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FOREWORD 

Viability and invariance theorems for systems with dynamics depending 
on time in a measurable way and having time dependent state constraints: 

are proved. In the above t - P(t)  is an absolutely continuous set-valued 
map and (t, x) - F(t ,  x) is a set-valued map which is measurable with 
respect to t and upper semicontinuous (or continuous, or locally Lipschitz) 
with respect to x. For this aim the infinitesimal generators of reachable 
maps and the Lebesgue points of set-valued maps are investigated. 

The results are applied to define and to study lower semicontinuous 
solutions of the Hamilton- Jacobi-Bellman equation 

ut + H ( t ,  x, u,) = o 

with the Hamiltonian H measurable with respect to time, locally Lipschitz 
with respect to x and convex in the last variable. 



SET-VALUED APPROACH TO 

HAMILTON- JACOBI-BELLMAN 
EQUATIONS 

1 Introduction 
This paper is devoted to several viability and invariance theorems for differ- 
ential inclusions with dynamics measurable with respect to time. Namely 
we a consider set-valued map F : [0, TI x Rd --+ Rd such that for every 
x E Rd ,  F( . ,  x)  is measurable. Regularity assumptions on F ( t ,  .) are upper 
semicontinuity (in Theorem 3.3), continuity (in Theorem 3.2) and Lipschitz 
continuity (in section 4.2). The constraints are given by a set-valued map 
P : [0, TI - Rd, called tube, which is supposed to be absolutely continuous. 
We investigate the existence of solutions to the Cauchy problem 

x' E F ( t , x )  
x(t0) = xo 
x(t) E P( t )  for all t > t o ,  

for every xo E P( to)  and all to E [0, T[. 
The first viability result is due to Nagumo [19]. He considered the case of 

single-valued continuous time independent f and closed time independent 
constraints P ( t )  In this case the necessary and sufficient condition 
for the existence of solution to the above problem is 

where TK(x) denotes the contingent cone to K at  x (see for instance [3] 
for the definition of the contingent cone and its properties). In the case of 
time independent set-valued map, i.e. F( t ,  x) = F(x) ,  the necessary and 
sufficient condition becomes 



(see [6] and also [15] for functional differential inclusions). We also refer to 
[2] for further improvements, discussions and historical comments on the 
viability problems. 

Studying control systems with state constraints we often deal with dy- 
namics which are merely measurable in time and with constraints which 
depend upon the time. For this reason it is natural to look for extensions 
of viability theory to such a case. A partial answer to the viability problem 
was given in [17], where the viability conditions are expressed in terms of 
reachable sets, which are not simple to verify. 

In this paper we show that the necessary and sufficient condition for 
viability in the case where F(t ,  .) is continuous is: 

3 A c [0, TI of full measure such that 
v t  E A, V X  E P(t), (11) x F(t,  x)) n T ~ ~ ~ ~ h ( ~ ) ( t ,  X )  # 0 

In the case when F(t ,  .) is Lipschitz continuous the above condition can be 
given in a weaker form 

3 A c [0, TI of full measure such that 
v t  E A, V x  E P(t) ( I l l  F(t,x)) nm (TGraph(p)(t7x)) # 0 

where i3 stands for the closed convex hull. We emphasize that for upper 
semicontinuous dynamics such a condition was given in [14] (see also [2, 
Theorem 3.2.41). In the Lipschitz case we also provide a necessary and 
sufficient condition for invariance (improving the results of [2, Theorem 
5.3.41). In all theorems concerning viability and invariance problem we 
assume that the tube P has closed values and is absolutely continuous, the 
notion which is introduced and discussed in section 3. 

In section 2 we investigate the infinitesimal generators of reachable maps 
of the differential inclusions 

where u is an arbitrary but fixed element in F(T, x,, V) and v is a parameter. 
The results we provide improve those from [12,20]. 
Section 2 is devoted to the Lebesgue points of nonlinear set-valued maps 
and extends [1,7,16] to the state dependent case. In this way we generalize 



results from [20] by relaxing regularity assumptions on x. 
In section 3 we investigate the viability and invariance problems. 
Finally, in section 4 we provide an application to the Hamilton-Jacobi- 
Bellman equations arising in optimal control. For the Mayer problem with 
data measurable in time we show that the associated value function is the 
unique solution to the equation 

where the lower semicontinuous solution is understood in a generalized sense 
related to viscosity solutions (comp. [5,8,13]) and H is the Hamiltonian 
associated to a given control system. If the dynamics are measurable in 
time, then so is H. Viscosity solutions in this case were also studied in 
[4,18] and by Ishii. We define viscosity solutions in terms of super and 
subdifferentials without involving L1 test functions as it was done in the 
above papers. 

The full proofs of the results given below are to appear elsewhere. 

2 Lebesgue Points of Set-Valued Maps 

If t E [0, TI is a Lebesgue point of an integrable function g : [0, T] ---t Rd, 
then 

Thus (2.1) is satisfied for almost all t E [0, TI. This result has been extended 
in [1], [7], [16], [20] to situations where set-valued maps replace the function 

9. 
The two lemmas below provide a generalization of Proposition 4.1 from 

[20] - we do not impose the Lipschitz continuiuty on F with respect to x. 

Lemma 2.1 Assume that F : [0, T] x Rd -+ Rd has closed convez values 
and 

x -+ F( t ,  x) is upper semicontinuous for almost all t E [0, TI; 
IIF(t, x)ll < p(t) for almost all t E (0, T] and all x, where p(-) is integrable. 



Then there ezists a set A C [0, T ]  of fill measure such that for every (7,  x )  E 
A x R~ 

n Limsup h+O F ( s ,  x + aB)ds  c F ( T ,  X )  . 
cr>o 

(2.2) 

Lemma 2.2 Assume that F : [o,T] x R~ c-, R~ has closed convez values 
and 

x -.., F ( t ,  x )  is continuous for almost all t E [0, TI; 

t -.., F ( t ,  x )  i s  measurable for every x E R ~ ;  
I(F(t ,  x ) ( (  5 p( t )  for almost all t E [O,T] and for all x E Rd, where p ( - )  i s  
integrable. 

Then there ezists a set A c [O,T] of full measure such that for every 
( r , x )  E A x Rd and any measurable function y : [ r , r  + E ]  - Rd such 
that limh,o+ y(r + h )  = x we have: 

F ( T ,  x )  c Liminf h+o+ 1" F ( s ,  y(s) )ds  . 

Both the above lemmas together imply the following: 

Corollary 2.3 Under the assumptions of Lemma 2.2 there ezists a set 
A c [O,T] of full measure such that for every ( T , x )  E A x Rd 

F ( T ,  x )  = Lim - ; [+h  ~ ( s ,  x)ds (2.4) 

3 Viability and Invariance Theorems 

Consider T > 0 ,  a set-valued map F : [0, T ]  x Rd - Rd and the differential 
inclusion 

x t ( t )  E F ( t ,  x ( t ) )  almost everywhere (3.1) 

Denote by S[t,,Tl(xo) the set of absolutely continuous solutions of (3.1) de- 
fined on [to, T ]  and satisfying the initial condition x( to )  = xo. 

We are interested in the existence of solutions to the differential inclu- 
sion (3.1) satisfying constrains of the type x ( t )  E P ( t ) ,  where P : [0, T ]  -.., 
Rd is a set-valued map (we shall call it a tube). The tube P(.) is said 



to have a viability property if for every to E [ O ,  TI ,  xo E P(to)  there is a 
solution x  E S ~ t o , q ( x ~ )  satisfying x( t )  E P ( t )  for every t  E [to,T].  The 
tube P(. )  is called invariant by F if for every to E [0, TI every solution 
x  E Slto,Tl(xO) starting in the tube (i.e. xo E P( to ) )  satisfies x ( t )  E P ( t )  for 
every t  E [to, TI. 

Definition 3.1 Let P  : [0, TI --t Rd be closed-valued. We say  that P  is left 
absolutely continuous on [0, TI if the following property holds: 

V e  > 0 ,  V c o m p a c t K ~  R d ,  3 6 > O ,  V A C  N ,  V{ti ,ri l  ti < T ; ,  i~ A )  
C(r i  - t i )  5 6  3 C e(P(t;)  n K, P(r i ) )  5 E 

(3.2) 
where e(U, V )  = in f{e > 0 )  U c V + e B )  and N is the set of natural 
numbers. 

We get the definitions of right absolute continuity and absolute continuity 
by replacing e (P( t ; )  f l  K ,  P(r i ) )  in (3.2) respectively by e(P(r; )  II K ,  P ( t ; ) )  
and 

Let I' C Rd be a nonempty subset and xo E K .  Then contingent cone 
to K at xo is defined by 

h+O+ 
v E TK(xo)  a liminfd 

See [3, Chapter 41 for many properties of tangent cones. 
The contingent derivative DP(r ,  y )  of P at (7 ,  y )  E Graph(P) is defined 

as the set-valued map from R to Rd whose graph is described by 

It is not difficult to prove, using Proposition 5.1.4. from [3], that 

v E DP(r,  y ) ( l )  a lim inf dist 
h+O+ (3.3) 

We first address the case when F is measurable in t ,  continuous in x  
and has convex compact values. 



Theorem 3.2 Assume that a closed valued map P : [O,T] ?.t Rd is l e f t  
absolutely continuous and F : [O,T] x Rd ?.t Rd has closed convez values 
and satisfies 

x ?.t F ( t ,  x )  is continuous for almost all t E [0, T ]  ; (3.4) 

t * F ( t ,  x )  is measurable for every x E R ~ ;  (3.5) 

IIF(t,x)II I p( t )  for almost all t E [O,T] and all x E P( t )  (3.6) 
where p is integrable. 
Then the following conditions are equivalent: 

a) there ezists A c [O,T] of full measure such that 

ii) for every to E [0, T )  and every xo E P( to)  there ezists a solution x( . )  of 
the problem 

x1 E F ( t ,  x ) ,  x(to) = xo (3.8) 

defined on [to, TI and satisfying x ( t )  E P( t )  for all t E [to, TI. 

The implication (i) + (ii) in the above Theorem can be deduce from 
Lemma 2.2 and the following: 

Theorem 3.3 Assume that P is left absolutely continuous on [0, TI, F : 

Graph(P) ?.t Rd has closed convez values, satisfies (3.6) and : 

x -+ F ( t ,  x )  is upper semzcontinuous on P ( t )  for almost @9)€ [0, TI ; 

and for almost all t E [O,T], for every x E P( t )  

V P  > 0, D P ( t ,  x ) ( l )  n Liminfhd0+ #+h F ( s ,  x + PB) ds # 0 . (3.10) 

Then for every t o  E [0, TI and xo E P( to)  there ezists a solution x ( - )  of the 
problem (3.8) defined on [to,T] and satisfying x ( t )  E P(t )  for all t E [ to ,T] .  

Remark - If for every (to, xo) E Graph(P) , with t o  < T , the inclusion 
(3.8) has a viable solution in P defined on [to, T ]  and if F satisfies (3.6) 
then P is left absolutely continuous. 

To see the above fix E > 0, a compact K c R~ and choose 5 > 0 
such that if A C [o,T] and m ( A )  < 6 then JAp(s)ds  < E .  Let ti < T, ,  



C(T, - ti) < 6 and - for those i for which P(t;) n K # 0 - xi(-) denote 
a solution of x' E F( t ,  x) satisfying x(ti) E P(t i )  fl K and xi(t) E P( t )  for 
t E [t;,T]. Thus we get 

Since x(ti) E P( t i )  n K is arbitrary the proof follows (we have e(P(t;) n 
K, P(T;)) = 0 if P(t,) n K = 0 ). 

The assumption (3.10) in Theorem 3.3 is not the weakest tangential 
condition ensuring the viability. We have given it because the roles played 
by P and F in it are clearly visible and when F is continuous with respect 
to r it reduces to the simple condition i) in Theorem 3.2. 

However, without any changes in the proof of Theorem 3.3, we can 
replace (3.10) by another condition which is not only sufficient but also 
necessary. We shall .denote, for any (7, y) E Graph(P), cr > 0 ,  h > 0 

T h e o r e m  3.4 Let P and F be as in Theorem 3.3 with conditions (3.9)) 
and (3.6) satisfied. Then the assertion of Theorem 3.3 holds if and only if 
for almost all t E [0, T), for every x E P(t), for every cr > 0 

R e m a r k  - If in Theorem 3.3, (or in Theorem 3.4) the tangential condi- 
tion (3.10) (or respectively (3.11), is satisfied for all t E [0, T )  and x E P( t )  
then, in order to have the existence of viable solutions, it is enough to as- 
sume, instead of left absolute continuity of P, that Graph(P) is closed from 
the left in the following sense: 

for any T E (0, TI , t , - + ~  - , x, E P(t,) such that x,-+[, we have [ E P(T)  . 

The proof of Theorem 3.3 follows the general idea given, it seems, for 
the first time by Nagumo in [19] in the context of differential equations and 
time independent constraints and explored later by many authors. Viability 
on tubes was also studied in [17]. The main difference of Theorem 3.4 with 
respect to [17] is that we assume our tangency conditions satisfied almost 
everywhere with respect to t and for all cr > 0, while in [17] the assumption 



is made everywhere and a = 0. This allows us to deduce the viability 
condition (3.7) which is a natural extension of the stationary case to the 
tubes (see [2]). This change requires introduction of left absolute continuity 
of the map P and modifications of the proof - more accurate definition of 
the partially ordered family of approximate solutions. 

In [17] also a necessary and sufficient condition for viability was given 
for F bounded and upper semicontinuous in x. But it was expressed in 
terms of reachable sets of the inclusion x' E F( t ,  x) , x(to) = xo , for all 
(to, xo) E Graph(P) - usually very difficult to find. Our condition (3.11) 
uses the Aumann integrals of the maps s - F(s,  xo + a B )  and does not 
involve reachable sets. 

Now we assume in addition that F is locally Lipschitz with respect to 
x, i.e. 

V k > 0, 3 ck E L1(O,T) such that for almost all t E [O,T] 
F( t ,  .) is ck(t)-Lipschitz on kB (3.12) 

Theorem 3.5 Assume that a tube P : [0, TI - Rd is absolutely continu- 
ous, that F has convez compact images and satisfies (3.12), (3.5), (3.6). 
Then the following three statements are equivalent: 

i) There ezists a set A c [O,T] of full measure such that 

ii) There ezists a set C C [0, T] of full measure such that 

iii) For every to E [0, T] and xo E P(to) there ezists x E S[to,Tl(~O) such 
that x(t) E P( t )  for every t E [to,T]. 

In this way our theorem generalizes [14] (see also (2, Theorem 3.2.41). 
In the Lipschitz case we also provide a necessary and sufficient condition 

for invariance (improving the results of [2, Theorem 5.3.41). 

Theorem 3.6 (Invariance) Assume that a tube P : [0, TI - Rd is abso- 
lutely continuous, that F has convez compact images and satisfies ($.IS), 
(3.5), (3.6). Then the following three statements are equivalent: 



i )  There exists a set A c [0, T ]  of full measure such that for every t E A 
and all x E P ( t )  we have 

i i )  There exists a set C c [0, T ]  of full measure such that for every t E C 
and all x E P ( t )  we have 

i i i )  For all to E [0, T ]  and xo E P(to)  every x E S I t o , T l ( ~ ~ )  verifies 
x ( t )  E P ( t )  for all t E [ to ,T] .  

4 Hamilton- Jacobi-Bellman Theory 

We first recall generalizations of notions of directional derivatives and gra- 
dients for nonsmooth functions which allow to define nonsmooth solutions 
of the Hamilton- Jacobi-Bellman equation. 

Definition 4.1 Consider a n  extended function cp : Rn I-+ R U {f 00). 
i) The  domain of c p ,  Dom(cp), is the set of all xo such that cp(xo) # f oo. 
ii) The  subdiflerential and the superdiflerential of cp at  xo E Dom(cp) are 

respectively given by 

i ? - ~ ( x ~ )  = p E Rn I lim inf { V(" )  - ~ ( " 0 ) -  < P,  " - " 0  > 
z+xO 115 - 5 0 1 1  2 o }  

and 

p E Rn I lim sup 
cp(x) - cp(x0) - < P,  x - s o  > 

X'ZO 
6 0 )  

115 - X O I I  

i i i )  The contingent epiderivative and the contingent hypoderivative of cp 
at xo E Dom(cp) in the direction u E Rd are respectively defined by 

lim inf D ~ ~ ( x O ) ( u )  = h+O+, u,-u h 

and 

Dlcp(xo)(u) = lim sup 
v(xo + hu') - c p b o )  

h + ~ + ,  ul+u h 



It was shown in [3, p. 2261 that for all xo E Dom(cp) 

&P(DT'P(x~>> = T&P(V) ( ~ 0 ,  cp(x0)) (4.1) 

where &p denotes the epigraph. Similarly 

where 'Hyp denotes the hypograph. 
From [12] (see also [3, pp. 249, 2531) we know that 

Proposition 4.2 Let cp : Rd H R U {f oo) and xo E Dom(cp). Then 

" (p, - 1) E [ T & ~ ( ~ ) ( X ~ ,  9(xo))] - (the negative polar cone) 

and 

P E d+cp(xo) " v u  E Rd, < p,u > > D,cp(~o) (~ )  

+ 
t) (p, -1) E [ T ~ ~ ~ ( ~ ) ( X O ,  cp(xo))] (the positive polar cone) 

4.1 Value Function of Mayer's Problem 

Let an extended function g : Rd H R U {+oo) be given. Consider the 
minimization problem (called Mayer's problem): 

min { g ( ~ ( ~ ) )  I a: E S[to,~](xo)) (4-3) 

The value function V : [0, T] x Rd H R U {f oo) is defined by: 

Q(t0,xo) E [ O , T 1 X R d ,  V(torx0) =inf{g(x(T)) I 2 E S[to.q(xo)} (4.4) 

We assume that 

F has nonempty convex compact images 

I V x E Rd, F(-, x) is measurable 

1 3 p E L1(O, T) such that for almost all t E [O, TI, we have (4.5) 

v x E Rd, IIW, x)11 L A t )  

( g is lower semicontinuous 



Proposition 4.3 If (4.5) holds t rue  and  for  a lmos t  all  t E [O,T], F ( t , - )  i s  
upper  semicont inuous ,  t h e n  V i s  lower semicont inuous  and  

V (to, 30) E [O, TI x Rd, V(to, xo) = min {~(x(T) )  I x E s [ , , , ~ ( x O ) }  

(4.6) 
Furthermore ,  t h e  set-valued m a p  

t ?.t P(t)  = {(x, r )  E R~ x R I r 2 V(t, x)} is absolutely continuous 

(4.7) 
and  

3 A c]O, T[ of full measure such that V (t, a )  E Dom(V) n A x Rd, 
in fv~~( t , z )  DTV(~,  x)(l ,  v)  5 0, S U P , ~ F ( ~ , ~ )  DTV(~ ,  x)(-l, -v) 5 0 

Remark  - We observe that Graph(P) is equal to the epigraph &p(V) 
of V and (4.7) yields the following relations: for every T E Rd 

g ( T )  = V(T,?) = liminf V(t,x), V ( O , f ) =  liminf V(t,x) 0 (4.8) 
t-+T-, z-+f I-+0+, 2--+f 

The first two statements in Proposition 4.3 follow by exactly the same 
arguments as in the proof of [13, Proposition 2. I]. 

Assume that F has nonempty compact images and define the Hamilto- 
nian H : [O,T] x Rd x Rd H R by 

H(t ,x ,p)  = max < p , v  > 
v € F ( t , ~ )  

Then H(t , a,  a )  is convex and positively homogeneous. Furthermore, if 
F(t ,  .) is upper semicontinuous (resp., lower semicontinuous), then so is 
H(t,  - ,p) and if F(-, a )  is measurable, then H(-, x,p) is also measurable. 

Consider an extended function V : [0, TI x R~ H R U {+w}. We may 
always assume that V is defined on R x Rd by setting V(t,x) = +w, 
whenever t 4 [0, TI. In theorem below we use Definition 4.1 with such 
extension of V. 

Theorem 4.4 A s s u m e  ( J . l d ) ,  (4.5) and  let V : [0, TI x Rd H R U {+w} 
be a n  extended lower  s emicon t inuous  func t ion .  Cons ider  t h e  set-valued m a p  



Then the following three statements are equivalent: 

I i, V is the value function, i.e., V = V 

I ii) 3 A c]O, T[ of full measure such that V (t, x)  E Dom(V) n A x Rd, 
infvE~(t,r) DyV(t, x)( l ,  v) 1 0, SUPvE~(t,z) D T V ( ~ ,  x)(- l ,  -v) 5 0 
P(-) is absolutely continuous and V(T, a )  = g(.) 

I iii) 3 C c]O, T[ of full measure such that V (t, x)  E Dom(V) n C x Rd, 

v (pt 9 PZ, q) E [~Ep(v)(t, x, ~ ( t ,  I))] - -Pt + H(t ,  -PZ) = 0 
P(.)  is absolutely continuous and V(T, -) = g(-) 

R e m a r k  - If a function V : [0, TI x Rd H R is locally uniformly 
absolutely continuous in the sense of [20], then the tube P given by (4.10) 
is always absolutely continuous. 

T h e o r e m  4.5 Under all assumptions of Theorem 4.4 suppose that Dom(V) 
is closed, the restriction of V to its domain is continuous and the maps 

t - { ( x , ~ )  E R~ x R I r I V(t,x)  # +m} 

are absolutely continuous. Then V is the value function if and only if 

V(T, .) = g(.), 3 D c [0, TI of full measure V (t,  x)  E D x Rd 

v (Pi, PZ, 9) E [TE~(V) (~ ,  x, v ( f ,  x))] - , -pt + H(f ,  x, -P.) E 0 + 
9) E [ T H ~ ~ ( V ) ( ~ , X ~  ~ ( f ~ x ) ) ]  -Pt + H(tr X,  -PZ) < - 0 

(4.11) 

4.2 Solutions of the Hamilton- Jacobi-Bellman Equa- 
tion with the Hamiltonian Measurable in Time 

Consider H : [O,T] x Rd x Rd H R and the Hamilton-Jacobi-Bellman 
equation 



We assume: 

I " 
V t  E [O,T], H ( t , - , - )  is continuous 

v )  V k > 0,  3 ck E L1(O, T )  such that for almost all t E [0, TI, 
V p E B,  H ( t ,  . ,p)  is ck(t) - Lipschitz on k B  

' 

( v i )  H ( t ,  x ,  a )  is positively homogeneous 

where B denotes the closed unit ball in Rd. 

ii) V ( x ,  p) E Rd x Rd , H ( a ,  x ,  p) is measurable 

iii) H ( t ,  x ,  .) is convex 

i v )  3 p E L1(O,T),  v P E B ,  IH(t, x ,  p)l 5 p( t )  

Remark - Assumption v i )  may be replaced by the Lipschitz con- 
tinuity of H ( t ,  x ,  .) together with modified with respect to p conditions 
i v ) ,  v ) .  Then it is possible to study solutions of (4.12) via a Hamilton- 
Jacobi-Bellman equation with the new (conjugate) Hamiltonian meeting 
assumptions (4.13) (as it was done for instance in [5]). 

Define F : [0, TI x R~ * R~ by 

Proposition 4.6 If (4.13) holds true, then F verifies (3.12), (4.5) and 

Proof - Fix x E R d  and consider a dense subset { p i ) i ~ l  of the unit 
sphere in Rd. For every i 3 1 define the set-valued map P; : [O,T] * Rd 
by 

P*(t) = { v E Rd l (pi, v )  5 H ( t ,  x ,P;)  I 
From the separation theorem and continuity of H ( t ,  x ,  -) it follows that 



By [3, Theorem 8.2.91, 7'; is measurable. Thus by [3, Theorem 8.2.41 the 
set-valued map 

t -+ r) P;(t) = F ( t ,  x )  
;>1 

is also measurable. The remaining properties of F were checked in the proof 
of Proposition 7.1 of [13]. 

Q.E.D. 

Consider the differential inclusion 

x l ( t )  E F ( t , x ( t ) )  almost everywhere (4.15) 

and let S I L o , T l ( ~ O )  have the same meaning as before. From Theorems 4.4, 
4.5 we immediately deduce 

Theorem 4.7 Assume (4.13) and consider an extended lower semicontin- 
uous function V : [0, T ]  x Rd H R U {+co). Set g ( - )  = V ( T ,  .). 

Then the following two statements are equivalent: 
i )  The set-valued map t -+ { ( x , r )  I r 2 V ( t , x ) )  is absolutely continuous 
and there exists A C [0, TI of full measure such that for all ( t , x )  E A x Rd 

ii) For all ( t o ,  X O )  E [0, TI x Rd, 

Corollary 4.8 (Maximum Principle) Assume (4.13) and le t  V l ,  V2 be 
eztended lower semicontinuous functions from [0, T ]  x Rd into R U {+m) 
satisfying i) of Theorem 4.7. 

If V l ( T ,  .) 2 V2(T, . ) ,  then Vl 2 V2. 

Results of Section 4.1 imply different equivalent formulations of state- 
ment ii) of Theorem 4.7 linking V to viscosity solutions. For instance we 
have. 



Corollary 4.9 Assume (4.13) and consider a locally Lipschitz function 
V : [0,  TI x Rd H R. Set g(.)  = V ( T ,  a ) .  

Then the following three statements are equivalent: 
i )  There ezists a set A c [0,  TI of full measure such that 

22) For all ( t o ,  so) E [0,  TI x R ~ ,  

iii) There ezists C c [0,  TI of full measure such that for all ( t ,  x )  E C x Rd 
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