
Working Paper
Mat hemat ical Modelling of
Dynamical Processes Under
Interval Experimental Data

Svetoslav Markov

WP-91-004
April 1991

EIIIASA International Institute for Applied Systems Analysis A-2361 Laxenburg Austria

..am. Telephone: +43 2236 715210 Telex: 079 137 iiasa a Telefax: +43 2236 71313

Mat hemat ical Modelling of
D ynamical Processes Under
Interval Experimental Data

Svetoslav Marlcov

WP-91-004
April 1991

Working Papers are interim reports on work of the International Institute for Applied
Systems Analysis and have received only limited review. Views or opinions expressed
herein do not necessarily represent those of the Institute or of its National Member
Organizations.

!fllIASA International Institute for Applied Systems Analysis A-2361 Laxenburg Austria

.h A.

..BB~ Telephone: +43 2236 715210 n Telex: 079 137 iiasa a Telefax: +43 2236 71313

Foreword

Ln recent years, significant progress has been made in the guaranteed treatment of mathematical
models. It concerns all phases between the process of modelling and computer processing. The
paper presents the basic components of a methodology for computation with automatic result
verification, involving interval data. A full control over the computational errors and the uncer-
tainty in the data is achieved by using well-defined interval computer arithmetics and dynamic
accuracy of the data representation. The approach and its impact on the development of nu-
merical algorithms is illustrated by interval versions of the problems of polynomial interpolation
and least-square approximation.

Alexander B. Kurzhanski
Chairman

System and Decision Sciences Program

Mat hemat ical Modelling of
Dynamical Processes Under
Interval Experimental Data

Svetoslav Markov

A brief discussion on a new methodology for solving mathematical problems involving

interval input data and for scientific computing with result verification is presented.

Some examples for the impact of this methodology on particular mathematical mod-

elling situations are given. A brief report on a newly developed program system

MODYNA, which is designed according to the new methodology, is presented.

1 Introduction

The development of a new methodology for numerical treatment of mathematical problems

involving interval-valued (and more general set-valued) input data and for scientific comput-

ing with result verification has a strong impact over the mathematical modelling of dynamic

processes. Recently developed problem solving environments designed according to this new

methodology enables us to solve many mathematical problems involving interval-valued input

data, obtaining thereby highly accurate and guaranteed bounds for the true solution sets. This

1ea.d~ t o the possibility of rigorous evaluation of the effects of the imperfect modelling and to a

mathematically clean motivation for the rejection of an incorrect mathematical hypothesis in a

particular modelling situation.

In traditional numerical analysis, numerical algorithms are formulated in terms of famil-

iar arithmetic operations between real numbers, as defined in the textbooks on real analysis.

However, real arithmetic is unrecognizable to computers: they cannot execute real arithmetic

operations in general (and who can?). The disability of computers to execute the real-arithmetic

operations prescribed by the traditional numerical algorithms has led to various and rather ar-

bitrary realizations of the arithmetic and conversion procedures on various types of computers.

As a consequence it often happens that an algorithm produces (sometimes completely) different

results when run on different types of computers even when these computers operate with the

same precision. This ridiculous situation contradicts the basic idea incorporated in the concept

of algorithm, namely the strict and accurate definition of the whole computational processes.

Because of the above mentioned uncertainty and arbitrariness of the computational process,

the users of numerical algorithms are faced with the tedious problem of establishing a reliable

connection between the correct solutions of the problem and the computational results practically

obtained when running the particular numerical algorithm on a computer. The estimation of

the global computational error is usually done through laborious independent estimations of

both the truncation and the round-off errors.

Some intuitive techniques that are often used in practice for the estimation of the rounding

errors are:

i) computation of residuals (which are expected to be close t o zero);

ii) repeating the computational process with slightly changed data and comparing the results

with the previous one;

iii) repeating the computations in several various precisions (single, double, extended etc.) and

comparing the results.

However, it can be shown [21.] that none of techniques i) - iii) are reliable. Amongst other

techniques of error control we should mention forward and backward analysis [41]. These tech-

niques require the computation of a large number of error estimates and so-called condition

numbers. We share the opinion (see [21], p.15) that they are rather complicated and are still of

limited practical usage.

For many years it has been believed that some wonderful programming tools can be designed

in such a way that the application of these tools on traditional numerical methods should produce

safe and accurate results. In the last decade it has become clear that such software tools hardly

exist. The investigations took a new path: not only new types of software-hardware tools are

needed now, but also numerical methods of a completely new type have to be designed, and

then, a revolutionary new methodology arose putting together the new numerical methods and

the new software-hardware tools.

That is why we are now talking not just of new programming tools or of new numerical

algorithms, but rather of a new methodology for scientific computing that has as its goal the

design of problem solving environments with automatic result verification, providing thus full

control over the effects of the computational errors and the uncertainties in the data. The

basic features of this methodology can be found in the recent volumes of the journal Computing

(papers 141, [7], [22], [23], [32], and [36] are from such volumes).

The new methodology makes use of, e.g.

r a mathematically precise definition of computer arithmetic operations in all computational

spaces (real and complex numbers, intervals, vectors, matrices, interval vectors, functions

etc.) and the implementation of these operations in the computer,

r suitable formulation of the numerical algorithms using the above mentioned extended

arithmetic facilities. The usage of a well-defined computer arithmetic in all necessary

computational spaces allows the construction of numerical algorithms that always produce

well-defined intermediate and final results depending only on the chosen computational

precision.

r new algorithmic techniques needed to comprise the computational errors and t o compute

with interval input data (or a more general type of set-valued data).

The new type of numerical algorithms possess (some of) the following properties:

r problems involving interval input data (or other types of set-valued data) can be success-

fully handled;

r the numerical algorithms produce guaranteed bounds for the ideal solution of the numerical

problem;

r these bounds are the smallest possible within the chosen precision of the floating-point

screen,

r the above mentioned bounds can be made arbitrarily sharp (that is close t o the true ones)

by using the so-called staggered correction format (STC format) techniques [36] in order

t o serve as input data for exceptionally ill-conditioned mathematical tasks.

In the frames of the new methodology some new mathematical tools such as interval analysis

and computer arithmetic [2], [19], [29], [34] and some new application of well known iteration

techniques, differential inequalities, monotonicity theorems, fixed-point theorems etc. [l-12,

32, 35, 361 have been developed. The new standards for the implementation of computer and

interval arithmetic on arithmetic processors provide the necessary support for the computational

approach (see 181, [15], 1161, [42] and the IMACS-GAMM resolution of computer arithmetic

([39], p. 301)). The design and the practical use of the new problem solving environments have

a strong impact on mathematical modelling since they permit an evaluation of the effects of

imperfect modelling and a reduction of the computational errors below certain (well-known in

a.dvance) bounds.

In numerical computations, two goals have always been pursued: guaranteed accuracy and

speed. Here we will not be concerned with problems related to acceleration of the computations.

Let us mention that the new methodology for safe and accurate computations can be successfully

combined with parallelization techniques [38].

2 Numerical algorithms with result verification for mat hema-

tical problems involving interval input data.

Let us make some general considerations in relation to the numerical solution of a scientific

problem. A solution y of a well defined mathematical problem can be considered as a function

(or operator) of the input data x for some domain D of variation of the data: y = f (x). For

simplicity let us consider the situation when f is a function (for instance, y can be a real number,

D can be a subset of Rn etc.). (The situation when x and y are functions and f is an operator

is studied in [17].) When using a conventional numerical procedure for the computation of y we

traditionally speak about three possible types of errors:

i) errors in the input data x;

i i) errors from the numerical method (e.g. due to truncation of an infinite iterative process);

iii) errors from the finite representation of floating-point numbers.

The origin of the errors from the first type may lie in the imprecise experimental measure-

ments. Usually the experimental scientist is able to read-off an interval for the true value of the

measured quantity. In some cases this interval may contain the true value with a guarantee. It

may turn out that this is a very common situation, despite of the fact that the usual praxis is to

read-off numerical data. The new developments should encourage the experimenters to read-off

interval-valued experimental data. We shall further assume that for the input data we are given

some (interval) bounds. In such a situation there is not much reason t o talk about "errors" in

the input data (especially when the bounds are guaranteed) so we shall instead speak of interval

input data (or more general set-valued data like ellipsoids, etc.)

Even if the bounds for the input data are small, i t may happen that they cause large devia-

tions in the final results (by ill-conditioned problems). That is why the safest way t o treat such

problems is t o consider them as set-valued problems never mind how small the input intervals

are. A problem P (X) involving interval input data X is thus considered as a set of problems

P (x) with numerical data x, such that x E X , i.e. P (X) = { P (x) : x E X) . The solution

Y (X) of P (X) is then by definition the set of solutions Y (x) of P (x) whenever x E X , i.e.

Y (X) = {Y (x) : x E X) . An efficient tool for the treatment of problems involving interval

input data is interval analysis [2], [23], [25], [28-301.

In the same manner we can treat the errors due to the necessarily finite representation of

numerical input data (e.g. 113 is represented in a base 10 floating-point system by an interval

of the form [0.33 . . .33, 0.33 . . . 341). In such cases we replace the numerical input data by

interval data, but now we also may interfere to make these bounds as tight as we wish (using

e.g. extended precision formats). This situation takes a n intermediate place between the first

and the other two error type situations. Here we have a problem with set-valued input data,

but the bounds for these data can be made arbitrary s m d , e.g. by using the STC-formating

technique.

Let us turn our attention t o the errors of types ii) and iii). To this end we may assume that

the argument x takes values from the computational space S so. that there are no errors from

the first type. Our ultimate goal is t o design a computational algorithm that do not introduce

any unpredictable errors of types ii) and iii), that is t o obtain a solution that lies within known

bounds. For instance the numerical algorithm may produce the optimal (best) approximation

in the floating point system S of the real result y as defined by the equality y = f (x) in real

arithmetic. When talking a t this point about the value of y, we do not mean the result of some

computational process producting y; we just define the real number y by the equality y = f (x)

in the sense of analysis. Since we do not have real numbers in the computer a t our disposal,

the best that could be expected is to obtain the shortest machine interval on the floating-point

screen that contains the ideal result y = f (x). In this case we may say that y is computed

within the maximum accuracy allowed by the system S.

The new methodology for scientific computing and for design of numerical methods with

result verification can not be outlined sufficiently well without some elementary knowledge of

computer and interval arithmetic. These two mathematical tools are a substantial part of the

necessary mathematical background for the construction of such methods.

3 Computer and interval arithmetic

In what follows S = S (b,p) denotes the standard set of floating-point numbers expressible in a

base b number system with a mantissa of some fixed length p (called precision), tha t is S(b ,p)

is the set of all real numbers of the form m x bn , where n is an arbitrary integer but m is an

integer of absolute value less than bP [19].

Let us denote the shortest machine interval containing the real result y by [v y , Ay] =: Oy ,

wherein v y = m a x { x : x ~ S , x 5 y) , A y = m i n { x : x ~ S , x L y).

Note that the interval Oy does not contain any computer numbers as inner points. We shall

further consider the symbols v, A as functions (called also rounding functions), mapping R into

itself. The screen S is the range of these functions. The rounding functions v, A are monotone

projections. A function 0 : R - S, S c R is called a monotone projection, if [19]:

i) 0(0(x)) = 0(x) for all x E R;

ii) x 5 y implies 0 (2) I 0 (y) for all X , y € R;

We see that the result of a computer arithmetic operation or procedure should be the smallest

floating-point interval containing the true result. Since we further have t o operate with such

interval results we thus arrive to the necessity of using interval arithmetic operations. After

introducing interval arithmetic, we shall be able to consider the rounding 0 as a rounding

interval-valued function mapping I R (and, in particular, R) onto IS, where I R , resp. IS, is

the set of all intervals with end-points in R resp. in S, symbolically, 0 : I R - IS . In this

case the order relation should be taken to be that of inclusion.

The rounding function can be defined in an abstract way as a mapping satisfying the above

three relations over an ordered field or over more general algebraic structures. The properties

of 0 in such setting are studied in detail in [19].

From a practical point of view, it is important that a monotone projection 0 always produces

machine numbers or intervals of best (optimal) approximation. The rounding 0 possesses the

above mentioned optimality property. By means of the rounding 0 we can define the basic

computer operations for addition, multiplication, scalar product and others in the corresponding

computational real arithmetic results x + y, x y, u o v. This principle of definition was adopted

for the arithmetic operations in S in the IEEE resolutions on computer arithmetic from 1979

and 1985 [8] and was further extended for higher computational spaces (such as S n) in the

IMACS-GAMM resolution on computer arithmetic from 1987 (see e.g. [39], p.301).

For simplicity we shall assume the computational spaces to be the corresponding floating-

point spaces (and not the finite spaces of machine elements). In programmer's slang we may say

that for the moment we shall not be interested in overflow and underflow. In practice overflow

and underflow occur rarely and does not cause so much trouble.

Computer arithmetic operations. Let x, y E S be floating-point numbers and

u = (u l , '112, - - - , u,) , v = (vl, 02 , . . . , v,) E Sn are floating-point vectors. We define the computer

operations corresponding to the real operations x + y, xy, u o v for addition, multiplication and

scalar product t o be the shortest machine intervals containing the real (ideal) result of the

corresponding operation:

i) addition in S: x 8 y = O (X + y) = [V(X + y) , A (x + Y)] = [x V Y,XAYI;

ii) multiplication in S : x@y = 0 (xy) = [v (xy)] = [v (xy) , A (xy)] = [x y, x A y];

iii) scalar product in Sn : u 0 v = 0 (u o v) = [v (u o v) , v (u o v)], wherein u o v = C7=l uivi .

We note that all the above intervals contain no elements of the floating-point system S inside

(as inner points) and in this sense these results are optimal (i.e. with maximum accuracy).

7 Example 1. Compute (z+y)$z and x e (y e t) for x = 5, y = 10 , z = -lo7 in the

computational space S (10,7).

Solution. We have

and therefore xQy = [10000000,10000010].

We now compute (x 8 y) Qz which is

by the definition of interval addition (see the definition below). From (x y) v t = 1 o 7 ~ - lo7 =

0, (x A y) ,4 t = 10000010 A -10000000 = 10 we obtain (z e y) $t = [O, 101. Similarly, we

compute x 6 (y 8 z) = 5.

This example shows that it is useful to define operations between intervals. This will be

outlined in the next section. The example also shows that addition in S does not fulfill associative

low.

Example 2. Compute in S3 (10,7) the scalar product u 0 v with u = (5, lo3, lo4) , v =

(1, 104, -103).

Solution. The ideal result is u o v = 5 x 1 + lo3 x l o4 + lo4 x (-lo3) = 5 + lo7 - lo7 = 5,

and therefore u 0 v = 5.

Remark. The absence of the operation O in S3 (10,7) could lead to a very bad approxi-

mation of the correct value of the scalar product u o v. Indeed, without this operation for the

scalar product we have (5 9 1 0 ~) $ (-lo7) = [O, 101 (see Example 1). Note also that the scalar

product in Sn provides the space S with an exact sum of n summands, since C:=, u, = u o v,

with u = (u l , u 2 , ~ - ~ , u n) , v = (1 ,1 , . . . , 1) .
We defined two operations in the set S (addition and multiplication), and an operation in

Sn (scalar product). Similarly two operations called subtraction and division are defined in S

that are inverse operations to addition and multiplication.

For the structural properties of computer arithmetic the reader can consult [19]. For the

software and hardware implementation of the computer arithmetic operations, including the

scalar product, see [8, 19, 211. The application of the computer arithmetic operations for the

design of safe and accurate numerical algorithms for scientific computation is considered in [21,

26, 28, 29, 32, 331.

Interval arithmetic. Let us now briefly consider the interval arithmetic. The simplest

interval arithmetic operations are the arithmetic operations in the set I R of the intervals on the

real line. If A, B E I R with A = [a, 31, B = [b, b], we define

wherein w denotes the width of the corresponding interval, tha t is w (A) = Si - a.
We also define the scalar multiplication by

[a&, ail] , if a > 0,
a e A = a A =

[aa , ag] , if a 5 0.

For a = - 1 the above formula gives - 1 l A = [-Si, -a]. This interval will be denoted further

by -A. We then denote A - B = A + (-B), A 8 B = A $ (-B). The operation 8 plays an

important role in the differential calculus for interval functions. Because of this reason we have

exchanged the notations "-" and "8" in our publications on this topic [23-261.

We see that the two operations for addition generate two operations for subtraction. This is

natural by the observation that the interval space has a richer structure that the space of real

numbers. Let us note that the interval produced by the operation "8" is narrower than the

interval result produced by the operation "-"; also the operation "$" delivers a sharper result

than the operation "+".
Let the end-points of an interval A be a and p, that is

([P, a] , otherwise.

The above formula can also be written as A = [a V P] (read: "the end-points of the interval A

are a and ,B "). For the definition of multiplication it is useful t o have a special notation for the

end-point of an interval A that is closer to zero than the other end-point. Let us denote the closer

to zero end-point by a+' and the other one by a-O. We thus have A = [a+' V a-O] , la+OI < Ia-OI.

We shall introduce next two operations for multiplication of intervals that do not contain

zero (an extension of the definition for arbitrary intervals can be found in [9], [23]).

Denote by I R * the set of all intervals A such that 0 4 A. For A, B E I R * we define

A x B = [a+Ob+O V a-'b-'1 , A @ B = [a+'b-' V ~ - ~ b + '] ,
If B = [b+O V b-O] E IR* , denote B-' = 1/B = [(l/b+') V (lib-')I. The two operations

for multiplication generate the following two operations for division: A / B = A x B-', A @ B =

A @ B-'.

We note that the operations @ and @ produce narrower interval results than the correspond-

ing operations x , /.
Let us pay some attention t o the fact that the operations -, 8, /, @ are composite operations

defined by

and should not be taken in considerations as basic operations (e.g. one should write < I R , +, x >

and not < I R , +, -, x , / > as i t is often done in the literature). Because of (*) we shall further

call the operations -, 8, /, @ quasiinverse to the corresponding operations +, $, x , @ .
Remark. We can not assert that the operations -, 8, /, @ are inverse to the operations

+, $, x , @ in the usual sense. For instance, the operation - is not inverse to the operation + ,
since X = A - B is not a solution of A + X = B in general. The same holds true for the rest of

the operations: 8, /, @ .
The interval arithmetic structure < I R , +, $, x , @ > , which also includes the quasiinverse

operations -, 8, /, @ , is known as eztended interval arithmetic . It is a rich algebraic structure

which is very useful for the interval arithmetic presentation of interval extensions of real func-

tions, and, as a consequence, for the treatment of numerical problems involving interval input

data PI, 1231, [241, [251.

The elimination of the operations $, @ from the extended interval arithmetic leads to a sim-

pler interval arithmetic structure < I R , +, x > , which also includes the quasiinverse operations

-, /. This structure is known as standard interval arithmetic [2], [28]. It is very effective for the

construction of interval arithmetic inclusions of interval extensions, and is thus very useful for

the automatic validation processes.

A short survey of various interval arithmetic structures can be found in [34]. In what

follows we give a brief comparison between the interval arithmetic structures < I R , +, > and

< I R , +, $, > as substructures of the standard and extended interval arithmetic, respectively.

Below we give a list of basic properties of < I R , +, $, >.

For A, B , C E I R , a, P E R we have:

1) A + B = B + A ;

la) A $ B = B $ A ;

2) a (B + C) = a B + a C ;

2a) a (B $ C) = a B $ a C ;

3) a@ 2 0 implies (a + 0) C = a C + PC ;

3a) a@ 5 0 implies (a + 0) C = a C $ PC ;

4) a (P C) = (a@) C ;

5) l . A = A ;

6) O . A = O ;

7) (A + B) + C = A + (B + C) ;

7 4

Now, to obtain a list of properties of the interval space < I R , +, > we should exclude the

assertions involving the operation $: these are equalities l a) , 2a) , 3a), 7a), 7b) and 7c).

After defining arithmetic operations on I R , we can extend these operations for other interval

objects: interval vectors, interval matrices, interval functions etc. A possible approach in this

direction is outlined in [24]. On the basis of interval arithmetic an extensive mathematical

theory for the study of interval objects called interval analysis has been developed. Interval

analysis is a rapidly developing theory and there is already vast literature on this subject. From

a practical point of view, the main application of interval arithmetic and interval analysis is in

the treatment of numerical problems involving interval input data and in the organization of

iterative procedures involving automatic validation. According to [21], Ynterval arithmetic is

the only computational tool so far available that incorporates guarantees as part of the basic

computational process."

By means of computer and interval arithmetic, one can define arithmetic operations in the

set of all intervals on the floating-point screen S [19]. For instance, addition of A = [a, ti], B =

[b,b] ~ I S i s d e f i n e d b y m e a n s o f A + B = [a v b , ~ A b] .

4 Dynamic accuracy and STC format

Let us first discuss an example. Consider the matrix:

where 6 = 1/30. Assume that we have to represent the matrix in the floating-point system S in

order to solve a linear problem of the form Ax = b. For simplicity assume that S = S (10,2).

Then the sharpest interval matrix OA with elements of IS , which contains the matrix A is

Since det (A) = 6 > 0 and therefore A is not singular for an arbitrary right hand side b, the

linear system Ax = b has a unique solution. However, the interval matrix OA contains the

singular matrix A*

Thus the set of problems, corresponding to the interval matrix OA (this set of problems is

usually denoted simply by OAx = b) contains a problem that has no solution (the problem

A*x = b, corresponding t o the singular matrix A*). In such a situation we may say that the

problem represented in the computer has no solution (although the original problem has a well

defined solution. Stetter [35, 41 proposed a following way to circumvent this obstacle. Let a be

a numerical input data of the problem we are solving (think of a = 1 + 6 in the above example).

If the sharpest interval Oa with endpoints in S such that a E Oa is too large and makes our

problem unsolvable, we then take a sufficiently shorter interval, presented in the form

where the numbers a l , a2, - . .a,-1, and a, belong to the computational system S.

The interval (**) is usually coded as (a l , a2, . , a,-', [a,]), where [a,] is an abreviation for

[a,, a,]. We now see that although all a; 's in the form (**) are within S , the endpoints of the

interval (**) are not from S. The representation (**) is called staggered correction representation

(STC-representation, STC-format). This representation does not need special arithmetic utilities

and gives us the possibility to extend the precision as much as we like. For the matrix A from

the above example the STC representation with r = 2 , has the form A' + [A2], namely

The above interval matrix C is much shorter than the interval matrix OA ; the important

fact now is that the problem C x = b has a well defined solution.

5 Interval mat hemat ical problems. Interval interpolat ion and

approximat ion

In this section we consider two simple examples of interval mathematical problems: polynomial

interpolation and least-square approximation in the presence of interval input data.

In the situation when we have guaranteed intervals from the observations of a stochastic

variable i t may be useful to apply the least-square approximation method directly to the interval

input data, obtaining thus (as usually in the interval analysis) the set of all approximations to

the numeric data varying in the given intervals.

Interval least-square approximation. We first recall some well-known results related to

the least-square approximation method under numeric data, considering the most simple linear

one-dimensional case.

The coefficients a and b of the line

that fits to the input data (2, y) , x = (XI, 2 2 , . . - , XN) E R N , y = (yl, y2, . , yN) E R~ SO that
2 C (ax; + b - y;) is minimal, are determined by the system

(C 2:) a + (C xi) b = xiy;,

wherein C means summation from 1 to N . Denoting x = (C x ;) I N , y = (C y ;) / N and dividing

the second equation into N we have

The determinant of (2) will be further denoted by

S , , = ~ Z ~ - N ~ ~ = ~ (X ; - Z) ~ > ~ .

The slope a of the line 1 is

a = IS,.) (C xiyi - N Z ~)

which can also be written

a = (C x i Y i - f C yi) /Sxx = (C (x i - 5) 9;) / s ~ ~ D = ~ s ~ ~ / s ~ ~ .

For b we compute b = y - aZ = ji - a3 = y - (S z y / S X x) 2 , so that (1) obtains the form

showing that 1 passes through the point (5 , y) .

In what follows we shall also need the following presentation of the regression line

1 : q = a (t - i) + Q

= (SXY/SXX) (t - 2) + y

= (l / S x x) (C (x i - 5) Y ;) (t - Z) + (C y;) / N

= C ((5; - 2) (t - Z) ISxx + 1 / N) y;,

(4) 1 : 7 = C~a(t)~ir

wherein the functions

depend only on x (not on y !) .
Since y; is linear, it may have a t most one zero. If a point xi coincides with 3 , then

y; = 1 / N > 0. Consider the case xi # X. Then y; (J) has a slope (xi - 3) /Szz such that

> 0, i fx ; < 3 ,
(xi - 2) /Szz

< 0, if xi > 3.

Let xi < a: for i = 1,2,-em, j and xi > 3 for i = j + I , - . - , N . Denoting by J; the zero of the

linear function y; (J), i.e.

we have

The ordering of the x; 's with respect to X imply corresponding ordering of the ti's defined by

(6). Namely,

* Jj+i < Jj+2 < . - - < JN < X < (1 < J2 < - < Jj-1 < J j .

These relations remain true also for x j = 3 , providing that in this case Ji is understood as

oo , so that we could write

According t o (7), the minimal interval I containing the ti's is

We shall adopt the notations Do, D l , . . . , D N for the intervals with end-points J; as follows:

Dj+l = t j+l l 7 Dj+2 = [t j+l , tj+2] ' ' ' D N = [~ N - I t N] .

Let us now compute the sign of y; (t) in the interval Dk. In Do = [tN, t i] all y; (t) , i =

1,2, - . -, N have positive signs. We shall call Do the "central intervaln. In the remaining intervals

we have

i) to the right of Do, that is for t E Dk, 1 5 k 5 j :

- , i = 1, ... , k

(8 4 signyi (t) = = sign(i - k - 1 / 2) , i = I , . . . , N.

+, i = k + I , . - - , N

ii) to the left of Do , that is for t E D k , j + 15 k 5 N.

+ , i = l , . . . , k - 1

(86) signyi (t) = = sign (k - i - 1/2) , i = 1,. - ., N

- , i = k , . . . , N

In the most right interval D j (or Dj-l if x j = f) we have

- , i = I , . . . , j

sign-/; (t) = = sign (i - j - 1/2) , i = 1 , . . . , N.

+ , i = j+ l , . . . , N

In the most left interval Dj+l we have inversely

+ , i = I , . . . , j

signyi (t) = = s i g n (j - i - 1 / 2) , i = l , - . . , N .

- , i = j + l , . . . , N

Let us now discuss the least square approximation method in the situation when interval-

valued experimental data are provided for the true values of the observation.

Assume now that we are given N numbers (21, 22,. - ., zN) = z E RN such that z1 < 2 2 <

. . . < z~ and N intervals (Yl, Y2,. - ., YN) = Y E I R N (I R N is the set of N -dimensional

interval vectors). Let y E RN be such that y E Y , and 77 (2, y) be the regression linear function

(3) generated by the input data (z, y) . Denote by L the family of all regression linear functions

77 = ~ (x , y) , generated by the input data x, y , whenever the numeric vector (yl , y2,. . , yN) = y

varies in the interval vector (Yl, Y2,. . . , YN) = Y , that is the set

Denote by L the set-valued function, corresponding to L, defined for (E R by L (0 =

{7?(x,y;O : Y E Y}.

P R O B L E M A. Compute the set-valued function L or an inclusion for this function.

SOLUTION. We shall first consider the easier problem of computing an inclusion for L .
According t o (3) the line 1 (x, y) generated by x, y is the line passing through the point

m = (2, y) = (1 IN) C y; and having as slope a = a (x, y) = Sz,/Szz = (C (x; - f) y;). As y;

vary in Y;, i = 1,2, . , N, the point m varies in the segment M = (3, Y = (l / N) 1 Y,) and the

slope a varies in A = A (x, Y) = (C (x; - f) Y ,) = Szy/Szz. The sets A and M are obtained

from the variation of the y;'s. If we consider them as independent, we may construct the interval

linear function

that contains L. Since the parameters a and y are strongly dependent we shall obtain only

rough bounds for L.

We may easily obtain the exact interval hull of L in explicit form if we use the representation

(4) for 1, that is q = 1 yi (0 y;. Indeed, we have for every fixed (

In the above formula the end-points of the intervals Y, are denoted by y; 5 y+ so that

Y, = [y;, y:] , i = 1,2 , . . . , N and sgnyi (0 means "+", if yi (0 > 0, and "-" , if 7; (0 5 0; also
- -

yi means y+ (right end-point) and yf+ means yf (left end-point). Formula (10) shows that

L (0 is an interval a t every [, so that L may be considered as interval function. The interval

function L gives the exact interval bounds of L

where, according t o (5)

We see that formula (10) gives the boundaries 1- (0 , 1+ (0 of the interval function L (0.
By means of interval arithmetic the interval function L (0 is expressed in the simple form

L (0 = C Yi (0 y;.

GEOMETRICAL MEANING. To see the geometrical meaning of the expression for

L (t) we have to know the signs of 7; (t) . These signs are constant in the intervals D k defined

by

but are different for the different intervals D k according to formulas (8).

According to (8) the functions yi (t) , i = l , . . . , N , have positives signs in the "central"

interval Do = [tN, tl]. In the other intervals Dl , D2, . . . , Dj, Dj+1,. . . , D N we have

and, respectively,

+, i = 1 , 2 , . . . , k - 1;
sign7; (t) =

-, i = k , . . . , N ; t € D k , j + l < k < N .

We see that in every fixed interval D k the boundaries 1-,1+ of the set L are segments of the

regression lines with respect to certain end-points of the input intervals Yl, Y2,. -YN. So, in

the "central" interval Do the boundary regression line 1+ is generated by the set of all right

end-points of Yl, Y2, .YN and the boundary line 1- is generated by the set of all left end-points

of Yl,Y2,-..YN, that is

We may also compute the width of w of L in Do . We have

Let us compute the width of L on the real line under the assumption that the intervals Y,

have a constant width W. We have

w (L (0) = C J Y ~ (C) I W (Y ,) = W C I Y ~ (O I

= w C I (l/Szz) (xi - 5) (C - 2) + 1/NI

S W (l/Szz) It - Sl (1 + C Ixi - ?I)

= w + w (l/Szz) I[- Sl C 1xi - 31.
From the above formula we see that the equality is obtained in the interval Do . Indeed, in

Do all y are nonnegative and

C la (C) I = C y i (C) = C (z i - 5) (C - S)/Szz + l I N = C 1IN = 1

since C (xi - S) = 0. Also, i t is easy t o be seen that the width of L increases as we move [away

from 3.

For the midpoint p of L we have

p (L(x ,y ;C)) = C y i (x ; O p (Y ,)

showing that the midpoint always lies on the regression line generated by the midpoint of the

interval observations Y , .
Let us compute the slope of L (t) in the most outer intervals D j and Dj+l . In D j we have

L (C) = [C 1.i (C) Y;
sign?; (0 C y i (C) ~i

- - [C yi (0 y,~"gn(i-j-1/2)
+sipTi (OI

+sign(i-j-112) C yi (C) ~i I
Replacing the expression for y; we obtain that the slope of L (t) in Dj is

For the interval Dj+l we obtain the same expression.

On the other side, the interval line

Z([) = A(x,Y)([- 5) + Y

has slope

showing that i t coinsides with the slope of L in the most outer intervals. Taking into account that

both L and k contain the segment (3, Y) we obtain sufficient information about the geometric

disposition of L with respect to L.

In what follows, we shall formulate some problems that might be of certain practical interest

when curve fitting is considered.

Problem 1. We saw that the interval linear function ([) = A (z , Y) ([- Z) + P presents an

outer approximation of the set L. However, from a practical point of view i t is more interesting

to find interval estimations A1 and Yl for a and y so that the interval function Al ([- 3) + Yl

presents an inner approximation of L in certain interval for [. There might be considered

different criteria for such an approximation.

Problem 2. Let the input vector interval Y = Y(t) depend on some parameter t 2 0 ,

in such a way that for its midpoint we have p (Y (1)) = const and its width w (Y (1)) is an

increasing function on t. A simple such vector interval function is, e.g. the function Y (1) =

Y (O)+[-t, t] , t 2 0; Y (0) can be, in particular a degenerate interval vector, that is p (Y (0)) = 0.

It seems t o be a problem of practical interest to find the smallest t such that the set L (1)

generated by Y (1) has a nonempty intersection with the intervals Y (1). Also we may ask for

the smallest t such that L (1) contains a (linear) function interpolating the intervals Yi (that is

passing through the intervals).

We see that the approximation problem under interval data can be considered in relation

to some additional "interpolational" requirements. Before going further into such relations we

shall first recall the well known interpolation problem (under interval observations).

Interval interpolation. The simplest problem of polynomial interpolation in the numeric

(noninterval) situation says that any N + 1 input points (xi , yi) , i = 0,1 , . - a , N , in the euclidean

plane R~ generate an interpolating polynomial p (t) of the n-th degree, which can be written,

say in the form of Lagrange as

Denote for brevity (xo, x l , . . . , XN) = x, and (yo, y1, . . , y ~) = y. Since p (t) depends on the

vectors z, y, we shall also denote the polynomial p by p (x, y) and its value P ([) a t [by P (x, Y;

We next consider the situation when we are given interval bounds Yi for yi , i = 0, l , . . . , N ,

instead of real numbers.

So, let us assume that we are given N + 1 input numbers (xo, x l , ., xN) = x and, instead

of the numbers (yo, y1, - . . , yN) we are now given N + 1 intervals (Yl, Y2, . . . , YN) = Y. Consider

the family P of all interpolating polynomials p (x, y; .), whenever y = (Yo, Yl , . . . , YN) varies in

the interval vector Y = (Y l , Y 2 , . . . , Y ~) , that is the set P = P (x , Y ; .) = {p(x,y; .) : YEY).

The set P defines a set-valued function P from R to the power set of R , such that P (t *) =

P (x , Y ; t *) = {p(x,y;t*) : Y E Y).

Consider the well known

PROBLEM B. Compute the set-valued function P.

SOLUTION. Denote by y; < y: the end-points of the intervals Y, so that Y, = [y;, y:]. We

have for a fixed 6

where

do not depend on y and sgnl; (6) means "+" , if 1; (6) 2 0 , and "-", if 1; (6) < 0; also yf - D_f - y:

(right end-point) and y r + D_f - y; (left end-point). This shows that P (6) is an interval of the form

P (t) = [p- (t) , P+ ([)I, that is, P is an interval function. Using interval arithmetic P (t) can

be written in the simple form P (6) = C I; (6) Y, .
The end-point functions p- (x, Y; .) and p+ (x, Y; .) with the property

p - (x ,Y; () = inf p (x , y ; t) , p+(x , Y ; t) = SUP P (x , Y ; O
YEY YEY

for any 6 E R present the boundaries of P , that is P (6) = [p- (x, Y; t) , p+ (x, Y; [)I.

Denote as before p ([a, b]) = (a + b) 12, and w ([a, b]) = b - a. Consider again an interval

vector function Y (t) = (Yo (t) , Yl (t) , . . . , YN (t)), defined for t~ [0, TI, such that p (Y (t)) =

const and w (Y (t)) is an increasing function on t , such that w (Y (0)) = 0. A simple example

of such an interval vector function is a function of the form Y (t) = y + [-t,t] , for which we

have w (Y (t)) = 2t. It seems to be of practical interest to consider the following problems.

Problem 3. Let the single-valued polynomial p (x, Y (0)) is a polynomial of the N-th degree

and is not a polynomial of (N - 1) -st degree. What is the smallest t such that the family of

polynomials p (x, Y (t)) contains a single-valued polynomial p* of degree less than N ? What is

the approximation by p* to the single-valued vector (x, p (Y (0))) ?

A generalization of this formulation can be considered for interval observations whose centers

are not fixed.

Problem 4. Let the set p (x , Y (t)) contain a polynomial of (n - 1) -st degree. Find the

largest T < t such that p (x, Y (7)) does not contain polynomials of (n - 1) -st degree.

Problem 5. Given the set of interpolating polynomials of N -th degree P = P (x , Y) =

(p (2 , y) : ~ E Y) for x = (xo, 2 1 , . . ., x N) and Y = (Yl, Y2, .. ., YN) , find the subset of all interpo-

lating polynomials of degree K that belong to P, K = N - 1, N - 2, -...

6 Interval Mathematical Problems. Boundary value problems

for partial differential equations involving interval parame-

t ers

As another example of interval problems we shall briefly consider boundary value problems

(B V P) for partial differential equations (P D E) involving differential operators of monotone type.

Let 3 be a given class of sufficiently smooth functions defined on the set B C Sm . Consider

the differential operator T : 3 - 32 and the problem

(11) T u = O , U E 3.

Definition. We say that the differential operator T is of monotone type if

imply

u (4 1 v (2) , x E B ,

We shall make use of the following idea.

Let T be of monotone type and there exist functions v (a , x) and w (b, x) , where a , b E Sk

are parameters, such that

-6 < T v (a , x) < 0 < T w (b, 2) < 6.

Then we have

v (a , x) < u (x) < w (b, x) , 0 < w (b, 2) - v (a , x) < c6,

where u (2) is the solution of (11) . Now the parameters a and b must be chosen in such a way

that

Ic6(= Ic (a , b) 6 (a , b) I < E ,

where E is the prescribed error bound.

Methods that make use of the above idea will be referred as 6 -methods.

Let 4; : B - 8, i = 1,. . ., n , be a set of basic functions in the space 3 . These functions

are chosen to have a compact support in the domain B and such that a t any point z E B only

a few values of 9; (2) , i = 1, . - -, n are distinct from zero. Usually the basis consists from finite

elements or B-spline functions.

The approximate solutions v (z) and w (z) are represented in the form:

and the coefficients a; and b; are such that

(z) 5 u(z) 5 w(z), 0 5 w(z)- v(z) < E, z E B.

There are various methods for choosing the functions Id;), v and w : finite element methods,

Ritz method, Galerkin method, collocation method etc. We consider collocation 6-method and

Galerkin 6-method . The domain B is divided into finite elements and the functions 9; are

polynomials in one element and zero outside that element.

Collocation 6 -method. The upper and lower approximations w and v of the solution u

are determined by the equations:

where (2;) are mesh points in the domain B , the mesh being of size h. The size h is chosen

sufficiently small to satisfy the inequalities:

(4 5 4.) 5 .I(.),

0 5 w(z) - v(z) < E, z E B.

The parameter 6 depends on the domain B , the operator T and the size of the mesh h. The

next theorem gives the existence of the parameter 6.

Theorem 1. Let T, B and h are given. Then there ezists a positive number 6 > 0 , such

that : the solutions v and w of (3) corresponding to 6 satisfy the inequalities

-26 5 Tv (z) 5 0 5 T w (z) < 26,

0 5 w (2) - v (2) 5 c6, for every z E B.

The constant c depends only on the domain B and the operator T and does not depend on h .
The parameter 6 depends on h and 6 - 0 when h - 0.

So we can obtain lower and upper approximations of the solution u (2) .

More details on the &methods can be found in [lo-131. There exits already vast literature

on the validated solution of differential equations, both PDE's and ODE's. More details on

numerical methods with result verification for ODE's can be found in [I], [2], [6], [7], [17], [34],

[35-371.

We hope that the solution of the above and other similar interval problems will contribute to

a more effective rigorous evaluation of the effects of the imperfect modelling and to a mathemat-

ically clean motivation for the rejection of an incorrect mathematical hypothesis in a particular

modelling situation.

For practical purposes in any particular situation the formulated problems can be solved by

means of a program system. Such a system is now in development under the name MODYNA

within the frames of a contracted study agreement between the Bulgarian Academy of Sciences

and the International Institute for Applied System Analysis.

7 On the new methodology of scientific computation and its

implementation.

Advanced computer arithmetic and interval analysis are suitable fundamentals for the construc-

tion of highly accurate and reliable numerical algorithms. The methodology of creating such

algorithms is comprehensively described in [21]. Basically it consists of:

i) using interval analysis for delivering guarantees of the computational results and automatic

validation (proof) of the inclusion of the ideal results in the computed intervals;

ii) using iterative residual (defect) correction processes in combination with the optimal com-

puter operations (and especially the optimal scalar product) for delivering high accuracy

of the final results.

On the basis of the advanced computer arithmetic and interval analysis a subroutine library

for HIghly efFicient and accurate COMPutations (HIFICOMP) was developed by the Research

Group for Computer Arithmetic and Interval Analysis a t the Center for Informatics and Com-

puter Technology a t the Bulgarian Academy of Sciences [14], [15]. It contains subroutines for

interval and computer arithmetic, for evaluation of rational expressions, for solving linear alge-

braic problems, differential equations, etc.

Besides the high accuracy and guarantees for the final results and the possibility of solving

numerical problems with interval input data, the HIFICOMP subroutine library deliberates

the scientific computer user from the final responsibility for the quality of the computational

results. The intervals produced by the HIFICOMP subroutines contain the ideal solutions

with absolute guarantee and maximum accuracy. The computer user may have no doubts in

the correctness of the results, he does not need to apply intuitive techniques for checking this

correctness (computing remainders, repeating computations with slightly changed data or in

various precisions etc.). This greatly increases the efficiency of the numerical computations from

the users point of view, since he does not need t o invest any time in checking the correctness of

the results.

Let us mention some program systems supporting or partially supporting the new methodol-

ogy for scientific computing. One of the first such programming tools was the subroutine library

RINA [31], developed during the period 1982-1983 within the frames of a contract between NPL

"PROGRAMA" a t the Centre for Mathematics and Mechanics and the State Committee for

Research and Technologies of the Bulgarian Academy of Sciences. In 1983, IBM announced the

ACRITH Subroutine Library [16], developed in West Germany. A commercial version of a new

programming language supporting the new approach for scientific computing appeared in 1987

- the language PASCAL-SC [18]. Other leading computer manufacturers (e.g. Siemens and

Nixdorf) also offered program libraries similar to ACRITH (like ARITHMOS).

In 1987, the program library HIFICOMP (subroutine library for highly efficient computations)

was developed as a result of a contract between the Centre for Informatics and Computer Tech-

nology and the State Committee for Research and Technologies. The library has as its goal the

performance of highly accurate and safe numerical computations on computers of the IBM 370

series of compatible. The HIFICOMP subroutines compute guaranteed interval bounds for the

true results of the corresponding arithmetic operations or mathematical problems to be solved.

These intervals are very sharp; their endpoints are two adjacent (neighboring) machine numbers

(or the intervals are even much sharper if the STC-format version of the corresponding algorithm

is run).

HIFICOMP makes use of some nonstandard software-hardware tools that support the new

methodology. Special tools that extend the set of arithmetic instructions available on IBM 370

and on the vector processor ES 2706 have been developed under the requirement for an easy

transfer of the library in various hardware environments. To this end the dependence of the

library on a particular hardware was reduced to a small number of basic subroutines written

directly in some assembler type language.

This allows the subroutine library to be easily adopted for various hardware environments.

The basic routines for the arithmetic operations (including the dot product) make use of a small

number of machine dependable modules. Such modules are developed for IBM 370 mainframe

and for personal computer IBM-PC XT/AT (so that a P C version of the HIFICOMP subroutine

library is also available). The basic routines are also microprogrammed for the vector processor

EC 2706, which provides a very fast performance of the computer arithmetic. However, we

should note that the software or even firmware implementation of the computer arithmetic

are rather slow in comparison with what might be expected from a hardware implementation.

Because of this reason a specialized processor is now in development, which will provide for a

very fast execution of the whole computational process.

Examples. As an example consider the solution of the system Ax = b , wherein

The true solution is (4, 5, 6, 5). A standard program for solving linear systems, using double

precision fails completely - we obtained a result reading (-8.471 . . . ,4.592 - - - ,4.492 - . a , 5.339. . a).

The HIFICOMP routine LIN in STC-format with two components produces the following in-

terval result (in single precision !):

[3.999999, 4.000001]

[4.999999, 5.000003.]

[5.999999, 6.000003.l

[4.999999, 5.000001]

As another example consider the linear system Ax = b with

In this example, the matrix is singular and therefore the problem has no solution. The sub-

routine LIN produces a warning message "singular matrix" , whereas a "traditional" subroutine

gives the following result :

which is completely misleading.

The subroutine package MODYNA. This P C program package is under development within

an IIASA contracted study agreement entitled "Mathematical Modelling of Dynamical Pro-

cesses."

It will extend the arithmetical facilities of the PASCAL-SC language by means of a dynamic

precision arithmetic. It will implement all features of the above outlined methodology and

will contain subroutines for various interval problems arising in the course of mathematical

modelling of dynamical processes. The program package MODYNA is developed by the Division

on Mathematical Modelling a t the Bulgarian Academy of Sciences, Institute of Biophysics, in

collaboration with the Mathematical Institute and the Coordinating Centre for Informatics

and Computer Technology. The main contributors are R. Angelov, P. Bochev, G. Grozev, N.

Dimitrova, N. Kjurkchiev, M. Krastanov, S. Markov, V. Njagolova, K. Petrov, P. Petrov, and

E. Popova.

Acknowledgements. The present research is partially supported by the Committee of

Science according t o contract No. 75511988 and by IIASA in the frames of a contracted study

agreement under the title "Mathematical Modelling of Dynamical Processes."

8 References

1. Angelov R. and S. Markov. Two-sided approximation of the solution of the initial problem

for systems of ordinary differential equations involving inexact data. Constructive Theory

of Functions '84. Publ. House of the Bulg. Acad. of Sciences. Sofia. 1984. 125-127.

2. Alefeld, G. and J . Herzberger. Introduction to interval computations. Academic Press.

New York. 1981.

3. Angelov, R., P. Bochev, G. Grozev, and S. Markov. Highly accurate and safe numeri-

cal computations via interval analysis and advanced computer arithmetic. International

Conference on Numerical Methods and Applications. Sofia. 22-27 August, 1988.

4. Auzinger, W. and H.J. Stetter. Accurate arithmetic results for decimal data on non-

decimal computers. Computing 35, 1985.

5. Behler, J.H., U.W. Kulisch, M. Metzger, S.M. Rump, Ch. Ullrich, and W. Walter.

FORTRAN-SC: A study of FORTRAN Extension for Engineeringlscientific Computa-

tion with access to ACRITH. Computing 39. 1987. 93-110.

6. Bochev, P. and S. Markov. A self-validating numerical method for the matrix exponential.

Computing, 43, 59-72 1989.

7. Boehmer, K., P. Hemker and H.J. Stetter. The defect correction approach, in: Defect

Correction Methods; Theory and Applications. Computing Supplementum. Springer.

Wien. 1984.

8. Bohlender, G. What do we need beyond IEEE Arithmetic? In: Computer arithmetic and

self-validating numerical methods. (Ed. Ch. Ulrich) Academic Press, 1990, 1-32.

9. Dimitrova, N. and S. Markov. Interval-arithmetic algorithms for simultaneous computa-

tion of all polynomial zeros. In: Contributions to computer arithmetic and self-validating

nurnerica methods. Ch. Ullrich (Ed.) IMACS Annals on computing and applied mathe-

matics, vol. 7 (1990), J.C. Baltzer A.G. Aci. publ. co., Basel, Switzerland.

10. Grozev, G. One-sided algorithms for boundary value problems. Mathematics and Educa-

tion in Mathematics, 1988. Proc. 17th Spring Conf. of the Union of Bulgarian Mathe-

maticians, April 1988. Publ. House of the Bulgarian Academy of Sciences. 427-431.

11. Grozev, G. Two-sided difference methods for approximation of the solution of the parabolic

partial differential equations. Mathematics and Education in Mathematics 1984. BAN

Sofia.

12. Grozev, G. and S. Markov. An interval method for a two-point boundary value problems

using cubic splines. Collect. of scientific papers honouring Prof. K. Nickel on occasion of

his 60-th birthday. Part 1. (ed. by J. Garloff) Inst. f. Angew. Math. Univ. Freiburg. i.

Br. 1984.

13. Grozer, G. and S. Markov. Numerical Methods with Verification for Boundary Value Prob-

lems. In: Contributions to computer arithmetich and self-validating numerical methods.

Ch. Ullrich (Ed.) IMACS Annals on computing and applied mathematics, vol. 7 (1990),

J.C. Baltzer A.G. Sci. publ. co., Basel, Switzerland.

14. HIFICOMP. Subroutine Library for highly efficient and accurate computations. Program

Description and User's Guide, CINTI Registration Number l.a.006.02112-01 13 (1987).

15. HIFICOMP. Subroutine Library for highly efficient and accurate comp utations, Method-

ological guide. Center for Informatics and Computer Technology. Bulgarian Academy of

Sciences, 1987, CINTI Reg.No.l.A.066.02112-01 37 (1987).

16. IBM High-accuracy Arithmetic Subroutine Library (ACRITH) Program Description and

User's Guide, SC 33-6164-02 3rd Edition. April 1986.

17. Kaucher, E. and W.L. Miranker. Self-validating numerics for function space problems.

Academic Press. New York. 1984.

18. Kulisch, U.W. (ed.). PASCAL-SC: A PASCAL extension for Scientific Computations;

Information manual and floppy disks; version IBM PC/AT; operating system DOS. B.G.

Teubner Verlag (Willey-Teubner series in computer science). Stuttgart . 1987.

19. Kulisch, U.W., and W.L. Miranker. Computer Arithmetic in Theory and Practice. Aca-

demic Press. New York. 1981.

20. Kulisch, U.W., and W.L. Miranker. A new approach t o scientific computation. Academic

Press. New York. 1983.

21. Kulisch, U.W., and W.L. Miranker. The arithmetic of the digital computer; a new ap-

proach. SIAM Review. Vo1.28, No 1. March 1986. 1-40.

22. Kulisch, U. and H.J. Stetter (eds). Automatic Result Verification. Computing, Suppl. 6.

1988. 1-6.

23. Markov, S. Some applications of extended interval arithmetic t o interval iterations. Com-

puting, Suppl. 2. 1980. 69-84.

24. Markov, S. Extended interval arithmetic: Part One. Freiburger Intervall-Berichte, 8018.

1-40. 1980.

25. Markov, S. Calculus for interval functions of a real variable. Computing 22. 325-337. 1979.

26. Markov, S. On the numerical algorithms formulated in computer arithmetic. Proc. of

the 6th Symposium on computer arithmetic, Aarchus, Denmark, 1983. IEEE Computer

Society Press, 122-128.

27. Markov, S. Mathematical fundamentals of numerical computation. Mathematics and Ed-

ucation in Mathematics, 1988. Proc. 17th Spring conf. of the Union of Bulgarian Mathe-

maticians, April, 1988. Publ. House of the Bulgarian Academy of Sciences, 83-90.

28. Moore, R. Interval analysis. Prentice-Hall. Englewood Cliffs, N. J. 1966.

29. Moore, R. Methods and applications of interval analysis, SIAM, Philadelphia, 1979.

30. Nickel, K. Interval analysis, in: "The state of art in numerical analysis". Edited by D.

Jacobs. Academic Press. New York. 1977.

31. RINA. Subroutine Library for Reliable Interval Numerical Algorithms. CINTI Registra-

tion Number (1983), NPL "PROGRAMA".

32. Rump, S.M. Solution of linear and nonlinear algebraic problems with sharp, guaranteed

bounds. Computer Suppl. 5. 1984.

33. Sendov, B1. Practical mathematical analysis. Proc. of the 6th Spring Conference on

Mathematics and Education in Mathematics of the Union of Bulgarian Mathematicians.

April 6-9, 1977. Varna. Publ. House of the Bulg. Acad. of Sciences. Sofia. 1977. 1-40.

34. Shokin, Yu. I., S.A. Kalmykov, and Z.H. Yuldashev. Methods of interval analysis. Nauka.

Novosibirsk. 1986 (in Russian).

35. Stetter, H.J. Sequential defect correction for high accuracy floating-point algorithms, in:

Numerical Analysis (Proceedings, Dundee 1983). Lecture Notes in Math., vol. 1066.

36. Stetter, H.J. Inclusion algorithms with functions as data. Computing, Suppl. 6. 1988.

213-224.

37. Stetter, H.J. Validated Solution of Initial Value Problems for ODE. In: Computer arith-

metic and self-validating numerical methods. C. Ullrich (Ed.) Academic Press, 1990,

171-187.

38. Stoyanova, B. and R. Angelov. Combining the approach of safe and accurate computation

with the approach of parallel computing. Mathematics and Education in Mathematics,

1988. Proc. 17th Spring Conf. of the Union of Bulgarian Mathematicians, April 1988.

Publ. House of the Bulgarian Academy of Sciences, 496-500.

39. Ullrich, C. (Ed.) Computer arithmetic and Self-validating numerical methods. Academic

Press, 1990.

40. Ullrich, C. (Ed.) Contributions to computer arithmetic and self-validating numerical meth-

ods. IMAC Annals on Computing and applied mathematics, vol. 7 1990, J.C. Baltzer A.G.

Sci. publ. co., Basel, Switzerland.

41. Wilkinson, J.H. Rounding errors in algebraic processes. Prentice-Hall, Englewood Cliffs,

N.J. 1963.

42. Yohe, J.M. Rounding in floating-point arithmetic. IEEE Trans. Comput. C-22. 577-586.

1973.

