = ( u l , u 2 , ~ - ~ , u n )  , v  = (1 ,1 , . . . , 1 )  . 
We defined two operations in the set S (addition and multiplication), and an operation in 

Sn (scalar product). Similarly two operations called subtraction and division are defined in S 

that  are inverse operations to  addition and multiplication. 



For the structural properties of computer arithmetic the reader can consult [19]. For the 

software and hardware implementation of the computer arithmetic operations, including the 

scalar product, see [8, 19, 211. The application of the computer arithmetic operations for the 

design of safe and accurate numerical algorithms for scientific computation is considered in [21, 

26, 28, 29, 32, 331. 

Interval arithmetic. Let us now briefly consider the interval arithmetic. The simplest 

interval arithmetic operations are the arithmetic operations in the set I R  of the intervals on the 

real line. If A, B E I R  with A = [a, 31, B = [b, b], we define 

wherein w denotes the width of the corresponding interval, tha t  is w (A) = Si - a. 
We also define the scalar multiplication by 

[a&, ail] , if a > 0, 
a e A = a A =  

[aa ,  ag ]  , if a 5 0. 

For a = - 1 the above formula gives - 1 l A = [-Si, -a]. This interval will be denoted further 

by -A. We then denote A - B = A + (-B), A 8 B = A $ (-B). The operation 8 plays an 

important role in the differential calculus for interval functions. Because of this reason we have 

exchanged the notations "-" and "8" in our publications on this topic [23-261. 

We see that  the two operations for addition generate two operations for subtraction. This is 

natural by the observation that  the interval space has a richer structure that  the space of real 

numbers. Let us note that  the interval produced by the operation "8" is narrower than the 

interval result produced by the operation "-"; also the operation "$" delivers a sharper result 

than the operation "+". 
Let the end-points of an interval A be a and p, that  is 

( [P, a] , otherwise. 

The above formula can also be written as A = [a V P] (read: "the end-points of the interval A 

are a and ,B "). For the definition of multiplication it is useful t o  have a special notation for the 

end-point of an interval A that  is closer to  zero than the other end-point. Let us denote the closer 

to  zero end-point by a+' and the other one by a-O. We thus have A = [a+' V a-O] , la+OI < Ia-OI. 



We shall introduce next two operations for multiplication of intervals that  do not contain 

zero (an extension of the definition for arbitrary intervals can be found in [9], [23]). 

Denote by I R *  the set of all intervals A such that  0 4 A.  For A, B E I R *  we define 

A x B = [a+Ob+O V a-'b-'1 , A @ B = [a+'b-' V ~ - ~ b + ' ]  , 
If B = [b+O V b-O] E IR* ,  denote B-' = 1/B = [(l/b+') V (lib-')I. The two operations 

for multiplication generate the following two operations for division: A / B  = A x B-', A @ B = 

A @  B-'. 

We note that  the operations @ and @ produce narrower interval results than the correspond- 

ing operations x , /. 
Let us pay some attention t o  the fact that  the operations -, 8, /, @ are composite operations 

defined by 

and should not be taken in considerations as basic operations (e.g. one should write < I R ,  +, x > 

and not < I R ,  +, -, x ,  / > as i t  is often done in the literature). Because of (*) we shall further 

call the operations -, 8, /, @ quasiinverse to  the corresponding operations +, $, x ,  @ . 
Remark. We can not assert that  the operations -, 8, /, @ are inverse to  the operations 

+, $, x ,  @ in the usual sense. For instance, the operation - is not inverse to  the operation + , 
since X = A - B is not a solution of A + X = B in general. The same holds true for the rest of 

the operations: 8, /, @ . 
The interval arithmetic structure < I R ,  +, $, x ,  @ > , which also includes the quasiinverse 

operations -, 8, /, @ , is known as eztended interval arithmetic . It is a rich algebraic structure 

which is very useful for the interval arithmetic presentation of interval extensions of real func- 

tions, and, as a consequence, for the treatment of numerical problems involving interval input 

data  PI, 1231, [241, [251. 

The elimination of the operations $, @ from the extended interval arithmetic leads to  a sim- 

pler interval arithmetic structure < I R ,  +, x > , which also includes the quasiinverse operations 

-, /. This structure is known as standard interval arithmetic [2], [28]. It is very effective for the 

construction of interval arithmetic inclusions of interval extensions, and is thus very useful for 

the automatic validation processes. 

A short survey of various interval arithmetic structures can be found in [34]. In what 

follows we give a brief comparison between the interval arithmetic structures < I R ,  +, > and 

< I R ,  +, $, > as substructures of the standard and extended interval arithmetic, respectively. 

Below we give a list of basic properties of < I R ,  +, $, >. 

For A, B ,  C E I R ,  a, P E R we have: 



1) A + B = B + A ;  

la) A $ B = B $ A ;  

2) a ( B + C ) = a B + a C ;  

2a) a ( B $ C ) = a B $ a C ;  

3) a@ 2 0  implies (a  + 0 )  C  = a C  + PC ; 

3a) a@ 5 0  implies (a  + 0 )  C  = a C  $ PC ; 

4 )  a ( P C )  = (a@)  C  ; 

5 )  l . A = A ;  

6 )  O . A = O ;  

7) ( A  + B )  + C  = A + ( B  + C ) ;  

7 4  

Now, to obtain a list of properties of the interval space < I R ,  +, > we should exclude the 

assertions involving the operation $ : these are equalities l a ) ,  2a) , 3a), 7a), 7b) and 7c). 

After defining arithmetic operations on I R  , we can extend these operations for other interval 

objects: interval vectors, interval matrices, interval functions etc. A possible approach in this 

direction is outlined in [24]. On the basis of interval arithmetic an  extensive mathematical 

theory for the study of interval objects called interval analysis has been developed. Interval 

analysis is a rapidly developing theory and there is already vast literature on this subject. From 

a practical point of view, the main application of interval arithmetic and interval analysis is in 

the treatment of numerical problems involving interval input data  and in the organization of 



iterative procedures involving automatic validation. According to  [21], Ynterval arithmetic is 

the only computational tool so far available that  incorporates guarantees as part of the basic 

computational process." 

By means of computer and interval arithmetic, one can define arithmetic operations in the 

set of all intervals on the floating-point screen S [19]. For instance, addition of A = [a, ti], B = 

[b,b] ~ I S i s d e f i n e d  b y m e a n s o f A + B =  [ a v b , ~ A b ]  . 

4 Dynamic accuracy and STC format 

Let us first discuss an  example. Consider the matrix: 

where 6 = 1/30. Assume that  we have to represent the matrix in the floating-point system S in 

order to  solve a linear problem of the form Ax = b. For simplicity assume that  S = S (10,2). 

Then the sharpest interval matrix OA with elements of IS , which contains the matrix A is 

Since det (A) = 6 > 0 and therefore A is not singular for an  arbitrary right hand side b, the 

linear system Ax = b has a unique solution. However, the interval matrix OA contains the 

singular matrix A* 

Thus the set of problems, corresponding to  the interval matrix OA (this set of problems is 

usually denoted simply by OAx = b) contains a problem that  has no solution (the problem 

A*x = b, corresponding t o  the singular matrix A*). In such a situation we may say that  the 

problem represented in the computer has no solution (although the original problem has a well 

defined solution. Stetter [35, 41 proposed a following way to  circumvent this obstacle. Let a be 

a numerical input data  of the problem we are solving (think of a = 1 + 6 in the above example). 

If the sharpest interval Oa  with endpoints in S such that  a E Oa is too large and makes our 

problem unsolvable, we then take a sufficiently shorter interval, presented in the form 



where the numbers a l ,  a2, - .  .a,-1, and a, belong to the computational system S. 

The interval (**) is usually coded as ( a l ,  a2, . , a,-', [a,]), where [a,] is an abreviation for 

[a,, a,]. We now see that  although all a; 's in the form (**) are within S , the endpoints of the 

interval (**) are not from S. The representation (**) is called staggered correction representation 

(STC-representation, STC-format). This representation does not need special arithmetic utilities 

and gives us the possibility to  extend the precision as much as we like. For the matrix A from 

the above example the STC representation with r = 2 , has the form A' + [A2], namely 

The above interval matrix C is much shorter than the interval matrix OA ; the important 

fact now is that  the problem C x  = b has a well defined solution. 

5 Interval mat hemat ical problems. Interval interpolat ion and 

approximat ion 

In this section we consider two simple examples of interval mathematical problems: polynomial 

interpolation and least-square approximation in the presence of interval input data. 

In the situation when we have guaranteed intervals from the observations of a stochastic 

variable i t  may be useful to  apply the least-square approximation method directly to  the interval 

input data, obtaining thus (as usually in the interval analysis) the set of all approximations to  

the numeric data  varying in the given intervals. 

Interval least-square approximation. We first recall some well-known results related to 

the least-square approximation method under numeric data,  considering the most simple linear 

one-dimensional case. 

The coefficients a and b of the line 

that  fits to  the input data  (2, y) , x = (XI, 2 2 , .  . - , XN) E R N  , y = (yl, y2, . , yN) E R~ SO that  
2 C (ax; + b - y;) is minimal, are determined by the system 

(C 2:) a + (C xi) b = xiy;, 



wherein C means summation from 1 to  N .  Denoting x = (C x ; )  I N ,  y = (C y ; )  / N  and dividing 

the second equation into N  we have 

The determinant of ( 2 )  will be further denoted by 

S , , = ~ Z ~ - N ~ ~ = ~ ( X ; - Z ) ~ > ~ .  

The slope a  of the line 1 is 

a  =   IS,.) (C xiyi - N Z ~ )  

which can also be written 

a  = ( C x i Y i  - f C yi)  /Sxx = (C ( x i  - 5 )  9;) / s ~ ~ D = ~ s ~ ~ / s ~ ~ .  

For b we compute b = y - aZ = ji - a3 = y - ( S z y / S X x )  2 ,  so that  ( 1 )  obtains the form 

showing that  1 passes through the point ( 5 ,  y ) .  

In what follows we shall also need the following presentation of the regression line 

1 : q  = a ( t - i ) + Q  

= (SXY/SXX) (t - 2 )  + y 

= ( l / S x x )  (C ( x i  - 5 )  Y ; )  (t - Z )  + (C y;)  / N  

= C ((5;  - 2) (t - Z )  ISxx  + 1 / N )  y;, 

(4) 1 : 7 =  C~a(t)~ir 

wherein the functions 



depend only on x (not on y ! ) . 
Since y; is linear, it may have a t  most one zero. If a point xi coincides with 3 ,  then 

y; = 1 / N  > 0. Consider the case xi # X. Then y; (J) has a slope (xi - 3) /Szz such that  

> 0, i fx ;  < 3 ,  
(xi - 2)  /Szz 

< 0, if xi > 3. 

Let xi < a: for i = 1,2,-em, j and xi > 3 for i = j + I , - . - ,  N .  Denoting by J; the zero of the 

linear function y; (J), i.e. 

we have 

The ordering of the x; 's with respect to  X imply corresponding ordering of the ti's defined by 

(6). Namely, 

* Jj+i < Jj+2 < . - - < JN < X < (1 < J2 < - < Jj-1 < J j .  

These relations remain true also for x j  = 3 , providing that  in this case Ji is understood as 

oo , so that  we could write 

According t o  (7), the minimal interval I containing the ti's is 

We shall adopt the notations Do,  D l , .  . . , D N  for the intervals with end-points J; as follows: 



Dj+l = t j+l l  7 Dj+2 = [ t j+l ,  tj+2] ' ' ' D N  = [ ~ N - I  t N ]  . 

Let us now compute the sign of y; ( t )  in the interval Dk.  In Do = [ tN, t i ]  all y; ( t )  , i  = 

1,2,  - .  -, N have positive signs. We shall call Do the "central intervaln. In the remaining intervals 

we have 

i) to  the right of Do, that  is for t E Dk,  1 5 k 5 j : 

- , i =  1, ... , k 

( 8 4  signyi ( t )  = = sign(i - k - 1 / 2 ) , i  = I , . . . ,  N.  

+, i  = k + I , . - - ,  N 

ii) to  the left of Do , that  is for t E D k , j  + 15 k 5 N.  

+ , i  = l , . . . , k -  1 

(86) signyi ( t )  = = sign (k - i - 1/2) ,  i = 1,. - ., N 

- , i  = k , . . . ,  N 

In the most right interval D j  (or Dj-l if x j  = f ) we have 

- , i =  I , . . .  , j 

sign-/; ( t )  = = sign ( i  - j - 1/2) ,  i = 1 , .  . . , N. 

+ , i  = j+ l , . . . ,  N 

In the most left interval Dj+l we have inversely 

+ , i  = I , . . . ,  j 

signyi ( t )  = = s i g n ( j - i -  1 / 2 ) , i =  l , - . . , N  . 

- , i  = j + l , . . . ,  N 

Let us now discuss the least square approximation method in the situation when interval- 

valued experimental data  are provided for the true values of the observation. 

Assume now that  we are given N numbers (21, 22,. - ., zN)  = z E RN such that  z1 < 2 2  < 

. . . < z~ and N intervals (Yl, Y2,. - ., YN) = Y E I R N  ( I R N  is the set of N -dimensional 

interval vectors). Let y E RN be such that  y E Y , and 77 (2, y) be the regression linear function 

(3) generated by the input data  (z,  y) . Denote by L the family of all regression linear functions 

77 = ~ ( x ,  y) , generated by the input data  x, y , whenever the numeric vector (yl , y2,. . , yN) = y 

varies in the interval vector (Yl, Y2,. . . , YN) = Y , that  is the set 



Denote by L the set-valued function, corresponding to  L, defined for ( E R by L (0 = 

{7?(x,y;O : Y E Y}. 

P R O B L E M  A. Compute the set-valued function L or an inclusion for this function. 

SOLUTION. We shall first consider the easier problem of computing an inclusion for L . 
According t o  (3) the line 1 (x, y) generated by x, y is the line passing through the point 

m = (2, y) = (1 IN)  C y; and having as slope a = a (x,  y) = Sz,/Szz = ( C  (x; - f )  y;). As y; 

vary in Y;, i = 1,2,  . , N, the point m varies in the segment M = (3, Y = ( l / N )  1 Y,) and the 

slope a varies in A = A (x, Y) = ( C  (x; - f )  Y , )  = Szy/Szz. The sets A and M are obtained 

from the variation of the y;'s. If we consider them as independent, we may construct the interval 

linear function 

that  contains L. Since the parameters a and y are strongly dependent we shall obtain only 

rough bounds for L. 

We may easily obtain the exact interval hull of L in explicit form if we use the representation 

(4) for 1, that  is q = 1 yi (0 y;. Indeed, we have for every fixed ( 

In the above formula the end-points of the intervals Y, are denoted by y; 5 y+ so that  

Y, = [y;, y:] , i = 1,2 ,  . . . , N and sgnyi (0 means "+", if yi (0 > 0, and "-" , if 7; (0 5 0; also 
- - 

yi means y+ (right end-point) and yf+ means yf (left end-point). Formula (10) shows that 

L (0 is an interval a t  every [, so that  L may be considered as interval function. The interval 

function L gives the exact interval bounds of L 

where, according t o  (5) 

We see that  formula (10) gives the boundaries 1- ( 0 ,  1+ (0 of the interval function L (0. 
By means of interval arithmetic the interval function L (0 is expressed in the simple form 

L (0 = C Yi (0 y;. 



GEOMETRICAL MEANING. To see the geometrical meaning of the expression for 

L ( t )  we have to  know the signs of 7; ( t) .  These signs are constant in the intervals D k  defined 

by 

but are different for the different intervals D k  according to  formulas (8). 

According to  (8) the functions yi ( t ) ,  i = l , . . . ,  N ,  have positives signs in the "central" 

interval Do = [ tN,  tl]. In the other intervals Dl ,  D2, .  . . , Dj, Dj+1,. . . , D N  we have 

and, respectively, 

+, i = 1 , 2 , . . . , k  - 1; 
sign7; ( t )  = 

-, i = k , . . . , N ; t € D k ,  j + l < k < N .  

We see that  in every fixed interval D k  the boundaries 1-,1+ of the set L are segments of the 

regression lines with respect to certain end-points of the input intervals Yl, Y2,. -YN. So, in 

the "central" interval Do the boundary regression line 1+ is generated by the set of all right 

end-points of Yl, Y2, .YN and the boundary line 1- is generated by the set of all left end-points 

of Yl,Y2,-..YN, that  is 

We may also compute the width of w of L in Do . We have 

Let us compute the width of L on the real line under the assumption that  the intervals Y,  

have a constant width W. We have 



w ( L ( 0 )  = C J Y ~ ( C ) I W ( Y , ) = W C I Y ~ ( O I  

= w C I (l/Szz) (xi - 5)  (C - 2)  + 1/NI 

S W (l/Szz) It - Sl (1 + C Ixi - ?I) 

= w + w (l/Szz) I[ - Sl C 1xi - 31. 
From the above formula we see that the equality is obtained in the interval Do . Indeed, in 

Do all y are nonnegative and 

C la (C) I = C y i  (C) = C ( z i  - 5)  (C - S)/Szz + l I N  = C 1IN = 1 

since C (xi - S) = 0. Also, i t  is easy t o  be seen that  the width of L increases as we move [ away 

from 3. 

For the midpoint p of L we have 

p (L(x ,y ;C) )  = C y i ( x ; O p ( Y , )  

showing that the midpoint always lies on the regression line generated by the midpoint of the 

interval observations Y ,  . 
Let us compute the slope of L ( t )  in the most outer intervals D j  and Dj+l . In D j  we have 

L (C) = [C 1.i (C) Y; 
sign?; (0 C y i  (C) ~i 

- - [C yi ( 0  y,~"gn(i-j-1/2) 
+sipTi (OI 

+sign(i-j-112) C yi (C) ~i I 
Replacing the expression for y; we obtain that the slope of L ( t )  in Dj  is 

For the interval Dj+l we obtain the same expression. 

On the other side, the interval line 

Z([) = A(x,Y)([ - 5)  + Y 

has slope 



showing that  i t  coinsides with the slope of L in the most outer intervals. Taking into account that  

both L and k contain the segment (3, Y) we obtain sufficient information about the geometric 

disposition of L with respect to L. 

In what follows, we shall formulate some problems that  might be of certain practical interest 

when curve fitting is considered. 

Problem 1. We saw that  the interval linear function ([) = A (z ,  Y) ([ - Z ) + P  presents an 

outer approximation of the set L. However, from a practical point of view i t  is more interesting 

to  find interval estimations A1 and Yl for a and y so that  the interval function Al ([ - 3)  + Yl 

presents an  inner approximation of L in certain interval for [. There might be considered 

different criteria for such an approximation. 

Problem 2. Let the input vector interval Y = Y(t) depend on some parameter t 2 0 , 

in such a way that  for its midpoint we have p (Y (1)) = const and its width w (Y (1)) is an 

increasing function on t.  A simple such vector interval function is, e.g. the function Y (1) = 

Y (O)+[-t, t] , t 2 0; Y (0) can be, in particular a degenerate interval vector, that  is p (Y (0)) = 0. 

It seems t o  be a problem of practical interest to  find the smallest t such that  the set L (1) 

generated by Y (1) has a nonempty intersection with the intervals Y (1). Also we may ask for 

the smallest t such that  L (1) contains a (linear) function interpolating the intervals Yi (that is 

passing through the intervals). 

We see that  the approximation problem under interval data  can be considered in relation 

to  some additional "interpolational" requirements. Before going further into such relations we 

shall first recall the well known interpolation problem (under interval observations). 

Interval interpolation. The simplest problem of polynomial interpolation in the numeric 

(noninterval) situation says that  any N + 1 input points (xi ,  yi) , i = 0,1 , .  - a ,  N ,  in the euclidean 

plane R~ generate an interpolating polynomial p ( t )  of the n-th degree, which can be written, 

say in the form of Lagrange as 

Denote for brevity (xo, x l ,  . . . , XN) = x, and (yo, y1, . . , y ~ )  = y. Since p ( t )  depends on the 

vectors z, y, we shall also denote the polynomial p by p (x, y) and its value P ([) a t  [ by P (x, Y; 

We next consider the situation when we are given interval bounds Yi for yi , i  = 0, l , . . . ,  N ,  

instead of real numbers. 

So, let us assume that  we are given N + 1 input numbers (xo, x l ,  ., xN)  = x and, instead 

of the numbers (yo, y1, - . . , yN) we are now given N + 1 intervals (Yl, Y2, . . . , YN) = Y. Consider 

the family P of all interpolating polynomials p (x, y; .), whenever y = (Yo, Yl , . . . , YN) varies in 

the interval vector Y = ( Y l , Y 2 , . . . , Y ~ ) ,  that  is the set P = P ( x , Y ; . )  = {p(x,y; .)  : YEY). 



The set P defines a set-valued function P from R to  the power set of R , such that  P ( t * )  = 

P ( x , Y ; t * )  = {p(x,y;t*) : Y E Y). 

Consider the well known 

PROBLEM B. Compute the set-valued function P. 

SOLUTION. Denote by y; < y: the end-points of the intervals Y, so that  Y, = [y;, y:]. We 

have for a fixed 6 

where 

do not depend on y and sgnl; (6) means "+" , if 1; (6) 2 0 , and "-", if 1; (6) < 0; also yf - D_f - y: 

(right end-point) and y r +  D_f - y; (left end-point). This shows that  P (6) is an interval of the form 

P ( t )  = [p- ( t )  , P+ ([)I, that  is, P is an interval function. Using interval arithmetic P ( t )  can 

be written in the simple form P (6) = C I; (6) Y, . 
The end-point functions p- (x, Y; .) and p+ (x, Y; .) with the property 

p - (x ,Y; ( )  = inf p ( x , y ; t ) ,  p+(x ,  Y ; t ) =  SUP P ( x , Y ; O  
YEY YEY 

for any 6 E R present the boundaries of P ,  that  is P (6) = [p- (x,  Y; t )  , p+ (x,  Y; [)I. 

Denote as before p ([a, b]) = (a + b) 12, and w ([a, b]) = b - a. Consider again an interval 

vector function Y (t)  = (Yo (t)  , Yl (t)  , . . . , YN (t)), defined for t~ [0, TI, such that  p (Y (t))  = 

const and w (Y ( t ) )  is an increasing function on t , such that  w (Y (0)) = 0. A simple example 

of such an interval vector function is a function of the form Y (t) = y + [-t,t] , for which we 

have w (Y ( t ) )  = 2t. It seems to  be of practical interest to  consider the following problems. 

Problem 3. Let the single-valued polynomial p (x, Y (0)) is a polynomial of the N-th degree 

and is not a polynomial of ( N  - 1)  -st degree. What is the smallest t such that  the family of 

polynomials p (x, Y ( t ) )  contains a single-valued polynomial p* of degree less than N ? What is 

the approximation by p* to  the single-valued vector (x, p (Y (0))) ? 

A generalization of this formulation can be considered for interval observations whose centers 

are not fixed. 

Problem 4. Let the set p ( x , Y  (t))  contain a polynomial of (n  - 1)  -st degree. Find the 

largest T < t such that  p (x, Y (7)) does not contain polynomials of (n  - 1) -st degree. 



Problem 5. Given the set of interpolating polynomials of N -th degree P  = P ( x , Y )  = 

( p  ( 2 ,  y)  : ~ E Y )  for x  = (xo,  2 1 , .  . ., x N )  and Y = (Yl, Y2, .. ., YN) ,  find the subset of all interpo- 

lating polynomials of degree K that  belong to  P, K = N - 1, N - 2, -... 

6 Interval Mathematical Problems. Boundary value problems 

for partial differential equations involving interval parame- 

t ers 

As another example of interval problems we shall briefly consider boundary value problems 

( B V P )  for partial differential equations ( P D E )  involving differential operators of monotone type. 

Let 3 be a given class of sufficiently smooth functions defined on the set B  C Sm . Consider 

the differential operator T  : 3 - 32 and the problem 

(11) T u  = O , U E  3. 

Definition. We say that  the differential operator T  is of monotone type if 

imply 

u  (4 1 v  ( 2 )  , x  E B ,  

We shall make use of the following idea. 

Let T  be of monotone type and there exist functions v ( a ,  x )  and w (b,  x ) ,  where a ,  b  E Sk 

are parameters, such that 

-6 < T v  ( a ,  x )  < 0  < T w  (b,  2 )  < 6. 

Then we have 

v  ( a ,  x )  < u  ( x )  < w (b, x )  , 0  < w (b,  2 )  - v ( a ,  x )  < c6, 

where u  ( 2 )  is the solution of (11) .  Now the parameters a  and b  must be chosen in such a way 

that 

Ic6( = Ic ( a ,  b) 6  ( a ,  b) I < E ,  



where E is the prescribed error bound. 

Methods that  make use of the above idea will be referred as 6 -methods. 

Let 4; : B - 8, i = 1,. . ., n ,  be a set of basic functions in the space 3 . These functions 

are chosen to  have a compact support in the domain B and such that  a t  any point z E B only 

a few values of 9; (2) , i = 1, . - -, n are distinct from zero. Usually the basis consists from finite 

elements or B-spline functions. 

The approximate solutions v (z) and w (z) are represented in the form: 

and the coefficients a; and b; are such that  

( z )  5 u(z) 5 w(z), 0 5 w(z)- v(z) < E, z E B. 

There are various methods for choosing the functions Id;), v and w : finite element methods, 

Ritz method, Galerkin method, collocation method etc. We consider collocation 6-method and 

Galerkin 6-method . The domain B is divided into finite elements and the functions 9; are 

polynomials in one element and zero outside that  element. 

Collocation 6 -method. The upper and lower approximations w and v of the solution u 

are determined by the equations: 

where (2;) are mesh points in the domain B , the mesh being of size h. The size h is chosen 

sufficiently small to  satisfy the inequalities: 

( 4  5 4.) 5 .I(.), 

0 5 w(z) - v(z) < E, z E B. 

The parameter 6 depends on the domain B ,  the operator T and the size of the mesh h. The 

next theorem gives the existence of the parameter 6. 

Theorem 1. Let T, B and h are given. Then there ezists a positive number 6 > 0 , such 

that : the solutions v and w of (3) corresponding to 6 satisfy the inequalities 

-26 5 Tv (z) 5 0 5 T w  (z) < 26, 

0 5 w (2) - v (2) 5 c6, for every z E B. 

The constant c depends only on the domain B and the operator T and does not depend on h . 
The parameter 6 depends on h and 6 - 0 when h - 0. 



So we can obtain lower and upper approximations of the solution u ( 2 ) .  

More details on the &methods can be found in [lo-131. There exits already vast literature 

on the validated solution of differential equations, both PDE's and ODE's. More details on 

numerical methods with result verification for ODE's can be found in [I], [2], [6], [7], [17], [34], 

[35-371. 

We hope that the solution of the above and other similar interval problems will contribute to 

a more effective rigorous evaluation of the effects of the imperfect modelling and to a mathemat- 

ically clean motivation for the rejection of an incorrect mathematical hypothesis in a particular 

modelling situation. 

For practical purposes in any particular situation the formulated problems can be solved by 

means of a program system. Such a system is now in development under the name MODYNA 

within the frames of a contracted study agreement between the Bulgarian Academy of Sciences 

and the International Institute for Applied System Analysis. 

7 On the new methodology of scientific computation and its 

implementation. 

Advanced computer arithmetic and interval analysis are suitable fundamentals for the construc- 

tion of highly accurate and reliable numerical algorithms. The methodology of creating such 

algorithms is comprehensively described in [21]. Basically it consists of: 

i) using interval analysis for delivering guarantees of the computational results and automatic 

validation (proof) of the inclusion of the ideal results in the computed intervals; 

ii) using iterative residual (defect) correction processes in combination with the optimal com- 

puter operations (and especially the optimal scalar product) for delivering high accuracy 

of the final results. 

On the basis of the advanced computer arithmetic and interval analysis a subroutine library 

for HIghly efFicient and accurate COMPutations (HIFICOMP) was developed by the Research 

Group for Computer Arithmetic and Interval Analysis a t  the Center for Informatics and Com- 

puter Technology a t  the Bulgarian Academy of Sciences [14], [15]. It contains subroutines for 

interval and computer arithmetic, for evaluation of rational expressions, for solving linear alge- 

braic problems, differential equations, etc. 

Besides the high accuracy and guarantees for the final results and the possibility of solving 

numerical problems with interval input data, the HIFICOMP subroutine library deliberates 

the scientific computer user from the final responsibility for the quality of the computational 



results. The intervals produced by the HIFICOMP subroutines contain the ideal solutions 

with absolute guarantee and maximum accuracy. The computer user may have no doubts in 

the correctness of the results, he does not need to  apply intuitive techniques for checking this 

correctness (computing remainders, repeating computations with slightly changed data  or in 

various precisions etc.). This greatly increases the efficiency of the numerical computations from 

the users point of view, since he does not need t o  invest any time in checking the correctness of 

the results. 

Let us mention some program systems supporting or partially supporting the new methodol- 

ogy for scientific computing. One of the first such programming tools was the subroutine library 

RINA [31], developed during the period 1982-1983 within the frames of a contract between NPL 

"PROGRAMA" a t  the Centre for Mathematics and Mechanics and the State Committee for 

Research and Technologies of the Bulgarian Academy of Sciences. In 1983, IBM announced the 

ACRITH Subroutine Library [16], developed in West Germany. A commercial version of a new 

programming language supporting the new approach for scientific computing appeared in 1987 

- the language PASCAL-SC [18]. Other leading computer manufacturers (e.g. Siemens and 

Nixdorf) also offered program libraries similar to  ACRITH (like ARITHMOS). 

In 1987, the program library HIFICOMP (subroutine library for highly efficient computations) 

was developed as a result of a contract between the Centre for Informatics and Computer Tech- 

nology and the State Committee for Research and Technologies. The library has as its goal the 

performance of highly accurate and safe numerical computations on computers of the IBM 370 

series of compatible. The HIFICOMP subroutines compute guaranteed interval bounds for the 

true results of the corresponding arithmetic operations or mathematical problems to  be solved. 

These intervals are very sharp; their endpoints are two adjacent (neighboring) machine numbers 

(or the intervals are even much sharper if the STC-format version of the corresponding algorithm 

is run). 

HIFICOMP makes use of some nonstandard software-hardware tools that  support the new 

methodology. Special tools that  extend the set of arithmetic instructions available on IBM 370 

and on the vector processor ES 2706 have been developed under the requirement for an easy 

transfer of the library in various hardware environments. To this end the dependence of the 

library on a particular hardware was reduced to  a small number of basic subroutines written 

directly in some assembler type language. 

This allows the subroutine library to be easily adopted for various hardware environments. 

The basic routines for the arithmetic operations (including the dot product) make use of a small 

number of machine dependable modules. Such modules are developed for IBM 370 mainframe 

and for personal computer IBM-PC XT/AT (so that  a P C  version of the HIFICOMP subroutine 



library is also available). The basic routines are also microprogrammed for the vector processor 

EC 2706, which provides a very fast performance of the computer arithmetic. However, we 

should note that  the software or even firmware implementation of the computer arithmetic 

are rather slow in comparison with what might be expected from a hardware implementation. 

Because of this reason a specialized processor is now in development, which will provide for a 

very fast execution of the whole computational process. 

Examples. As an example consider the solution of the system Ax = b , wherein 

The true solution is (4, 5, 6, 5). A standard program for solving linear systems, using double 

precision fails completely - we obtained a result reading (-8.471 . . . ,4.592 - - - ,4.492 - . a ,  5.339. . a). 

The HIFICOMP routine LIN in STC-format with two components produces the following in- 

terval result (in single precision !): 

[3.999999, 4.000001] 

[4.999999, 5.000003.] 

[5.999999, 6.000003.l 

[4.999999, 5.000001] 

As another example consider the linear system Ax = b with 

In this example, the matrix is singular and therefore the problem has no solution. The sub- 

routine LIN produces a warning message "singular matrix" , whereas a "traditional" subroutine 

gives the following result : 

which is completely misleading. 

The subroutine package MODYNA.  This P C  program package is under development within 

an IIASA contracted study agreement entitled "Mathematical Modelling of Dynamical Pro- 

cesses." 



It will extend the arithmetical facilities of the PASCAL-SC language by means of a dynamic 

precision arithmetic. It will implement all features of the above outlined methodology and 

will contain subroutines for various interval problems arising in the course of mathematical 

modelling of dynamical processes. The program package MODYNA is developed by the Division 

on Mathematical Modelling a t  the Bulgarian Academy of Sciences, Institute of Biophysics, in 

collaboration with the Mathematical Institute and the Coordinating Centre for Informatics 

and Computer Technology. The main contributors are R. Angelov, P. Bochev, G. Grozev, N. 

Dimitrova, N. Kjurkchiev, M. Krastanov, S. Markov, V. Njagolova, K. Petrov, P. Petrov, and 

E. Popova. 
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