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FOREWORD 

We shall present two decentralized models of general equilibrium, the 
Walras one and a slight modification of Walras's model, a nontitonnement 
model. With the Walras model, we find an equilibrium price, which is an 
equilibrium for the titonnement process. The behavior of consumers is 
described by demand functions or demand maps: Knowing the equilibrium 
price, the choice of a consumer is given through the demand function or 
the demand map. The problem is then to find a price which provides an 
allocation of a scarce resource. 

We shall begin with a simple version of the 1954 Arrow-Debreu Theorem, 
a prototype of many of the theorems stating the existence of an equilibrium. 
This theorem is easily derived from a very versatile tool, the Ky Fan inequal- 
ity. This result is equivalent to the 1910 Brouwer Fixed Point Theorem, the 
corner stone of Nonlinear Analysis. 

But using the Brouwer Fixed Point Theorem amounts to transforming 
the problem under investigation to a fixed point problem, for which one 
can apply this fixed point theorem or its numerous variations or extensions. 
The "fixed point" format being quite rigid, one encounters the risk of more 
or less considerable loss of information by doing so. It also often happens 
that this transformation may require additional assumptions and useless 
technical difficulties. 

This is the reason why so many statements logically equivalent to the 
Brouwer Fixed Point Theorem - constituting the corpus of nonlinear anal- 
ysis - have been designed to be readily adapted to classes of specific prob- 
lems. 

Among these equivalent results, Ky Fan Inequality incorporates, in some 
sense, more labor-value1, and therefore, might be more useful. 

We thus prove that Ky Fan's Inequality is equivalent to  the Brouwer 
Fixed Point Theorem in the second section, and use it to derive the Arrow- 
Debreu Theorem for both the simple Walras allocation model and for general 
excess demand maps. 

' ~ l t h o u ~ h  two statements P and Q may well be equivalent, it is common experience 
that the proof of one of the implications, say P =+ Q, is more difficult or involves deeper 
results than the proof of the converse. In this case, one can say that Q incorporates more 
labor value than P and thus, expect as a general rule that the statement Q may be more 
useful than P. 

By the way, the most pleasant or intuitive statements are quite often the ones with the 
least labor value. 



This Arrow-Debreu theorem asserts that contrary to a primary intuition, 
a deep mathematical metaphor, in a extremely simplified framework, justi- 
fies the functioning of a decentralized mechanism. Meanwhile, it has been 
improved in many ways, naturally, and adapted to  more and more compli- 
cated situations. We shall concentrate here only on the basic features. 

Yet, this model is quite imperfect, and we have already mentioned some 
flaws: This a static model, and its dynamical version is not viable. In 
the second decentralized equilibrium model, the nontitonnement model, we 
shall look for an equilibrium allocation, which is an equilibrium for a dy- 
namical system describing the dynamical behavior of consumers. Demand 
functions are replaced by change functions, which described how fast a con- 
sumer changes her consumption knowing it and the price. An equilibrium 
is composed of an allocation and a price that no consumer will change (this 
describes the satisfaction of the consumers). 

For proving the existence of such an equilibrium, we shall deduce from Ky 
Fan's Inequality a General Equilibrium Theorem, providing an equilibrium 
3 of a set-valued map F (i.e., a solution to the inclusion 0 E F(3) satisfying 
the constraints described by Z E K.) Besides standard mild conditions on 
F, we shall assume that K is a convex compact viability domain of F: the 
latter means that we can find at every point z of the compact convex subset 
K an element v E F(z)  tangent to K at z. 

We start with an allocation set K defined 

where M c Y is a subset of scarce resources of the commodity space Y := R' 
and where Li are the consumption sets of the n consumers i = 1,. . . , n. 

We assume that the prices range over the price simplex 



1 The Walras Model 

1.1 The Arrow-Debreu Theorem 

We present a very short description of the Walras model, based on the 
representation of consumers by n demand functions 

d; : (p, r )  E S' x R + d;(p, r )  E L; 

associating to a price p and an income r the ith consumption of Mrs. i. 
This a very crude description of the behavior of a consumer. Later on, 

we shall attenuate the "automatic feature" by accepting set-valued demand 
functions, that are called demand maps. As we have seen, some demand map 
can be derived from utility or loss functions. 

Demand functions are required to obey a budgetary rule called the Walras 
law. It states that it is forbidden to spend more than her income. 

This can be translated mathematically in the following form: 

since (p, d;(r,p)) is the amount of monetary units spent to acquire d;(p, r )  
when p is the price and r is the income. 

When M is the given subset of resources, we regard its support function 
uM(p) := suppEM < p, y > as the total income. 

The second basic ingredient of the Walras model is the allocation among 
the consumers of (part of) the total income 

derived from the set of available resources. (This is an assumption, and not a 
conclusion: the Walras model associates an equilibrium with any allocation 
of the income, fair or unfair). 

Therefore, when a consumer is described by her demand function di and 
is supplied with an income function r;, her decision depends upon the knowl- 
edge of the price: she associates with a price p the commodity d;(p, ri(p)). 

The role of a decentralized mechanism is then to provide every consumer 
a common price, i.e., a message summarizing the unknown set of available 
resources and the behavior of all consumers, such that the resulting con- 
sumptions d;(p, r;(p)) do form an allocation, i.e., satisfy 



where E(p)  is the excess demand. 

Theorem 1.1 (Arrow-Debreu) Assume that the demand functions d; of 
the n consumers am continuous and that the set of scarce msources is closed, 
convex, bounded above and satisfy M = M - R:. 

Assume also that the n income functions r;(p) am continuous and satisfy 
C?=1 r i ( ~ )  5 UM ( P I .  

If the Walms law is satisfied, then them ezists at least a Walms equilib- 
rium. 

This theorem is the prototype of many theorems of general equilibrium 
theory. We shall derive it from Ky Fan's inequality: 

1.2 The Ky Fan Inequality 

We shall prove that the 1910 Brouwer Fixed Point Theorem2: 

Theorem 1.2 (Brouwer Fixed Point Theorem) Let K be a compact 
convex subset of a finite dimensional vector-space and f : K H K be a con- 
tinuous (single-valued) map. Then them ezists a fied point f (T) = Z E K 
o f f  in K .  

is equivalent to the Ky Fan inequality: 

Theorem 1.3 (Ky Fan Inequality) Let K be a compact convez subset 
of a finite dimensional vector-space3 X and cp : X x X H R be a function 
satisfying 

i )  V y E K ,  z H cp(z, y )  is lower semicontinuous 
i i )  V z E K ,  y I+ cp(z, y )  is concave (1-1) 
i i i )  V y  E K ,  V ( Y , Y )  5 0 

Then, them ezists 55 E K ,  a solution to 

V Y  E K ,  c p ( f , y )  I 0 (1.2) 

'See [I, Appendix B] for a proof of the Brouwer Fixed Point Theorem based on 
Sperner's Lemma and [2, Chapter II] for a proof based on differential geometry. 

3~ctually,  this theorem holds true for any HausdorlT locally convex topological vector 
space and in particular, for weak topologies of Banach spaces X. 



Proof 
- Proof of Ky Fan Inequality We shall derive a contradiction 

from the negation of the conclusion: 

V x E K,  3 y E K such that p (z ,  y) > 0 

so that  K can be covered by the subsets 

which are open by assumption (1.1) i ) .  Since K is compact, it  can be 
covered by n such open subsets Vui. Let us consider a continuous partition 
of unity4 (a;);=l,...,n associated with this open covering of K and define the 
map f : K ++ X by 

n 

v z E K ,  f (z)  := C a;(x)y, 
i= 1 

It maps K to  itself because K is convex and the elements y; belong t o  K .  
It is also continuous, so that  Brouwer's Fixed Point Theorem implies the 
existence of a fixed point jj = f (jj) E K of f .  Assumption (1.1) i i )  imply 
that  

n n 

~ ( g ,  B) = V(B, C a i ( ~ ) ~ i )  Z C a i ( ~ ) p ( V ,  yi) 
i=l i=l 

Let us introduce 

It is not empty because Cr=l ai(jj) = 1. Furthermore 

because, whenever i belongs t o  I@), a;@) > 0, so that  5 belongs t o  Vui, 
and thus, by the very definition of this subset, p(g, y;) > 0. Hence, we have 

'A continuous partition of unity associated with a covering of K by n open subsets V, is 
a sequence of n continuous maps a ,  : K H R such that, 

Such continuous partitions of unity do exist when K is a compact metric space. 



proved t h a t  cp(g,B) is strictly positive, a contradiction of assumption (1.1) 
iii). 

- Proof of Brouwer's Theorem We associate with the  continuous 
m a p  f : K H K the  function cp defined on K x K by 

which satisfies obviously t he  assumptions (1.1) of Ky Fan Inequality. Then  
there exists Z E K such tha t  inequality (1.2) holds true. By taking y := 
f (z) E K, we infer t ha t  11 f (z) - ZJJ 5 0, and thus, that Z is a fixed point of 

f. 

Remark - Minimax and Lop-sided Minimax Inequalities 
The Ky Fan inequality implies readily the von Neumann Minimax Theorem: 

T h e o r e m  1.4 (Minimax) Let X and Y be Banach spaces5, L C X and M C Y 
be compact convez subsets and f : L x M ++ R be a real valued function satisfying 

i )  V y E M ,  z H f ( 2 ,  y) is lower semicontinuous and convex 

ii) V z E L ,  y H f ( z ,  y) is upper semicontinuous and concave 

Then there ezists a saddle point ( 5 ,  I )  E L x M o f f :  

Proof  - We apply the Ky Fan Inequality with K := L x M and cp defined 
by 

~ ( ( 5 ,  Y ) ,  (2 ,  Y ) )  := f ( 5 , ~ )  - f ( + ,  Y )  

Actually, we often need a weaker version of the Minimax Theorem, called the 
Lop-Sided Minimax Theorem, relying only on the Searation Theorem. We recall 
its statement: 

T h e o r e m  1.5 (Lop-Sided Minimax Theorem)  Let X and Y be finite dimen- 
sional vector-space6, L c X be a compact convez subset, M C Y be a convez subset 
and f : L x M H R be a real valued function satisfying 

I i )  V y E M ,  z H f ( z ,  y )  is lower aemicontinuous and convex 

( ii) V z E L ,  y - f ( z ,  y )  is and concave 

Sactually, Hausdorff locally convex topological vector spaces. 
'or, more generally, a Banach space or even, a HausdortT locally convex topological 

vector spaces. 



Then there ez is ts  5 E L satisfying 

Proof - We refer to Theorem 6.2.7. of APPLIED NONLINEAR ANALYSIS for an 
instance of proof using only the Separation Theorem. 

1.3 Proof of Arrow-Debreu's Theorem 

This theorem is a simple consequence of the above Ky Fan's Inequality 
(Theorem 1.3) which we shall prove just after this theorem. 

We apply it to  the following function cp defined on S1 x SI by 

It is obviously continuous with respect t o  p and concave with respect to  q. 
Walras law implies that  

Hence, the assumptions of Ky Fan's Inequality Theorem are satisfied, so 
that there exists a price p E SI such that  

The above inequality is still true for q E R;, and even for any q E RI 

because, since we have assumed that M = M - R;, we know that 

since (-R:) - = R:. 
Hence we derive from the Separation Theorem that 

R e m a r k  - Collective Walras Law 



The advantage of the Walras law is that it is a decentralized condition. 
If each consumer conforms to  it, then an equilibrium does exist thanks to  
the above theorem. 

But the proof shows that it is enough to assume that the weaker - but 
not decentralized - collective Walras law 

is satisfied. This weaker version admits monetary transactions among con- 
sumers to modify their initial income functions. 

1.4 Walras Equilibria of Excess Demand Maps 

We started with the simplest model, but the proof of the Arrow-Debreu 
Theorem from the Ky Fan Inequality shows that this theorem can be readily 
extended to the case when 

demand functions d;(p, r )  : S1 x R I+ Li are replaced by demand maps 
~ ~ ( p ,  r) : S' x R - Li 

a supply map SM : S1 'U M is introduced (instead of the constant 
supply map SM(P) P) 

We have seen examples of such demand and a supply maps in the optimal 
allocation model. 

We recall the definition of support function UK and lower support function 
ok of a subset K C X: 

V p E X*, oK(p) := sup(p, z) & ok(p) := inf (p, z) = -OK(-p) 
XEK XEK 

and that the Separation Theorem can also be written in the form: 

We associate with the supply map its income function r defined by 

We shall assume that this income function is allocated among consumers 
by providing them income functions r; satisfying 



Describing the behavior of economic agents by these supply and demand 
map, we define the excess demand map E by 

n 

V P E sf, E(P) := C Di(p, ri)(p) - SM(P) - R: 
i=l 

The tstonnement process is described by the following differential inclusion 

in the continuous version and 

in the discrete version t o  describe the Law of Supply and Demand: the price 
increases when the demand increases. 

Hence, the Walras equilibrium is a price P which clears the market in the 
sense that  

0 E E(Z-4 

In order t o  prove the existence of such a Walras equilibrium, we need 
some continuity requirement. Without introducing right away the whole 
machinery concerning continuity issues of set-valued maps7, we just define 
hemicontinuity which is sufficient for our immediate purpose. 

Definition 1.6 (Upper Hemicontinuous Map) We shall say that a set- 
valued map F : X - Y is upper hemicontinuous at z,-, € Dom(F) if and only 
if for any p E Y*, the function z H U ~ ( ~ ) ( P )  is upper semicontinuous at 
z,-, (or the function z c u&,)(~) is lower semicontinuous). It is said to 
be upper hemicontinuous if and only i f  it is upper hemicontinuous at every 
point of Dom(F). 

Theorem 1.7 Let us assume that an excess demand map E : S' - Y is 
upper hemicontinuous and that its images are closed, convex, bounded above 
and satisfy 

V p E  s', E(p) = E(p)-  R!+ 
Assume also that it satisfies the Walrus law 

Then there exists at least a Walrus equilibrium P E S', a solution to 

0 E E(B) 

'for which we refer to SET-VALUED ANALYSIS, [3, Aubin k Frankowska] 



Proof - It  is the same than the proof of Arrow-Debreu's Theorem 
above. We apply Ky Fan's Inequality (Theorem 1.3) to  the following func- 
tion cp defined on S' x S' by 

It is obviously finite (because E(p) is bounded above) and concave with 
respect to  q. Since the excess demand map is assumed to  be upper hemi- 
continous, we infer that cp is lower semicontinuous with respect t o  p. 

Walras law implies that  

Hence, the assumptions of Ky Fan's Inequality Theorem are satisfied, so 
that  there exists a price p E S' such that 

The above inequality is still true for q E R!+. 
We thus deduce that  for any 

Hence we derive from the Separation Theorem that 0 belongs t o  the closed 
convex set E(p) since this set is closed and convex. 

Consider now the case when excess demand map E is derived from de- 
mand and supply maps: 

We shall assume that  the values D;(p, r )  and SM(p) of the demand and 
supply functions are closed and convex. Therefore, they can be characterized 
by their support functions: 



We shall assume also that the demand maps satisfy the Walras law which 
can be written in the form 

or the collective Walras law 
n 

We derive the following consequence: 

Theorem 1.8 Let us assume that the demand and supply maps are upper 
hemicontinuous, that the values D,(p,r)  are convex and compact and that 
the values S M ( p )  of the supply demand are closed, convex, bounded above 
and satisfy 

P E s', S M ( P )  = S M ( P )  - R!+ 
Assume also that the n income functions ri(p) are continuous and satisfy 

ELI ri(p) 5 0 s M ( p ) ( ~ ) .  
If the collective Walms law (1.3) is satisfied, then there exists at least a 

Walms equilibrium ji E s', a solution to 

Proof - Since the images Di(p, r )  are convex and compact and the 
images S M ( p )  are closed and convex, we infer that the images 

are closed, convex and bounded above. 
Since 

n 

uLcp) (q )  := C &(plri(p))(q) - b ( ~ M ( p ) ( q )  
i=l 

we infer that E(.)  is upper hemicontinuous. Finally, it satisfies 

Hence the assumptions of Theorem 1.7 are satisfied and the conclusion en- 
sues. 



1.5 Notes on Upper Hemicontinuous Maps 

Proposition 1.9 The grnph of an upper hemicontinuous set-valued map 
with closed convez values is closed. 

Conversely, if the grnph of F is closed and if the images of F remain in 
a compact set, then F is upper hemicontinuous. 

Proof 
a)  Consider a sequence of elements (z,, y,) of Graph(F) converging to 

a pair (z,y). Then, for every p E Y*, 

by the upper semicontinuity of z ++ oF(,)(p). This inequality implies that 
y E F(z)  since these subsets are closed and convex, thanks to  the Separation 
Theorem. 

We thus have shown that (2, y) belongs to Graph(F). 

b) To show that F is upper hemicontinuous, take any X E R and show 
that the upper sections 

are closed. Let a sequence of elements z, of such an upper section converge 
to z. Since the values F(z,) are compact, there exist y, E F(z,) such that 
(q, y,) = oF(,,)(q) 3 A. But the sequence y, residing in a compact set, a 
subsequence (again denoted by) y, converges to some y, which belongs to  
F (z )  since the graph of F is closed. Hence X 5 (q, y) 5 uF(,)(q), and the 
second statement of the Lemma ensues. 

2 The Nontiitonnement Model 

2.1 Dynamical Allocation of Scarce Resources 

Instead of describing the decentralized behavior of a consumer by a Walras 
demand function, which makes sense in the static case, we shall capture the 
essence of a demand function to take into account the evolutionary aspect 
by transferring it to a Uchange function" 



associating with each commodity z owned by consumer i and the price p 
she observes on the market the velocity with which she will change her 
commodity 

The idea is to describe a dynamical behavior of consumer i by the differ- 
ential equation 

z:(t) = ~i (z i ( t )  ~ ( t ) )  

It is decentralized in the sense that the decision of consumer i does not 
involve the knowledge of the set M of available resources nor the behavior 
of her fellow consumers. 

Her decision depends only upon her current consumption zi(t) and the 
"current pricen (also called "spot pricen) p(t) a t  time t: a t  each time t, she 
decides t o  increase, decrease or maintain constant her consumption accord- 
ing to  her consumption and to the price she observes. 

Now, we have to  introduce an a priori law for price behavior. In the 
simplest case, we can choose prices in the price simplex 

But we can take into consideration external laws or regulations, and for 
that purpose, introduce a set-valued map P : K zr R;, called a pricing 
map, associating to  each allocation z a subset P (z )  c S of feasible prices 
(allowed by external regulations, for instance). 

Hence, the prices are requested to  obey the evolution law: 

By summarizing, the dynamics of the evolution of the consumption is 
described by 

Equilibria of this dynamical system are solutions (5,~) to  the system 

i) ci(3;,p) = 0 ( i = l ,  ..., n) 
ii) p E P(z) (2.1) 

We first address the problem of finding viable equilibria, i.e., equilibria 
satisfying 



2.2 The Regulation Map 

We recall that the tangent cone TK(z) to a convex subset K at z E K is the 
closed cone spanned by K - z, which is convex: 

and the normal cone to K a t  z defined by 

We need the concept of tangent cone to associate with the behavior of the 
consumers described by change functions and the set M  of scarce resources 
the regulation map nM defined by 

This regulation map relates each allocation x E K to prices such that the 
associated total change of consumptions is tangent to the set of scarce re- 
sources; The objective is to  bring back the total consumption inside the set 
of scarce resources. 

We posit now the assumptions we need to prove our equilibrium theorem. 
- ASSUMPTIONS ON THE CONSUMPTION AND RESOURCE SETS: 

i) M  = M  - R: is a closed convex subset 

ii) V i = 1, . . . , n, Li = Li + R: is closed and convex 

(2.2) 

- iv) M C y - R :  & V i = l ,  ..., n, L i c % + R :  

These are the standard assumptions, the most severe one being the con- 
vexity of the consumption and resource sets, which is needed to gaurantee 



the existence of an equilibrium (but not needed for the existence of viable 
evolution of allocations). 

Recall that implies that under these assumptions, the tangent cone to 
the set of allocations is derived from the tangent cones to the consumption 
and resource sets by the formula8: 

- ASSUMPTIONS ON THE CHANGE FUNCTIONS: 

i)  c;(x, p) := c;(x) + G;(x)p is affine, where 

ii) c; : L; w Y is continuous 
iii) G; : Li H C(Y*, Y) is continuous 

iv) V xi E L;, p E Im(P), c;(x;,p) E TL,(Z;) 

i )  Graph(P) is closed and the images of P are convex 

ii) V x E K, NM (2.5) 

Constant pricing maps P(x)  r S' satisfy naturally these assumptions. 
Assumption M = M - R: implies that 

These assumptions are just technical ones. We shall need other "consis- 
tency" assumptionsm which play a very deep role, and which should have the 
same degree of economic interpretation than the conclusion of the theorem. 
They take the form of budgetary rules. 

'This formula remains true when the consumption and resource sets are assumed to 
be sleek instead of convex. 



2.3 The Instantaneous Walras Law 

In order to guarantee the nonemptiness of the images of the regulation map 
IIM without knowing the set M of resources, we appeal again to  a mathemat- 
ical implementation of the budgetary law enjoining consumers to  spend less 
than they earn (in units of account). 

In the case of our nontiitonnement model, it takes the form of the col- 
lective instantaneous Walms law: 

This law itself can be decentralized further by requiring the change functions 
c; to obey the (individual) instantaneous Walras law 

Indeed, we can portray this property by saying that it is forbidden to  
spend more monetary units than earned in continuous transactions. To be 
persuaded by this interpretation, it is enough to observe that the Walras 
law implies that along solutions to the system of differential equations (2.9), 
we have (p(t),x!(t)) 1 0, and thus, for all h small enough, 

As we can see, the advantage of the instantaneous Walras law is that it 
does not depend upon the set M of scarce resources, as long as it satisfies 
assumptions (2.2)i). 

2.4 The Nonthtonnement Equilibrium Theorem 

Hence, the following Theorem is an existence result of an equilibrium of the 
nontgtonnement process which shares the same features than the Arrow- 
Debreu Theorem on the existence of a Walras equilibrium, an equilibrium 
of the tbtonnement process: 

Theorem 2.1 We  posit the assumptions (2.2), (2.4) and (2.5). If the 
change junctions c; obey the collective instantaneous Walms law 



then there exists a viable equilibrium ( z ~ ,  . . . , Z,, p) E K x s', a solution to 
the system of equations: 

Remark - When P(.) is no longer the constant map P = s', we 
can assume that for all z E n;"=l L;, there exists a map Q(z, .) : S' I+ P ( z )  
satisfying the condition 

Then the viability condition holds (2.7) true. 

We already mentionned that the collective instantaneous Walras law 
implies that the regulation map IIM is nontirivial. This results from the 
following 

Proposition 2.2 We posit assumptions (2.2), (2.4) and 

Graph(P) is closed and the images of P are convex (2.6) 

Then the regulation map IIM(-) is not trivial if and only if the "budgetary . . 

condition" 
I n \ 

hods true. 

Proof - The budgetary condition being obviously necessary, let us check 
that it is sufficient by using of the Separation Theorem. Indeed, assume 
that IIM(z) = 0 for some z E K. This means that 

Since this subset is closed and convex, there exist q E Y* such that 



By fixing p E P(x) ,  this implies first that  

BY taking v = 0 E TM x x; , we infer that (;I1 1 

and therefore, that 

inf 
~ENM(C;=, ~ i )  PEP(=) i=l 

a contradiction of the assumption. 

We recall that  the condition M = M - R: implies that 

so that  the assumption of Proposition 2.2 implies the above characterization 
of the nonemptiness of nM(X). 

Theorem 2.1 on the existence of a nontitonnement equilibrium then 
follows from Proposition 2.2 and the "nondecentralizedn (but more general) 
Theorem2.3 below: 

Theorem 2.3 We posit assumptions (2.2), (2.4) and (2.6). If the regula- 
tion map nM(- )  is nontirivtal: 

then there exists a viable equilibrium (51,. . . , &,p) E K x S'. 

This Theorem follows from the Equilibrium Theorem 3.1 we shall prove 
in next subsection. 

But before proving it, we emphasize the fact that  the existence of an 
equilibrium is derived from the nonemptiness of the images of the regulation 
map nM, which itself is derived from the collective Wdras  law. 



2.5 Towards an Abstract Equilibrium Model 

How can we prove Theorem 2.3 (and thus, Theorem 2.1) ? 
First, we introduce the map c : X x S' w X defined by 

and we set 

so that an equilibrium is a solution (Z,p) E K x S' to the system 

We can simplify further the' formulation of this problem by introducing the 
set-valued map F : K I* X defined by 

Therefore, there exists an equilibrium (Z,p) if and only if T is an equi- 
librium of F in the sense that 

Hence, we have to appeal to existence of equilibria of set-valued maps. 
But before, let us check what are the properties of the set-valued map 

F. 

For that purpose, it is convenient to introduce the following definition: 

Definition 2.4 A convex subset K c Dom(F) satisfying property 

is said to be a viability domain of F. 

This means that for any point z E K ,  there exists at  least a direction 
v E F(z )  which is tangent to K at z9. 

'We shall see that the Viability Theorem states that K is viability domain of F  if and 
only if that from any initial state zo E K starts at least one solution z ( . )  to the differential 
inclusion 2' E F ( z )  which is viable in K in the sense that z ( t )  E K for any t 2 0. 



Lemma 2.5 W e  posit assumptions (2.21, (2.4) and (2.6). Then F is an 
upper hemicontinuous with nonempty closed conuez images 

If the regulation map IIM(.) is nontin'uial, than the allocation set K is a 
viability domain of the set-valued map F defined by (2.8). 

Proof - First, since c is affine with respect to  p and since the images 
P(z)  are convex and compact by assumption (2.4)) and (2.6), we note that 
the images F(z)  are closed and compact. 

Second, we remark that F is upper hemicontinuous. In order to check 
this point, we recall that 

Since the map c is continuous by (2.4), the graph of P is closed by assumption 
(2.6) and the images P(z)  remain in the compact set S1, we infer that 
z H UF(~)(Q) is upper semicontinuous. 

Second, assumptions (2.2) imply that the tangent cone to  the set of 
allocations is equal to 

Since I 1 ~ ( z )  # 0, there exists p E P(z)  such that 

Therefore assumption (2.4) iv) implies that for such a p E P(z) ,  c(z,p) 
belongs to TK(z). 

In summary, we shall use Lemma 2.5 to prove that Theorem 2.3 follows 
from the following general Equilibrium Theorem 3.1. 

Naturally, these remarks apply when single-valued change functions are 
replaced by change maps C; : L; x S' ?* Y and the dynamics of the evolution 
of the consumption is described by the set-valued controlled system 



Equilibria of this dynamical system are solutions (3 ,  p)  to  the system of 
inclusions 

i )  0 E C;(3i,p) ( ; = I ,  . . . ,n)  
i i )  jj E P(z )  (2.9) 

We then associate the regulation map lTM defined by 

Recall that a set-valued map F is said to be convex if its graph is 
convexlo. 

We shall assume that 

I i )  C;(z,  p )  is a closed convex set-valued map with respect to  p 

i i )  C; is upper hemicontinuous with convex compact images 

( iii) V z;  E L;, p E Im(P), C;(z;,p) C T L ~ ( z ; )  
(2.10) 

Theorem 2.6 We posit assumptions (2.21, (2.6) and (2.10). Then if the 
regulation map T I M ( . )  is nontin'vial, then there exists a viable equilibrium 
( ~ ~ , . . . , Z n , p )  E K x S'. 

As in the single-valued case, we introduce set-valued map C defined by 

and the set-valued map F defined by 

Lemma 2.7 We posit assumptions (2.2), (2.6) and (2.10). Then F is an 
upper hemicontinuous with nonempty closed convez images 

If the regulation map T I M ( - )  is nontin'vial, then the allocation set K is a 
viability domain of the set-valued map F defined by (2.11). 

''See Chapter 2 of [3, Aubin & Rankowska] for an exhaustive presentation of closed con- 
vex maps and closed convex processes, which are the 'set-valued analoguesn of continuous 
linear operators. 



Proof  - First, since the set-valued map C defined by 

is also a closed convex set-valued map with respect t o p  and since the images 
P(z)  are convex and compact by assumption (2.10)i),ii) and (2.6), we infer 
that the images 

F(z)  := U C ( ~ , P )  
p E P ( 4  

are closed and compact. Indeed, if vi E C(z, pi) ( i  = 1,2), then 

Since 

IIC(z,p)II I Xzllpll 

we deduce that the values of F are closed: Indeed, if v, E C(z, p,) converges 
to some v and since p, E P(z)  remains in a compact set, a subsequence 
(again denoted by) pn converges to some p E P(z). Hence (z, p,, v,) E 
Graph(P) converges to (z,p, v), and, since the graph of C is closed, we infer 
that v E C(z, P(z)) =: F(z).  

Finally, we derive that F is upper hemicontinuous because 

Since the map C is upper hemicontinuous by (2.10), the graph of P is closed 
by assumption (2.6) and the images P(z)  remain in the compact set S', we 
infer that z H u ~ ( ~ ) ( Q )  is upper semicontinuous. 

Hence F is an upper hemicontinuous with nonempty closed convex images. 
One prove exactly as before that K is a viability domain of F. 
Also, we can check also that in this case, the regulation map IIM(.) is 

not trivial if and only if the "budgetary condition" 

In this case also, Lemma 2.7 allows to derive Theorem 2.6 from the 
following general Equilibrium Theorem 3.1. 



3 The Equilibrium Theorem 

3.1 Case of Convex Domains 

Theorem 3.1 (Equilibrium Theorem) Assume that X is a finite di- 
mensional vector-space" and that F : X -., X is an upper hemicontinuous 
set-valued map with closed convez images. 

If K c X is a convez compact viability domain of F ,  then it contains 
an equilibrium of F .  

Proof - We proceed by contradiction, assuming that the conclusion is false. 
Hence, for any z E K ,  0 does not belong to F ( z ) .  Since the images of F  are 
closed and convex, the Hahn-Banach Separation Theorem implies that there exists 
pt E X* such that u ( F ( z ) ,  p,) < 0. 

By setting 
V,, := { Z  E K 1 u ( F ( z ) , p )  < 0) 

the negation of the existence of an equilibrium of F  in K implies that K can be 
covered by the subsets V, when p  ranges over the dual of X. These subsets are 
open by the very definitidn of upper hemicontinuity of F .  So K can be covered by 
n-such open subsets Vpi. Let us consider a continuous partition of unity ( C Y ~ ) ~ = ~ , . . . , ,  

associated with this finite open covering and introduce the function p : K x K -+ R 
defined by 

n 

Being continuous with respect to z and affine with respect to y, the assumptions 
of Ky Fan's Inequality (Theorem 1.3) are satisfied. Hence there exists Z E K such 
that for F := cui(Z)pi we have 

The above inequality means that -F belongs to the polar cone T K ( Z ) -  of the convex 
subset K at Z. 

Since K is a viability domain of F ,  there exists u E F ( Z )  n T K ( Z ) ,  and thus 

We set 
I ( Z )  := { i  = 1,. . . , n I cui(Z) > 0 )  

"~ctual ly ,  the proof we give shows that this fundamental theorem remains true for any 
Hausdorff locally convex topological vector space and in particular for a Banach space 
endowed with the weak topology. 



which is not empty. Hence 

c(F(Z), F) 5 C ai(+(F(Z), pi) < 0 
i€l(T) 

because, for any i E I@), ai(Z) > 0, and thus, Z belongs to the subset Vpi, which 
means precisely that a(F(Z), pi) < 0. The latter inequality is then a contradiction 
of the previous one. 0 

By modifying slightly the proof of the Equilibrium Theorem, we can 
prove the existence of zeros of a set-valued map from a Banach space X to 
another Banach space Y. 

Theorem 3.2 Let K be a convex compact subset of a Banach space X and 
F be an upper hemicontinuous set-valued map with closed convex values from 
K to another Banach space Y .  

Let us consider also a continuous map B : K I+ C ( X ,  Y ) .  If K ,  F and 
B am .elated by the condition 

then 

i )  3 2 E K such that 0 E F(z) 

i i )  V y E K ,  3 ẑ  E K such that B(z^)y E B(z^)z^ + F ( 2 )  

Proof - The proof of the existence of an equilibrium f E K of F is the same 
as the one of the Equilibrium Theorem, where we define the function 9 by 

Ky Fan's Inequality thus implies the existence of Z E K such that 

so that, taking a sequence un E TK (Z) such that B(Z)un converges to some 

(which exists by the tangential condition), we infer that 



This inequality is contradicted as in the proof of Theorem 3.1. 
Take now y E K and introduce the set-valued map G : X -c, Y defined by 

which also satisfies the aseumptions of our theorem. Then there exists a zero 2 E K 
of G, which is a solution to the inclusion B(2)y  E B(2)2  + F ( 2 ) .  0 

As an example, we derive the existence of a solution to  the equation 
f ( 5 )  = 0 where the solution Z must belong t o  a compact convex subset K :  

Theorem 3.3 Let X and Y be Banach spaces, K C X be a compact con- 
vez subset, 0 > K be an open neighborhood of K and f : 0 I+ Y be a 
continuously diflewntiable single-valued map. Assume that 

Then there ezists a solution 5 E K to the equation f(3) = 0. In particular, 
when zo E K is given, thew ezists a sequence of elements zn E K satisfying 

i.e., the implicit version of the Newton algorithm. 

Proof - We take F ( z )  := { f ( 2 ) )  and B ( z )  = - f l ( z )  in Theorem 3.2. 

3.2 Case of Convex Images 

We shall derive from the Viability Theorem a neighboring statement, where 
the assumption of the convexity of K is replaced by the convexity of the 
image F ( K )  of K by F: 

Theorem 3.4 (Equilibrium Theorem) Assume that X is a finite di- 
mensional vector-space and that F : X - X is an upper hemicontinuous 
set-valued map with closed convez images. 

If K C X is a compact subset such that F ( K )  is convez and if thew 
ezists at least a viable solution to the diflewntial inclusion z' E F ( z ) ,  then 
thew ezists a viable equilibrium of F in K .  

Naturally, the Viability Theorem below implies the existence of such a viable 
solution whenever K is a viability domain of F. 



Proof - Assume that there is no equilibrium. Hence, this means that 0 
does not belong to the closed convex subset F(K),  so that the Separation Theorem 
implies the existence of some p E X* and c > 0 such that 

Hence, let us take any viable solution z(.) to differential inclusion 

for almost all t 2 0, zl(t) E F(z(t)) 

which exists by assumption. We deduce that 

so that, integrating from 0 to t ,  we infer that 

But K being bounded, we thus derive a contradiction. 

We can even relax the assumption of the convexity of F(K),  as the 
following "ergodicn Theorem shows: 

Theorem 3.5 Let us assume that F is upper hemicontinuous with closed 
convez images and that K C Dom(F) is compact. If there ezists a solution 
z ( - )  to the differential inclusion z' E F(z)  viable in K such that 

then there ezists a viable equilibrium 3, i.e., a state 5 E K solution to the 
inclusion 0 E F(3). 

tn 
Observe that i t  is sufficient that the lim inf of the Cesaro means 1 Ilz'(r)lldr 

t n 
of the velocities of a viable solution is equal to 0 to derive the existence of 
an equilibrium. 

Proof - Let us assume that there is no viable equilibrium, i.e., that for any 
z E K ,  0 does not belong to F(z). Since the images of F are closed and convex, the 
Separation Theorem implies that there exists p E C, the unit sphere, and cp > 0 
such that a(F(z) ,  -p) < -cp . In other words, we can cover the compact subset K 
by the subsets 

V, := { z E K 1 u(F(z), -p) < -cp ) 



when p ranges over C. They are open thanks to the upper hemicontinuity of 
F, so that the compact subset K can be covered by q open subsets Vpj. Set 
E := mini=l,..,, Ep, > 0. 

Consider now a viable solution to the differential inclusion z' E F ( z ) ,  which 
exists by assumption. Hence, for any t 2 0, z ( t )  belongs to some Vpj, so that 

and thus, by integrating from 0 to t ,  we have proved that there exists E > 0 such 
that. for all t > 0. 

a contradiction of the assumption of the theorem. 

3.3 Fixed Point Theorems 

We begin by showing that  Theorem 3.1 implies the Kakutani Fixed Point 
Theorem12, which is the set-valued version of the Brouwer Fixed Point The- 
orem. Therefore, these theorems are all equivalent t o  the Brouwer Fixed 
Point Theorem and the Ky Fan Inequality. 

Theorem 3.6 (Kakutani Fixed Point Theorem) Let K be a convez corn- 
pact subset of a Banach space X and G  : X .u K  be an upper hemicontinu- 
ous set-valued map with nonempty closed convez values. Then G  has a fized 
point13 Z E K n G(5). 

Proof - We set F ( z )  := G ( z )  - z ,  which is also upper hemicontinuous 
with convex values. Since K  is convex, then K  - z  C T K ( z ) ,  and since 
G ( K )  c K ,  we deduce that  K is a viability domain of F  because 

12called Ky Fan's Fixed Point Theorem in infinite dimensional spaces. 
The story began in 1910 with the Brouwer Fixed Point Theorem, which was proved 

later in 1926 via the Three Polish Lemma, the three Poles being Knaster, Kuratowski 
and Mazurkiewicz. Knaster saw the connection between Sperner's Lemma and the fixed 
point theorem, Mazurkiewicz provided a proof corrected by Kuratowski. The extension 
to Banach spaces was proved in 1930 by their colleague Schauder. 

Von Neumann did need the set-valued version of this Fixed Point Theorem in game 
theory, which was proved by Kakutani in 1941. 

13which can be regarded as an equilibrium for the discrete set-valued dynamical system 
zn+l E G(zn). 



Hence there exists a viable equilibrium Z E K of F, which is a fixed point 
of G. 

Actually, we do not need to assume that G  maps K  to  itself. It  is enough to 
assume that K  is a viability domain of F := G - 1,  which can be written in the 
following form 

Vz E K, G ( z ) n ( z + T ~ ( z ) )  # 0 (3.1) 

This leads to  the following 

Definition 3.7 (Inward & Outward Maps) A map G : K - X satisfying 
property (3.1) is said to be inward. It is called outward if 

Since K  is a viability domain of F := G-1 when G  is inward and of F- := 1-G 
when G  is outward, and since the equilibria of F and F- are fixed points of G, we 
obtain the useful 

Theorem 3.8 Let K be a conuez compact subset of a Banach space X and G : 
K - X be an upper hemicontinuous map with nonempty closed convez values. If 
G is either inward or outward, it has a f i ed  point 



See P a r t  I for a list  of references. 
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