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FOREWORD

The purpose of this paper is to revisit the QSIM algorithm intro-
duced by Kuipers in qualitative physics for studying the qualitative
evolution of solutions to a differential equation using techniques of
set-valued analysis and viability theory. It describes Dordan’s soft-
ware. It operates on a class of differential equations called “replicator
systems”, which play an important role in biochemistry and biology.
This software provides the monotonic cells and draws them on the
screen of the computer for three-dimensional systems (the state sub-
set being the probability simplex). It also supplies symbolically the
transitions from one monotonic cell to the other ones. It also pro-
vides a IATgXreport providing the list of qualitative cells, singling out
qualitative equilibria and describing the discrete dynamical system.




Dynamical Qualitative Simulation

Jean-Pierre Aubin

Introduction

The purpose of this paper is to revisit the QSIM algorithm intro-
duced by Kuipers for studying the qualitative evolution of solutions
to a differential equation z’ = f(z) where the state z ranges over a
closed subset K of a finite dimensional vector-space X := R™.

The qualitative state of a solution to the differential equation at
a given time ¢ is the knowledge of the monotonicity property of each
component z;(t) of a solution z(-) to this differential equation, i.e.,
the knowledge of the sign of the derivatives 2/(t). Hence the qual-
itative behavior is the evolution of the qualitative states of the so-
lution, i.e., the evolution of the vector of signs of the components
of 2/(t) = f(z(t)), which must be determined without solving the
differential equation.

In order to denote the qualitative states and track down their evo-
lution, we introduce the n-dimensional confluence space R™ defined
by

R™ = {—-,0,+}"

the convex cones where
Ry := {veR"| signof (v;) = a; }
and their closures
aR} = {v€eR"| signof (v;) =a;0r0}

We shall study the qualitative behavior of the differential equa-
tion, i.e., the evolution of the functions ¢t — s,(2'(¢)) associated
to solutions z(-) of the differential equation. Furthermore, we shall
track down the “landmarks”, i.e., the states at which the monotonic
behavior of the solutions is modified. But, instead of finding them a
posteriori by following the qualitative behavior of a given solution,




we shall find them a priori, without solving the dynamical system,
neither qualitatively nor analytically.

In other words, the problem arises whether we can map the differ-
ential equation z’ = f(z) to a discrete dynamical system & : R™ ~ R"
on the qualitative space R".

This is not always possible, and we have thus to define the class
of differential equations which enjoy this property.

For studying the qualitative behavior of the differential equation,
we introduce the “monotonic cells” defined by

K, := {z € K| f(z) e R;}

Indeed, the quantitative states z(-) evolving in a given monotonic
cell K, share the same monotonicity properties because, as long as
z(t) remains in K,

Vi=1,...,n, sign ofdi(;t(t—) = aq;

These monotonic cells are examples of what one can call “quali-
tative cells” of the subset K. In full generality, qualitative cells are
subsets K, C K of a family of subsets covering K. The problem is
then to check whether a family of qualitative cells is consistent with
a differential equation 2’ = f(z) in the sense that one can find a
discrete dynamical system ¢ mapping each cells to other ones such
that every solution starting from one cell K, arrives in one of the
qualitative cells of the image ®(K,).

This is not always possible and we shall conclude this paper by
an extension of a result of D). Saari on “chaos”. Chaos here means
the following property: Given any arbitrary infinite sequence of qual-
itative cells, there is always one solution which visits these cells in
the prescribed order.

To the extent that qualitative cells describe phenomena in the
framework of the model described by such a differential equation, this
discrete dynamical system & provides causality relations, by specify-
ing what are the phenomena caused by a given one. In this sense,
we are able to deduce from the model “physical laws”. This one of
the main motivations which give the names to this topic: qualitative
physics.



But before, we shall characterize the qualitative equilibria, which
are the qualitative cells such that the solutions which arrive in this
qualitative cell remain in this cell. We shall also single out the qual-
itative repellers, which are qualitative cells such that any solution
which arrives in this qualitative cell must leave this cell in finite
time. We shall then provide conditions insuring that the qualitative
cells are not empty.

The theoretical results concerning the version of the QSIM algo-
rithm are illustrated by a software due to Olivier Dordan. It oper-
ates on a class of differential equations called “replicator systems”,
which play an important role in biochemistry and biology. This soft-
ware provides the monotonic cells and draws them on the screen
of the computer for three-dimensional systems (the subset K being
the probability simplex). It also supplies symbolically the transi-
tions from one monotonic cell to the other ones. 1t finally provides a
IATEXreport providing the list of qualitative cells, singling out qual-
itative equilibria and describing the discrete dynamical system &.

1 Monotonic Cells

We posit the assumptions of the Viability Theorem for differential
equations (called the Nagumo Theorem):

(1.1)

i) f is continuous with linear growth
i1) K is a closed viability domain

Therefore, from every initial state zo € K stars a solution to the
differential equation

') = f(=(1) (1.2)

viable (remaining) in K.

1.1 Monotonic Behavior of the Components of the
State

For studying the qualitative behavior of the differential equation
(1.2), i.e., the evolution of the functions ¢ — s,(z'(t)) associated
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with solutions z(-) of the differential equation, we split the viability
domain K of the differential equation into 3™ “monotonic cells” K,
and “large monotonic cells” K,, defined by

K, = {ze K| f(z)eR}} & K, := {z€ K| f(z) € aR}}

Indeed, the quantitative states z(-) evolving in a given monotonic
cell K, share the same monotonicity properties because, as long as
z(t) remains in Kj,

Vi=1,...,n, sign ofdzd;t(t) = a;

The monotonic cell Ky is then the set of equilibrial of the system,
because Ko={z € K| f(z)=0}.

These monotonic cells are examples of qualitative cells, and, for
this reason, often called qualitative cells.

Studying the qualitative evolution of the differential equation
amounts to know the laws (if any) which govern the transition from
one monotonic cell K, to other cells without solving the differential
equation.

In Kuipers terminology, the boundaries of the monotonic cells are
called the “landmarks”. They are naturally unkown and are derived
through the formulas defining these monotonic cells. The forthcom-
ing algorithms compute them before studying the transition proper-
ties from one cell to another one (or other ones)

These laws thus reveal causality relations between qualitative phe-
nomena concealed in the dynamical system, by specifying the succes-
sors of each monotonic cells, and present a major interest in physics
for making some sense out of the maze of qualitative properties.

First, we mention the following result due to O. Dordan, stating
that starting from any monotonic cell, a solution either converges to
an equilibrium or leaves the monotonic cell in finite time:

Theorem 1.1 Assume that a monotonic cell K, ts not empty and
bounded. Then, for any initial state xo € K,, either the solution
leaves K, in finite time or it converges to an equiltbrium.

'Such an equilibrium does exist whenever the viability domain K is convex
and compact, thanks to the Brouwer-Ky Fan Theorem.



Proof — Assume that a solution z(-) remains in K, for all
nonnegative t > 0.
Let any i such that a; # 0. Since

2(t) = 2(0) = [ #r)ar

we deduce that z;(¢) is monotone and bounded. Therefore, it con-
verges to some number z; when ¢t — +o0.

Consequently, each component of the solution z(-) is either equal
to 0 or converges, so that z(t) converges to a limit, which is then an
equilibrium of the dynamical system. O

1.2 Monotonic Behavior of Observations of the State

But before proceeding further, we shall generalize our problem — free
of any mathematical cost — to take care of physical considerations.

Instead of studying the monotonicity properties of each compo-
nent z;(-) of the state of the system under investigation, which can
be too numerous, we shall only study the monotonicity properties
of m functionals V;(z(-)) on the state (for instance, energy or en-
tropy functionals in physics, observations in control theory, various
economic indexes in economics) which do matter.

The previous case is the particular case when we take the n func-
tionals V; defined by Vi(z) := z,.

We shall assume for simplicity that these functionals V; are con-
tinuously differentiable around the viability domain K.

We denote by V the map from X to Y := R™ defined by

V(z) = (Vi(z),...,Vn(z))

Since the derivative of the observation V(z(-))is equal to V'(z(-))z'(:) =
V'(z(-))f(2(+)), it will be convenient to set

Vze K, g(z) := V'(z)f(z)

Hence, we associate with each qualitative state a the qualitative
cells K, and the large qualitative cells K, defined by

K. = {z € K |g(z) €RT} & K, := {z € K | g(z) € aRT)



In other words, the quantitative states z(-) evolving in a given
monotonic cell K, share the same monotonicity properties of their
observations because, as long as z(t) remains in K,,

Vi=1,...,m, sign of %Vj(z(t)) = a;

In particular, the m functions V;(z(¢)) remain constant while they
evolve in the qualitative cell K.

By using observation functionals chosen in such a way that many
qualitative cells are empty, the study of transitions may be drastically
simplified: this is a second reason to carry our study in this more
general setting.

This is the case for instance when the observation functionals
are “Lyapunov functions” V; : K — R. We recall that V is a Lya-
punov function if < V'(z), f(z) >< 0 for all z € K, so that V(z(-))
decreases along the solutions to the differential equation.

Hence, if the observation functionals are Lyapunov functions, the
qualitative cells K, are empty whenever a component a; is positive.
In this case, we have at most 2™ nonempty qualitative cells. (In some
sense, one can say that Lyapunov was the originator of qualitative
simulation a century ago).

Naturally, we would like to know directly the laws which gov-
ern the transition from one qualitative cell K, to other qualitative
cells, without solving the differential equation, and therefore, without
knowing the state of the system, but only some of its properties.

2 'Transitions Between Qualitative Cells

We shall assume from now on that f is continuously differentiable
and that the m functions V; are twice continuously differentiable
around the viability domain K.

Let us denote by § : K — C!(0,00; X) the “solution map” as-
sociating with each initial state zg € K the solution Sz¢(-) to the
differential equation (1.2) starting at zo.

Definition 2.1 Let us consider a map f from K to X and m obser-
vation functionals V; : K — R. We denote by D(f, V), the subset of



qualitative states a € R™ such that the associated qualitative cell K,
s not empty.

We shall say that a qualitative state ¢ € D(f, V) is a “successor”
of b € D(f, V) if for all initial states zo € Ky N K., there exists
T €]0,400] such that Szo(s) € K. for all s €]0,1[.

A qualitative state a € D(f, V) is said to be a “qualitative equi-
librium” if it is its own successor. It is said to be a “qualitative
repellor” if for any initial state zo € K,, there exists t > 0 such that
Szo(t) ¢ K,.

Our first objective is to express the fact that c is a successor of b
through a set-valued map ®.
For that purpose, we shall set

h(z) = ¢'(2)f(z) = V'(z)(f(z), f(2))+ V'(z)f'(z)f(z)
We introduce the notation

K, = {z€K.|g(z)i=0}

(Naturally, K, = I_{':1 whenever g; = 0.)
We shall denote by T the set-valued map from R™ to itself defined

by
VaeR™, (I'(a)); is the set of signs of h;(z) when z € I—{l
We also set Io(z) := {i=1,...m|g(z)i=0} and
RO = (v eR™ |20 Vie I(e))

We introduce the operations A on R™ defined by

b,’ if b,-:c,-
(bAe)i == {o if b # ¢

and the set-valued operation V where bV cis the subset of qualitative
states a such that
a; = b; or ¢

We set
a#b — Vi=1,...,m, a; # b;



Proposition 2.2 The set-valued map I satisfies the consistency prop-
erty
I'(av0) C TI(a)

and thus,
I(bAac) C T(b)NT(c)

Proof — To say that K is contained in K, amounts to saying
that b belongs to a V 0. When this is the case, we deduce that for
allz=1,...,m, 7(—,', C X’-;, so that the signs taken by hA(z); when z
ranges over K belong to the set of I'(a); of signs taken by the same

function over K,. Therefore, T'(b) is contained in I'(a).
Since b A c belongs to both Vv 0 and ¢V 0, we deduce that I'(bAc)
is contained in both I'(d) and I'(¢). O

Definition 2.3 We shall associate with the system (f, V) the dis-
crete dynamical system on the confluence set R™ defined by the set-
valued map ® : R™ ~ R™ associating with any qualitative state b
the subset

®(b) := {ceD(f,V)|T(bAc) C cVvO0}

We begin with necessary conditions for a qualitative state ¢ to be a
successor of b:

Proposition 2.4 Let us assume that f is continuously differentiable
and that the m functions V; are twice continuously differentiable

around the viability domain K.
If c € D(f, V) is a successor of b, then ¢ belongs to ®(b).

Before proving this proposition, we need the following

Lemma 2.5 Let us assume that f is continuously differentiable and
that the m functions V; are twice continuously differentiable around
the viability domain K.
If v belongs to the contingent cone to the K, at x, then condition
v € Tk(z) & Vi€ Iy(z), signof (¢'(z)v)i=a; or 0
1s satisfied.
The converse is true if we posit the transversality assumption:

VzeK, ¢(z)Ck(z) - aR_I;_’(x) = R™



Proof — Since the large qualitative cell K, is the intersection
of K with the inverse image by g of the convex cone aR7, we know
that the contingent cone to K, at some z € K, is contained in

Tk(z) Ng'(z) " Toryp(9(2))

and is equal to this intersection provided that the “transversality
assumption”

9'(z)Ck(z) - Coryp(9(2)) = R™
is satisfied. On the other hand, we know that aR7 being convex,
Carr(y) = Tarp(y) = aTRpy,) O aRY
and that v € TRT(z) if and only if
whenever z; = 0, then v; > 0
Consequently, v € TaRg* (¢(z)) if and only if

whenever g(z); = 0, then sign of v; = a; or 0
. T _ Io(z)
ie., aR?(g(:c)) =aR]™.
Hence v belongs to the contingent cone to K, at z if and only if
v belongs to Tk (z) and ¢'(z)v belongs to TGRT(g(z)), i.e., the sign
of (g'(z)v); is equal to a; or 0 whenever j belongs to Ip(z). O

Proof of Proposition 2.4 — Let ¢ be a successor of b. Take
any initial state zo in K N K, and set z(t) := Szo(t). We observe
that the intersection of two qualitative cells K and K, is equal to

KynNK. := Kpa,

Since the solution z(t) to the differential equation crosses the in-
tersection Kya. towards K., f(zo) belongs to the contingent cone
T (7o) because

z(h) - z¢

h =0

" . . < . N ’ _
lim inf dx(z0 + hf(zo))/h < lim inf ) z'(0)




By Lemma 2.5, this implies that
V2o € Kpne, Vi€ Ig(zo), sign of hi(zg) = ¢; or 0
or, equivalently, that
I'(bAe) C ¢VvO

Hence ¢ belongs to ®(b), as it was announced. O

3 Qualitative Equilibrium and Repellor

We can characterize the qualitative equilibria of differential equation
(1.2).

Theorem 3.1 Let us assume that f is continuously differentiable
and that the m functions V; are twice continuously differentiable
around the viability domain K. We posit the transversality assump-
tion

Vze K, ¢(z)Ck(z) - aR_If(z) = R™

Then a is a qualitative equilibrium if and only if a belongs to ®(a).

Proof — We already know that if a is a qualitative equilibrium,
then a belongs to ®(a). We shall prove the converse statement, and,
for that purpose, observe that saying that a is a qualitative equilib-
rium amounts to saying that the large qualitative cell K, enjoys the
viability property (or is invariant by f). By the Nagumo Theorem,
this is equivalent to say that K, is a viability domain, i.e., that

Vze K, f(z) € T?u(a:)

By Lemma 2.5, knowing that f(z) belongs to the contingent cone
Tk (z) by assumption, this amounts to say that

Vze K, Vi€ lyz), signof (¢'(z)f(z))i=a; or 0

i.e., that T(a Aa) =T(a) C aV 0. Hence, a is a fixed point of ®. O

When a large qualitative cell K, is not a viability domain of f,
i.e., if a is not a qualitative equilibrium, at leat a solution leaves the
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qualitative cell in finite time and thus, will reach the boundary of
this cell in finite time.
We infer from the definition of the viability kernel that

Proposition 3.2 Let us assume that f is continuously differentiable
and that the m functions V; are twice continuously differentiable
around the viability domain K. We posit the transversality assump-
tion

VzeK, ¢()Ck(z)~ aR_If(I) = R™

o The qualitative state a is a qualitative repellor if and only if the
viability kernel of K, is empty.

o If for some b € aV 0, the qualitative cell K, is contained in the
viability kernel Viab(K,), then a is the only successor of b.

Proof

1 — Tosay that some zy € K, does not belong to the viability
kernel of K, means that for some t > 0, s(t)zo ¢ K,. If this happens
for all zg € K, then obviously, a is a qualitative repellor.

2 — If K, C Viab(X,), then, for all zo € K, s(t)zo € K,
for all ¢t > 0. Hence a is the only successor of b. O

4 The QSIM Algorithm

We shall now distinguish the 2* “full qualitative states” a#0 from
the other qualitative states, the “transition states”.

When I is a non empty subset of N := { 1,...,m }, we associate
with a full state a#0 the transition state al defined by

I 0 ifiel
) a; 1fl¢1

What are the successors, if any, of a given transition state a!?

This question does not always receive an answer, since, starting
from some initial state z € K, there may exist two sequences t, > 0
and s, > 0 converging to 0+ such that z(t,) € K, and z(s,,) ¢ K,

We can exclude this pathological phenomenon in two instances.
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One obviously happens when either a or the transition state af
is an equilibrium, i.e., when

I'(a); =0 for i € I and I'(a); C {a;,0} for i ¢ I
This also happens in the following situation:

Lemma 4.1 Let a#0 be a full transition state. If I'(a)#0 (and thus,
is reduced to a point) then, for any transition state a!, there ezists
a unique successor b := ®(al)#0, i.e., for all initial states = in the
transition cell K, there ezists ta > 0 such that, for all t €]0,t;[, the
solution z(t) remains in the full qualitative cell Ky.

Proof — We consider an initial state z € K 1.

If i ¢ I, then the sign of g(z); is equal to a; # 0, and thus, there
exists n; > 0 such that the sign of g(2(t);) remains equal to a! = g;
when t € [0, 5.

If i € I, then g(z); = 0, and we know that the sign of the deriva-
d
tive Eg;(x(t))h:O = h;(z) is equal to I'(a); and is different from 0.

Hence there exists 7; > 0 such that the sign of h(z(2)); remains equal
to b; when t €]0, n:[, so that the sign of

5c(0) = [ nute(r))dr

remains equal to ['(a); on the interval ]0, 7;[.
Hence we have proved that there exists some 1 > 0 such that
z(t) € K, for t €]0,to[ where

b = I'(a); when i€1
T a when i¢ [

and where t3 := min;n; > 0. O

Definition 4.2 We shall say that the system (f, V) is “strictly fil-
terable” if and only if for all full state a € D(f, V)#0, either I'(a)#0
or a is a qualitative equilibrium or all the transition statesa’ (I # §)
are qualitative equilibria.

12



We deduce from Definition 4.2 and the above observations the
following consequence:

Theorem 4.3 Let us assume that f is continuously differentiable,
that the m functions V; are twice continuously differentiable around
the viability domain K and that the system (f, V) is “strictly filter-
able”. Let a € R™ be an initial full qualitative state.

Then, for any initial state = € K,, the sign vector

0:(t) = sm(S(V(S2(1))

is a solution to the QSIM algorithm defined in the following way:
There ezist a sequence of qualitative states ay satisfying

ap:=a & ary1 € P(ar V0O) (4.1)

and a sequence of landmarks to:=0< t; < ...< t, < ... such that

VtElt, tiri], a(t) = ax
4.2
{ a(tk+1) = ak A aks (4.2)

In other words, we know that the vector signs of the variations of
the observations of the solutions to differential equation (1.2) evolve
according the set-valued dynamical system (4.1) and stop when a;
is either a qualitative equilibrium or all its transition states a] are
qualitative equilibria.

Remark — The solutions to the QSIM algorithm (4.1) do not
necessarily represent the evolution of the vector signs of the variations
of the observations of a solution to the differential equation.

Further studies must bring answers allowing to delete impossible
transitions from one full qualitative cell K, to some of its transition
cells K ;.

This is the case of a qualitative equilibrium, for instance, since a
is the only successor of itself. O

Therefore, the QSIM algorithm requires the definition of the set-

valued map I’ : R™ ~ R™ by computing the signs of the m functions
h;(-) on the qualitative cells K¢ for all i € N and a € D(f, V)#0.
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If by doing so, we observe that the system is strictly filterable,
then we know that the set-valued dynamical system (4.1) contains
the evolutions of the vector signs of the m observations of solutions
to the differential equation (1.2).

5 Replicator Systems

We begin by studying the viability property of the probability sim-

plex
S"::{zeRil Zz;:l}
=1

This is the most important example, because, in many prob-
lems, it is too difficult to describe mathematically the state of the
system. Then, assuming there is a finite number n of states, one
rather study the evolution of their frequencies, probabilities, concen-
trations, mixed strategies (in games), etc.... instead of the evolution
of the state itself. We shall provide examples later in this section.

We refer to the first Chapter of VIABILITY THEORY for more
details about the replicator systems, which are studied in depth in
the book THE THEORY OF EVOLUTION AND DYNAMICAL SYSTEMS
by J. Hofbauer and K. Sigmund.

The contingent cone T'sn(z) to S™ at z € S™ is the cone of ele-
ments v € R" satisfying

Z vi=0 & v; >0 whenever z;=0 (5.1)

=1

(See Appendix A-7)

We shall investigate now how to make viable the evolution of a
system for which we know the growth rates g;(-) of the evolution
without constraints (also called “specific growth rates”):

Vi=1,...,n, z:t) = z;(1)g:(z(1))

There are no reasons? for the solutions to this system of differen-

2By Nagumo’s Theorem, the functions g; should be continuous and satisfy:

n

Yzest, Z:ﬁ:.‘y.‘(:t) =0

1=1

14



tial equations to be viable in the probability simplex.

But we can correct it by substracting to each initial growth
rate the common “feedback control i(:)” (also called “global flux”
in many applications) defined as the weighted mean of the specific
growth rates

Vzesh i(z) := szgj(z)
j=1

Indeed, the probability simplex S™ is obviously a viability domain
of the new dynamical system, called “replicator system” (or system
“under constant organization”):

Vi=1,...,n, i(t) =z;(t)(g:(z(t)) — @(z(2)))

= z,(1) (g;(z(t)) - i xj(t)gj(z(t)))
s
’ (5.2)

An equilibrium o of the replicator system (5.2) is a solution to

the system
Vi=1,...,n, o;(gi(e)-i(a))=0

(Such an equilibrium does exist, thanks to the Equilibrium Theo-
rem). These equations imply that either o; = 0 or gi(a) = 4(a) or
both, and that g;,(a) = @(a) holds true for at least one 9. We shall
say that an equilibrium a is non degenerate if

Vi=1,...,n, gi(a) = i(a) (5.3)

Equilibria a which are strongly positive (this means that «; > 0 for
all i = 1,...,n) are naturally non degenerate.
We associate? with any a € S™ the function V, defined on the

3The reason why we introduce this function is that  is the unique maximizer of
Va on the simplex S™. This follows from the convexity of the function ¢ := —log:
Setting 0log 0 = 0log oo = 0, we get

Xn:a;log:—:_ = Z a.'log—:—: Slog(z z;) <logl=10
i=1

a; >0 a; >0

15



simplex S™ by
Valz) := Hzf-'" = H z
=1 1€1a

where we set 00 :=1and I, :={i=1,...,n| o5 > 0}.
Let us denote by S7 the subsimplex of elements € §™ such that
z; > 0 if and only if ¢ € I.

Theorem 5.1 Let us consider n continuous growth rates g;. For

any initial state zo € S™, there ezists a solution to replicator system

(5.2) starting from zo and which is viable in the subsimplez S'=o.
The viable solutions satisfy

n
VE>0, Y gi(z(t)zi(t) > 0 (5.4)
i=1
and, whenever a € S™ is a nondegenerate equilibrium,

SVale(t) = ~Va(a(t) 3-(#i(1) -~ ai)(gi(2() = gia))  (5.5)

=1

Proof — We first observe that

Voe sk, Y zigiz) - i(z) = 0

ielzo

because, z; = 0 whenever i ¢ I, i.e., whenever z¢, = 0. Therefore,
the subsimplex S§%0 is a viability domain of the replicator system
(5.2).

Inequality (5.4) follows from Cauchy-Schwarz inequality because

(Z xi!]:’(ﬂ) < (E 37:') (Z -Tigi(x)) = Ex:'gi(x)z

so that

En:mlog zi < En:a.' log a;

i=1 =1

and thus, Va(z) € Vo(a) with equality if and only if z = o.
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We deduce formula (5.5) from
fVa(e() = Tier, 55 Vale()zi(1)

)T @ '<t) e '<t>

1€, =1 '

and from

St = 3 (s - (®)aa(1)
=1 N i=1

Then we take into account that a being a non degenerate equilibrium,
because inequality (5.3) implies that

Y (ai —zi(t))gi(e) = 0 O
=1

Remark — When the specific growth rates are derived from a
differentiable potential function U by

Vi=1,...,n, gi(z) := (9:1:,(1:)
condition (5.4) implies that
aUu
> — >
Vt>0, p (z(t)) > 0

because
d n
Z (l‘(t )zi(t) = D gilz(1))zi(t) 2 0
=1

Therefore, the potential function U does not decrease along the
viable solutions to the replicator system (5.2).

Furthermore, when this potential function U is homogeneous with
degree p, Euler’s formula implies that

i(z) = pU(<)

(because 3 i z; E—U(z) = pU(z)) so that in this case, the global
flux @(z(t)) also does not decrease along the viable solutions to the

replicator system (5.2).
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On the other hand, if we assume that the growth rates g; are

“decreasing” in the sense that

n

Ve,yeS8”, D (zi—ui)(gi(z)—gi(y)) < 0

=1
then inequality (5.5) implies that for any non degenerate equilibrium
a € 5",
av,
= >
7 (Z(1) 20
When g(z) := U'(z) is derived from a concave differentiable potential
U, it is decreasing so that, for a concave potential, both U(z(-)) and
Va(z(+)) are increasing. O

Vt>0,

Example: Replicator systems for constant growth rates.
The simplest example is the one where the specific growth rates
gi(+) = a; are constant. Hence we correct constant growth systems

i

z! = a;z; whose solutions are exponential zge®!, by the 0-order

replicator system
n
Vi=1,..,n 2i(t) = z(t)(ai~ Y a;z;(t))
J=1

whose solutions are given explicitly by:

Zo, ea,‘t

n a,t
EJ:] .T()J»e J

(and z;(t) = 0 whenever zg, = 0).

z;(t) = whenever o, > 0

Example: Replicator systems for linear growth rates.
The next class of examples is provided by linear growth rates

n
Vi=1,...,n, gi(z) := ) aijz;
i=1

Let A denote the matrix the entries of which are the above q;;’s.
Hence the global flux can be written

n
Vze s, i(z) = Z apzrr; = < Az, z >
k=1

18



Hence, first order replicator systems can be written?.

Vi= 1,...,mn, :t:-(t) = zi(t)(i a,'j.'tj(t) - i aklzk(t)zl(t))
1=1

k=1

Such systems have been investigated independently in

— population genetics (allele frequencies in a gene pool)

—  theory of prebiotic evolution of selfreplicating polymers
(concentrations of polynucleotides in a dialysis reactor)

— sociobiological studies of evolutionary stable traits of an-
imal behavior (distributions of behavioral phenotypes in a given
species)

— population ecology (densities of interacting species)

6 Qualitative Simulation of Replicator Sys-
tems

Qualitative analysis of replicator systems had been carried out by
Olivier Dordan, who designed a software which provides the tran-
sition matrix, qualitative equilibria and repellors of any first-order
replicator system. In the three dimensional case, the computer pro-
gram draws the qualitative cells in the two-dimensional simplex S3.

Let A denote the matrix the entries of which are a;;. First order
replicator systems can be written

Vi=1,...,n, zi(t) = z(t) (Xn: a;;z;(t) — zﬂ: aklzk(t)zl(t))
i=1

k=1
(6.1)
We infer that the boundaries of the qualitative cells are quadratic
manifolds, since they are given by the equations

n n
Vi=1,...,n, Za,'ja:j - Z apzk(t)e; = 0
i=1 k=1

When the matrix A is entered in the software, it computes the
qualitative cells (and thus, supplies all the landmarks), singles out

*Observe that if for each 1, all the a,; are equal to b;, we find 0-order replicator
systems
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the qualitative equilibria and furnishes symbolically the qualitative
transition map ®.
It also delivers IATgXreports such these ones:

Example 1 Let the matrix A involved in the replicator system
(6.1)

1.00 2.00 -1.00
.00 .00 -2.00
2.00 .00 1.00

A

Qualitative results

There are 2 nonempty
full” qualitative cells.

Computation of the qualitative system &

‘I)(_v ) +)
o(+,—,+)

The following qualitative set is a qualitative equilibrium

(_v R +)

Computation of the set-valued map T’

I(—,—+) = ({—}’{0}»{0})
r'o,-,+) = ({-1},{0},{0})
F(0,0,0) = ({O}v {0}’ {0})
F(+,—,+) = ({—},{@},{@})

Example 2 Let the matrix A involved in the replicator system
(6.1)

1.00 2.00 -1.00
A= 3.00 .00 -2.00
2.00 .00 1.00
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Figure 1: Qualitative Simulation of Replicator Systems # 1
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Example of qualitative cells of a replicator system for the matrix

1.00 2,00 -1.00
A= 00 .00 -2.00

2.00 .00 1.00
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Figure 2: Qualitative Simulation of Replicator Systems # 2
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Example of qualitative cells of a replicator system for the matrix

A=

1.00 200 -1.00
3.00 .00 -2.00
2.00 .00 1.00
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Qualitative results

There are 6 nonempty “full” qualitative cells.

Computation of the qualitative system ¢

[ Q(_’ T +)
&(+,—,+)
Q(—’ +, _)

Q('Jf" R _)
R Q(+’ +, —)

o(—,+,4) =

("a R +)
_’_’+)
(+’ +’ _)
_.’_’+)
(—’ +, —)
(+3 +, _)
(+’ +’_)

o

|

The following qualitative sets are qualitative equilibrium

{

_,_’+)
(+’ +, _)

Computation of the set-valued map T

T(—,—+)
I(—,0,+)
F(_v +, '—)
(-, +,0)
I(-,+,+)
r,-,+)
I'(0,0,0)

ro,+,-)
F(+’ R —)
F( ’ _’0)
I'(4+,-,4)
I'(+,0,-)
r(+’ +, "')

1V ¥ e [ O | R { A

({_’ 0}’ {_70}a {0})
({0}’ {“‘a 0}’ {0})

({O’ +}’ {0}’ {_’ 0})
({0}’ {O}s {—’ 0})

({0}’ {_’ O}’ {_’ 0})
({—a 0}’ {0}’ {0})
({0},{0},{0})
({0,+},{0},{0})
({O}a {07 +}’ {_’ D’ +})
({0}’ {D}’ {_1 0’ +})
({_’ 0}’ {0}’ {—v 0’ +})
({0},{0,+},{0})
({0,+},{0,+},{0})
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Figure 3: Qualitative Simulation of Replicator Systems # 3
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Examples of qualitative cells of replicator systems when the entry az; of the matrix

)

varies from O to 3. One can observe cells appearing one after the other and that the

-1.00
-2.00
1.00

1.00 2.00
.00
.00

az1
2.00

[

transition properties from on cell to the others are preserved.
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7 Nonemptiness and Singularity of Qualita-
tive Cells

The question we answer now is whether these qualitative cells are
non empty.

Theorem 7.1 Let us assume that f is continuously differentiable
and that the m functions V; are twice continuously differentiable
around the viability domain K. Let ¥ belong to the qualitative cell
Kqo. We posit the transversality condition:

¢'(Z2)Ck(z) - aRT = R™

Then the qualitative cell K, is nonempty and ¥ belongs to its closure.
In particular, if
g'(2)Ck(z) = R™

then the 3™ qualitative cells K, are nonempty. (We have a pre-
chaotic situation since every qualitative behavior can be implemented
as an initial qualitative state.)

Proof — We apply the Constrained Inverse Function Theorem
(see Theorem 4.3.1 of SET-VALUED ANALYSIS) to the map (z,y) —
g(z) —y from X x Y to Y restricted to the closed subset i x aRT
at the point (z,0). Its Clarke tangent cone is equal to the product
Ck(Z) x aRY since

CaR;"(O) = aRT-;-l

Therefore, we know that there exists ¢ > 0 such that, for all z €
g[~1,41]™, there exist an element z € K and an element y € aR7
satisfying g(z)—y = z and ||z —z||+||y|| < !||z||- Taking in particular
z; = aie, we see that g(z); = a;e + y; and thus, that the sign of g(z);
is equal to a; for all ¢ = 1,...,m. Hence z belongs to K, and
|z —z|| Lle. O

Let T belong to Ky. We shall say that the qualitative cell K, is
“singular” at Z if Z is locally the only point of the qualitative cell
K, i.e., if there exists a neighborhood N(Z) of Z such that:

Vee N@)NK, ¢ #%, g(z) ¢ aRT
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Theorem 7.2 Let us assume that f is continuously differentiable
and that the m functions V; are twice continuously differentiable
around the viability domain K. Let T belong to the qualitative cell
Ko.
We posit the following assumption:

Tk(z)N (¢'(2)"}(aRT)) = 0

Then the qualitative cell K, is singular at z.

Proof — Assume the contrary: for all n > 0, there exists
z, € KNB(Z,1/n),z, # Z such that g(z,) does belong to aRP. Let
us set h, := ||z, —Z|| > 0, which converges to 0 and v, := || Z=Z|l.

Since v, belongs to the unit ball, which is compact, a subsequence
(again denoted) v, converges to some element v of the unit ball.
This limit v belongs also to the contingent cone Tk (Z) because, for
alln > 0, Z + hpv, = z,, belongs to K.

Finally, since g(Z + hnv,) = g(zn) € aRT for all n > 0 and
g(z) = 0, we infer that the limit ¢’(Z)v of the difference quotients
M}%b—g@l € aR7T belongs to aR7'. Hence we have proved the
existence of a non zero element

v € Tk(2)N (¢'(2))7}(aRY)

a contradiction of the assumption. O

8 General Qualitative Cells

Let us consider the case when K is covered by a finite family {K,},¢ 4
of arbitrary closed “qualitative cells” K, C K with nonempty inte-
rior:
K = |J K.
a€A

Let f : K — X be a continuous function with linear growth
enjoying the uniqueness property. We denote by s¢(-)z the solution
to the differential equation z’ = f(z) starting at z when t = 0.

It is possible to investigate the qualitative behavior of the system
by introducing the following tools:
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8.1 Characterization of successors

We denote by .
K := X\Int(K) = X\K

the complement of the interior of K and by
0K = EnK

the boundary of K. We observe that/{( is the closure of its interior
if and only if X\ K is the interior of K.
We introduce the Dubovitsky-Miliutin cone defined by

Definition 8.1 The Dubovitsky-Miliutin tangent cone Dk (z) to K
is defined by:

v € Dg(z) if and only if
3 >0, 3a>0 such that z+])0,a|(v+eB) C K

Lemma 8.2 For any z in the boundary of K, the Dubovitsky-Miliutin
cone Dk(z) to K at z is the complement of the contingent cone
Tx\k(z) to the complement X\K of K at z € 0K:

Vz€dK, Dg(z) = X\ Tx\k(z)

We need the following characterization of the contingent cone to
the boundary:

Theorem 8.3 (Quincampoix) Let K be a closed subset of a normed
space and K denote the closure of its complement. Then

VzedK, Tsar(z) = Tr(z)N TI?(‘T)
so that the whole space can be partitioned in the following way:
VzedK, Dpygy(z) U Dx\k(z) U Tox(z) = X
Proof — If the interior of K is empty, §K = K, so that the formula
holds true. Assume that the interior of K is not empty and take any
z € OK. Since inclusion Tpx(z) C Tk (z) N Tz(z) is obviously true, we

have to prove that any u in the intersection 7Tk (:;) NTx(z) is contingent to
the boundary 8K at z.
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Indeed, there exist sequences k, > 0 and /,, > 0 converging to 0+ and
sequences v, € X and w, € X converging to u such that

V>0, z+kivn €K & o4 lw, €K
We shall prove that there exists A, € [0, 1] such that, setting
hy = Apkn + (1~ M), € [min(k,,, 1), max(k,, 1,)]
and

Akt + (1= An)ln)wy,
T T Mk 4 (1= An)in

we have
Vn>0, z+4h,u, €K

Indeed, we can take A, either 0 or 1 when either z + kv, or z 4+ [, w,
belongs to the boundary. If not, z + kpv, € Int(K) and z + l,w, €
X\ K. Since the interval [0, 1] is connected, it cannot be covered by the two
nonempty disjoint open subsets

Qp = {A€[0,1] ]|z + Aenvs + (1 = Dlpw, € Int(K)}

and
Q. = {A€[0,1]]|z+ Akpvn + (1 - Dlwn € X\K}

Then there exists A, € [0,1]\(Q24 US_) so that
24 Ankavn + (1 = AMpw, =2+ hpu, € 0K

Since h, > 0 converges to 0+ and u, converges to u, we infer that u belongs
to the contingent cone to §K.

This formula and Lemma 8.2 imply the decomposition formula. O

We then can split the boundary of 0K into three areas depending
on f:
[ K& = {2€0K | f(z) € Dpyy(2) }
the inward area

¢ K& = {2€0K | f(z) € Dx\g(z)}
the outward area

| Ko ={z€0K | f(z) € Tor(c) #0}
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Proposition 8.4 1. — Wheneverz € K, the solution starting
at z must enter the interior of K on some open time interval 0, T,
and whenever x € K-, the solution starting at * must leave the
subset K on some ]0,T.

2. — Ifz€ Ky, ifoKN(z+rB)C K¢ for somer > 0 and
if f is Lipschitz around z, then the solution starting at z remains in
the boundary 0K on some [0, T].

Proof
1. — Let z € K., for instance, Then we shall prove that there
exist p, > 0 and 7, > 0 such that

Vtel[0,T;], d(ss(t)z,0K) > pst

Indeed, since f(z) € Dg(z), we associate

pr = liminf ’ (x * hf(:r),f)

oot 2h >0

This implies that there exists 7, > 0 such that
Vhe€o,r], diz+ hf(z),K) > 2p.h
and thus, that
Vh€l0,t;], d(z+h(f(z)+ peB),K) > ph

Let us consider now the solution s;(-)z. Since f is continuous,
we know that f(z) C f(z)+ p.B whenever ||z - z|| < 7, for some 7.

Since f is bounded by a constant ¢ > 0 on the ball B(z,7;), we
infer that

e -2l < [ 17E)lds < et <ne

when t < T} := min{t;, n./c}. In this case, we observe that z(t1)—z €
t(f(z) + pzB), so that for any t €]0,T,],

d(.’B(t),I?) = d(:c-i-x(t)—z,f(\) 2 d(x'*'t(f(z)'*'PIB),j(\) > pgt
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In the same way, we deduce that when z € K, the solution s(-)z
belongs to X\ K for t €]0,T].

2. — Takenowz € K.

We set g(t) := dak(z(t)). Since it is Lipschitz, it is differentiable
almost everywhere. Let ¢ be such that g’(?) exists. There exists £(h)
converging to 0 with A such that

2(t+h) = z(1) + hf(2(t)) + he(h)

and

(1) = hli’& dok(z(t) + hz'(t) +hhe(h)) - dak(2())

Lemma 5.1.2 of VIABILITY THEORY implies that
g'(t) < d(2'(t), Tox(MMak (2(1))))
We denote by A > 0 the Lipschitz constant of f and we choose y
in Mpk(z(t)). We deduce that

d(z'(t), Tox(Tlak (2(t)))) < d(z'(t), Tox(y)) < llz'(t) — FW)II
(since f(y) € Tar(y) )

IN

|2'(t) — f(z(t)]| + My — =(¢)|| (since f is Lipschitz)

0+ AMak(2(2)) = Ag(1)
Then g is a solution to
for almost all t € [0,T], ¢'(t) < Ag(t) & g¢(0)=0

We deduce that g(t) = 0 for all ¢ € [0,T], and thus, that z(t) is
viable in 0K on [0,T]. O

As a consequence, we obtain a criterion for a cell to be a successor
of another one:

Proposition 8.5 If KyN K. C K. o, then the qualitative cell K, is

a successor of Ky (in the sense that for any z € K,N K., there ezists

7 such that the solution s(t)z remains in K, for t € [0,7]).
Conversely, if the qualitative cell K. is a successor of Ky, then

I(ancCKctch,&
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8.2 Hitting and Exit Tubes

So far, we have defined the successors of the qualitative cells by the
behavior of the dynamical systems on the boundary of the cells.
We shall now investigate what happens to the solutions starting
from the interior of the qualitative cells.
For that purpose, we need to introduce the hitting and exit func-
tionals on a continuous function z(-) € (0, o0; X).

Definition 8.8 Let M C X be a closed subset and z(-) € C(0,00; X)
be a continuous function. We denote by

wnm :C(0,00; X) — Ry U {400}

the hitting functional associating with z(-) its hitting time wps(2(+))
defined by

wm(z(+)) = inf {t € [0, +00[ | z(t) € M}

The function @b, : K — R, U {400} defined by

@i () = wm(ss()z)

is called the hitting function. In the same way, when K C X is a
closed subset, the functional 7 : C(0,00; X) — R4 U {+0} associ-
ating with z(-) its exit time Tk (z(-)) defined by

7k (2(-)) = inf{t € [0, 00 | z(t) ¢ K}
is called the exit functional. the function T}’{ : K » Ry U {400}

defined by l!

Tk (2) = Tk (s4()7)
the exit function.
We then note that
wip(2() < 7x(2(-)
that

Vte[0,mp(z(-), z(t) € Int(K) & Vi€ [0,7k(z(-))], z(t) € K
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and that, when @wgp(z(-)) (respectively 7 (z(-))) is finite,
(wgp(z(-)) € 0K & z(rk(z(-))) € OK respectively

Remark also that @wgz(z(+)) = 0 when the interior of K is empty.

We continue to use the convention inf {0} := +o0, so that wz(z(-))
is infinite means that z(¢) € Int(K) for all ¢ € [0,4o00[ and that
Tk (z(+)) = + 00 means that z(¢) € K for all t > 0.

Lemma 8.7 Let K C X be a closed subset. The functional Tk
and the ezit function ‘r,u( are upper semicontinuous when C(0,00; X)
s supplied with the pointwise convergence topology. The functional
wpy and the hitting function wS’W are lower semicontinuous when

C(0,00; X) is supplied with the compact convergence topology.

Proof — By the Maximum Theorem, the upper semicontinuity
of rx follows from the lower semicontinuity of the set-valued map

z(-) ~ Z(z(:)) C Ry where
E(z(+)) = {t€[0,00[ | 2(2) ¢ K}
since Tk (z(-)) = inf{=(z(-))}.

Indeed, for any t € Z(z(-)) and any sequence z,(-) converging
pointwise to z(-), we see that t € Z(z,(-)) for n large enough because
z,(1) belongs to the open set X\ K (since z(t) € X\K.)

Let us check now that the function z)s is lower semicontinuous
for the compact convergence topology: take any T > 0 and any
sequence z(-) satisfying was(zn(-)) < T converging to z(-) uniformly
over compact subsets and show that wps(z(:)) < T. Let us introduce
the subsets

Or:(z(-)) := {t €[0,T]|2(t) ¢ Int(K)}

By construction, for any T’ > T, the subsets O7/(z,(:)) are not
empty. We also observe that the graph of the set-valued map z(-) ~
Or1:(z(+)) is closed in the Banach space C(0,T”; X) x [0,7"]: Indeed,
if (zp(-),tn) € Graph(Op/) converges to (z(:),t), then z,(t,) € M
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converges to z(t), which thus belongs to the closed subset M, so
that (z(-),t) € Graph(©7). Taking its values in the compact in-
terval [0,7"], the set-valued map z(-) ~ Op/(z(:)) is actually up-
per semicontinuous. Therefore, for any given € > 0, Op/(zn(-)) C
O (a()) + [—¢, +e].

We thus infer that wp(2()) < wpm(za(-)) + € < T + € for every
e>0. O

We are thus led to single out the following subsets:

Definition 8.8 We associate with any T > 0 the subsets

i) Hity(M,T) := {s € X |mh(a) < T}

(8.1)
i) Exity(K,T) := {z€ K|rk(z) > T}

We shall say that the set-valued map T ~» Hity(M,T) is the hitting
tube and that the set-valued map T ~ Exity(K,T) is the exit tube.

Lemma8.7 implies that the graphs of the hitting and exit tubes are
closed.

Proposition 8.9 Let K C X be a closed subset.

Then Hit (M, T) is the closed subset of initial states « such that
closed subset M is reached before T by the solution s¢(-)z to the
differential equation starting at z.

The closed subset Exity(K,T) is the subset of initial states z € K
such that the solution s¢(-)z to the differential equation starting at «
remains in K for all t € [0,T]. Actually, such a solution satisfies

Vte[0,T], sg(t)z € Exity(K,T —1t)
In particular, for T = + o0,

Viabs(K) = Exit;(K,+00) = (] Exits(K,T)
T>0
The subset
Entry(K) = |J Bxity(K,T) := {z € K | k(z) > 0}
T>0

is the subset of elements ¢ € K from which the solution is viable in
K on some nonempty interval [0,T).
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We observe that if Ty < T3,
0K = Hity(K,0) C Hity(K,T1) C Hity(K,T3) C .
and

Viabs(K) C Exits(K,Tz) C Exity(K,T;) C ... C Entrp(K) C K

Proof — Since the subset of initial states z such that the
subset M is reached before T' by the solution z(-) to the differential
equation starting at z is obviously contained in Hity(M,T'), consider
an element z € Hit;(M,T) and prove that it satisfies the above
property.

By definition of the hitting functional, we can associate a time
te < T + ¢ such that z(t.) € M.

A subsequence (again denoted by) t. converges to t € [0,T + ¢,
so that the limit z(¢) of z(¢.) € M belongs to the closed subset M.
This implies that was(sf(-)z) < T + ¢ for every £ > 0.

In the same way, let T > 0 be finite or infinite. We observe that
the subset of initial states z € K such that a solution z(-) to the
differential equation starting at z remains in K for all ¢t € [0,T7 is
contained in Exity(K,T), so that it is enough to prove that for any
z € Exity(K,T), the solution s;(:)z satisfies the above property.

By definition of the exit function, we know that z(t) € K for any
t < tg(sf(-)z) and thus forany t < 7. O

We deduce from Proposition 8.9 a characterization of the succes-
sors of a qualitative cell:

Proposition 8.10 A qualitative cell K. is a successor of Ky if and
only if
Kyn K. C Entrg(K.)

Let us mention also the following observations;,

Proposition 8.11 Let K, C K be a closed qualitative cell.
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The complement K, \Exits(K,,T) is equal to the set
{z€ K, | 3t€[0,T] such that ss(t)z ¢ K,}

of initial states z from which the solution s¢(-)x leaves K, at some
t<T.

Consequently, if M C K,\Viabs(K,) is compact, there ezists
T > 0 such that, for every z € M, there ezists t € [0,T] such that
sf(t)r ¢ K.

In particular, if K, is a compact repeller, there ezists T < +o00
such that for every ¢ € K,, sy(t)z ¢ K, for somet € [0,T].

Proposition 8.9 implies also the following result:

Proposition 8.12 Let us constider qualitative cells K, and K. Then
K, NHit(K, T)

is the subset of elements of the qualitative cell K, which reach the
qualitative cell Ky before time T and

K. N U Hit( Ky, T)
T>0

is the subset of elements of the qualitative cell K, which reach the
qualitative cell Ky in finite time.

Lemma 8.13 Let us assume that the interior of each qualitative cell
is not empty, that they are equal to the closure of their interior and
that

Vace .A, Ka = U Kb

beA
Then
- b _ . b
Vo€ Ko, whe(a) = min ok, ()

Therefore, we can cover the qualitative cell K, by its viability
kernel and the closed subcells

Kb = {z e K,| T}'(a(-’t) > wk, ()}
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of elements of K, from which the solution reaches K before leaving
K,.

Indeed, either T}’ca(:c) is infinite, and z belongs to the viability
kernel of the qualitative cell, or it is finite, and thus, there exists at
least one qualitative cell K}, such that 'r}i(a(z) > w;’b(z), i.e., such
that z € K°.

9 Sufficient Conditions for Chaos

Let f : K — X be a continuous function with linear growth enjoying
the uniqueness property. We denote by s(-)z the solution to the
differential equation z’ = f(z) starting at z when ¢ = 0 and by
L(s(-)z) its limit set.

Theorem 9.1 Let us assume that a closed viability domain K of f
is covered by a family of compact subsets K, (a € A) such that the
following “controllability assumption”

Vae A,Vye K, 3z € K,, t € [0,00] such that s(t)z =1y

holds true.

Then, for any sequence ag,dy,...,an, ..., there exists at least an
initial state ¢ € K,, and a nondecreasing sequence of elements t €
[0, 00] such that

i) stz € K,; if t/ < oo
W) L(s()z)NK,; #0 if ¢/ =400

The ti ’s are finite when we strengthen controllability assumption
by assuming that there exists T €0, oo such that

Vae AVy€ K, 3z€ K,,t€[0,T] such that s(t)r =y

Proof — Let M C K be any closed subset. We associate with
any z € K the number w)s := inf,(s)zen t, which is nonnegative and
finite thanks to the “controllability assumption” . We associate with
the sequence ag, a1, . . . the subsets M, q,...q, defined by induction by
M, = K,,

M, 1o, = {z €K, , |s(tm,, )z € Ks,}
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and, for j =n—-2,...,0, by:
Maja;p;an = {2 € K | S(tMaJ-+1...u,. )t € Mo, a0}

They are nonempty closed subsets and form a nomincreasing fam-
ily. Since K,, is compact, the intersection Ko := (Vnzo Maga;--an 18
therefore nonempty.

“Let us take an initial state z in Ko and fix n. We set t] :=
Y k=1 PM,, a, for any j = 1,...,n. We see at once that s(ti)z €
M,;..q, C K.

On the other hand, we observe that wps, < @was, whenever M; C
M;. Since Ma,.ap,; C Ma,..a,, we deduce that ¢}, < ¢] ., for any
i=1,...,n. '

Therefore, j being fixed, the nondecreasing sequence t2, (for n >
j) converges to some ! € [0, 00]. Furthermore, the sequence #/ is not
decreasing and, if for some index J, t/~! < 0o and t7 = oo, all the
t’’s are equal to +oo for j > J.

Since s(t}) belongs to K, for all n > j, we infer that s(t/)z
belongs to K, if j < J and that, for j > J, the intersection L(s(-)z)N
K,; is not empty.

If we assume that the stronger assumption holds true, we know
that the ¢} remain in the interval [0,;T], so that the limits ¢/ are
finite. O
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