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FOREWORD 

Systems of first-order partial differential inclusions - solutions of which are 
feedbacks governing viable trajectories of control systems - are derived. A vari- 
ational principle and an existence theorem of a (single-valued contingent) solution 
to  such partial differential inclusions are stated. To prove such theorems, tools of 
set-valued analysis and tricks taken from viability theory are surveyed. 

This paper is the text of a plenary conference to  the World Congress on Nonlinear 
Analysis held a t  Tampa, Florida, August 19-26, 1992. 



Set-Valued Analysis, Viability Theory and 
Partial Differential Inclusions 

Jean-Pierre Aubin & HClGne F'rankowska 

1 Introduction 

We explain how systems of first-order partial differential inclusions arise in 
the case of the simplest economic example one can think of: one consumer, 
one commodity. 

Let K := [0, b] the subset of a scarce commodity x. Assume that  the 
consumption rate of a consumer is equal to  a > 0, so that ,  without any 
further restriction, its exponential consumption will leave the viability subset 
[O,b]. Hence its consumption is slowed down by a nonnegative price which 
is regarded as a control. We assume that a bound c is set to  inflation. In 
summary, the consumption and the price evolve according to  the simple 
system of differential inclusions: 

(1) 
i) for almost all t 2 0, xl(t) = ax(t)  - u(t) 
i i )  and - c 5 ul(t) < c 

subjected to the viability constraint 

A subregulation map R : [0, b] - R+ for this problem is a set-valued 
map R satisfying the viability property: from any xo E Dom(R), uo E R(xo), 
starts a solution (x(.), u(-)) to the above control system satisfying 

By using tools of set-valued analysis, and specifically, the concept of contin- 
gent derivative of a set-valued map, we shall see that  such subregulation 
maps are solutions to  the first-order partial differential inclusion 

In particular, single-valued solutions T to 



regarded as feed backs in control theory or planning procedures in economics, 
are of special interest. In this example, we can exhibit (at least) two of 
them. 

For that  purpose, let us introduce the functions p! and p; defined on 

[O, 4 by 
uZ ( i )  p:(u) := 5(e-'"Ic - 1 + :u) ~j - 2c 

I i i )  p!(u) := -cea(u-ab)lc/a2 + u / a  + e/a2 

and the functions r! and rk defined on [0, b] by 

i )  rk (x )  = u if and only if x = pL(u) 

i i)  r ! (x )  = 0 if x E [0, pL(0)] ( p ! ( ~ )  = s ( 1  - e-a2b/c 1) 

[ iii) r i ( x )  = u if and only if r = p!(u) when x E [p: (0) ,  b] 

Then one can show that  both rk and r! are such single-valued solutions to  

(3) .  
But, instead of looking for examples of solutions, one can look for the 

largest1 subregulation map, which can be shown to  exist and computed in 
this particular example: The subregulation map RC defined by 

is the largest subregulation map. 
Indeed, set ub(t) := uo + ct and u b ( t )  := uo - ct and denote by x u ( - )  and 

x b ( - )  the solutions starting a t  zo to differential equations x' = ax - un(t) and 
x' = ax - u b ( t )  respectively. Then any solution ( x ( . ) ,  u ( - ) )  t o  the system (1) 
satisfies ub(.)  < u( . )  < u f ( . )  and thus, xu(.) 5 x(.) < x b ( - )  because 

1.) We first observe that  the equations of the curves t H (xb( t ) ,  ub(t))  
and t H ( x b ( t ) ,  u b ( t ) )  passing through ( x o ,  uo) are solutions to the differential 
equations 

1 b l b  
dp! = --(aP! - u)du & dpc = --(apc - u)du 

C 

'in the sense that every subregulation map R satisfies Graph(R) C Graph(RC). 



the solutions of which are 

1 i i )  &u) = ea(u~-u)/c(zO - uo/a + c/a2) + u/a  - c/a2 

Let pb, be the solution passing through (O,O), which is equal to  Pk(u) = 
+(e-au/c - 1 + :u) and P!(u) = - ~ e ~ ( " - " ~ ) / ~ / a ~  + u/a + c/a2 be the solution 
passing through the pair (ab, b). 

2.) If uo > rL(zo), then any solution (x(.), u(.)) starting from (zO, uO) 
satisfies 

z( t )  5 zb( t )  = p:(ub(t)) < pi(u(t)) 

because pL(.) is nondecreasing. Hence, when z ( t l )  = 0, we deduce that 
u(t l)  > 0, SO that such solution is not viable. 

If 0 5 uo < r!(z0), any solution (z(.), u(.)) satisfies inequalities 

Therefore, when x(t l)  = b for some time t l ,  its velocity z f ( t l )  = ab - u( t l )  
is positive, so that the solution is not viable. 

3.) It remains to show that  from any initial pair (zo, uo) where uo E 
RC(zo) starts a t  least a solution. Actually, we shall construct a heavy so- 
lution, i.e., a solution for which the prices evolve with minimal velocity. 
Assume for instance that  uo < azo. 

Since we want to  choose the price velocity with minimal norm, we take 
u'(t) = 0 as long as the solution z(.) to  the differential equation z' = ax - uo 
yields a consumption z( t )  < P!(uO). When for some time t l ,  the consump- 
tion z( t l )  = &uo), i t  has to  be slowed down. Otherwise (z(t l  + E ) ,  uO) 
will be below the curve p! and we mentioned that  in this case, any solution 
starting from this situation will eventually cease to be viable. Therefore, 
prices should increase to  slow down the consumption growth. The idea is 
to  take the smallest velocity u' such that  the vector (zf(t l) ,  u') takes the 
state inside the graph of Rc: they are the velocities u' 2 z ' ( t l ) /p~(uo) .  By 
construction, it is achieved by the velocity of xfl(.), which is the highest one 
allowed to increase prices. Therefore, by taking 

and u(t) := uo+c(t - t l )  f o r t  E [ t l , t l  +(ab-uo)/c], we get a solution which 
ranges over the curve zn( t )  = P!(uu(t)). According to  the above differential 



equation, we see that z(t)  increases to  b where it arrives with velocity 0 and 
the price increases linearly until it  arrives a t  the equilibrium price ab. Since 
(blab) is an equilibrium, the heavy solution stays there: we take z( t )  = b 
and u(t) = ab when t 2 t l  + uo/c. 

One last remark: Quincampoix proved in [38,4:L] the semipermeability 
property of the part of the boundary of the graph of RC contained in the 
interior of [0, b] x R+: The solutions which reach this boundary cannot come 
back to i t ,  and have to  remain on its boundary. 

Looking for both single-valued and set-valued solutions to  systems of 
first-order partial differential inclusions is then the topic of this paper. We 
present it in the framework of control of systems under state constraints, 
which provided the motivation for studying this class of problems in the first 
place. 

We shall review 

1. The Tools coming from Set-Valued Analysis 

2. The Tricks taken from Viability Theory 

3. The Theorems dealing with single-valued and set-valued solutions 
t o  systems of first-order partial differential inclusions 

2 The Tools 

2.1 Upper Limits of Sets 

In this paper, X, Y, Z denote finite dimensional vector-spaces. The unit 
ball is denoted by B (or Bx if the space must be mentioned). Let Ii c X ,  
we denote by 

dK(x) := d(x, K)  := inf 112 - yll 
Y€K 

the distance from x to K, where we set d(x,0) := +oo. Upper Limits of 
sets have been introduced by PainlevC and popularized by Kuratowski in 
his famous book Topologie, so that they are often called Kuratowski upper 
limits of sequences of sets. 

Let (Kn)nEN be a sequence of subsets of X .  W e  say that the subset 

Limsupn+, Kn := {X E X I lim n+m inf d ( ~ ,  Kn) = 0) 



is t he  upper limit o f  the sequence Kn2 . 
Upper limits are obviously closed and Limsupn,,Kn is the  set o f  cluster 

points o f  sequences x, E K,, i.e., o f  l im i ts  o f  subsequences xnt E h',t. 

2.2 Contingent Cones 

Let K c X be a subset o f  a normed vector space X and x E h'. T h e  

contingent3 cone TK(x) is the  upper limit o f  the  subsets ( K  - x) /h  

so that  TK(x) is always a closed cone of "tangent directions" (which is 
convex when K is convex or, more generally, when the contingent cone is 
lower semicontinuous, a vector space when K is a smooth manifold). 

2.3 Graphical Convergence of Maps 

Let us consider a sequence o f  set-valued maps Fn : X -c, Y. T h e  set-valued 
m a p  FU := ~iml,,,~, f r o m  X t o  Y defined by 

is called the (graphical) upper limit o f  the set-valued maps F,. Even for 
single-valued maps, this is a weaker convergence than the pointwise con- 
vergence: if f, : X H Y converges pointwise t o  f ,  then, for every x € X ,  
f (x) E fn(x). If the sequence is equicontinuous, then fn(x) = { f (x)). 

The following result justifies the introduction of this concept of conver- 
gence: 

Theorem 2.1 (Convergence Theorem) Let F, be a sequence of nontriv- 
ial set-valued maps from K c X to Y with uniform linear growth: there 
exists c > 0 such that, for any n 2 0, 

'and that the subset 

is its lower limit. We shall use only upper limits in this paper, but symmetric definitions 
based on lower limits can be introduced as well. 

3introduced by G. Bouligand in the 30's. 



Let us consider measurable functions x, and y, from R to X and Y re- 
spectively, satisfying y, (w) E Fm (x,(w)) for almost all w E R. 

If 

I i, x,(.) converges almost everywhere t o  a function x(.) 

I ii) y,(-) E L1(R; Y)  and converges weakly in L1(R; Y)  

( to a function y(.) E L1(R;Y) 

then for almost all w E 51, y(w) E T5Fn(x(w)). 

2.4 Contingent Derivatives of Maps 

We introduce the differential quotients 

of a set-valued map F : X ?-. Y at  (x, y) E Graph(F). 
The contingent derivative DF(x ,  y) of F at (x, y) E Graph(F) is the graph- 

ical upper limit of differential quotients: 

We deduce the formula 

Graph(DF(x, Y)) = T G ~ ~ ~ ~ ( F ) ( ~ ,  Y)  

Indeed, we know that the contingent cone 

is the upper limit of the differential quotients  graph(^)-(=,y) 
h when h -t O + .  

I t  is enough to  observe that 

and to  take the upper limit t o  conclude. 



2.5 Weak Derivatives: Distributional and Contingent Deriva- 
t ives 

Let us consider a single-valued map f : X H Y and its differential quotients 

V h f ( ~ ) ( v )  := (' + hV)  h - ('). The function f is Giteaux differentiable 
if these differential quotients converge for the pointwise convergence topol- 
ogy. This strong requirement can be weakened in (at least) two ways, each 
way sacrificing different groups of properties of the usual derivatives. 

The distributional derivative is the limit of the difference-quotients 

x H Vh f (z)(v) := f ( x  + hv) - f ( x )  (when h 3 0) in the space of dis- 
h 

tributions, and the limit is a vectorial distribution D, f E V1(X; Y) (and 
no longer necessarily a single-valued function). 

Furthermore, one can define differential quotients of any vectorial dis- 
tribution T c V1(X;Y) and define the derivative of a distribution as 
their limit (when h + 0) in the space of distributions. 

The contingent derivative is the upper graphical limit of the difference- 

quotients v H Vh f ( x ) ( v )  := f (x  + hy)-  f ( x )  (when h - 0+), and 
I L  

the limit is a set-valued map D f (x) : X 2~ Y (and no longer necessarily 
a single-valued function). 

Furthermore, we have defined differential quotients of any set-valued 
map F : X 2~ Y and defined the contingent derivative of a set-valued 
map as their limit the upper graphical limit (when h + 0+). 

In both cases, the approaches are similar: they use (different) conver- 
gences weaker than the pointwise convergence for increasing the possibility for 
the difference-quotients to  converge, a t  the price of losing some properties 
by passing t o  these weaker limits (the pointwise character for distributional 
derivatives, the linearity of the differential operator for graphical deriva- 
tives). 

2.6 Epilimits 

For reasons motivated both by optimization theory and Lyapunov stability, 
we involve the order relation on R by characterizing extended functions 
V : X H R U {f w} by their epigraphs instead of their graphs. 



The epigraph of the lower epilimit 

of a sequence of  extended functions Vn : X H R U { t o o )  is the upper limit of 
the epigraphs: 

One can check that 

2.7 Contingent Epiderivatives 

Let V : X H R U {f oo) be a nontrivial extended function and x belong to  
its domain. 

We associate with it the differential quotients 

V(x t hu) - V(x) 
?.t VhV(x)(u) := 

h 

The contingent epiderivative DtV(x)  of V at x E Dom(V) is the lower epilirnit 

of its differential quotients: 

The contingent cone to the epigraph of V at (x ,V(x))  is the epigraph of 
contingent epiderivative: 

Indeed, we know that the contingent cone 

is the upper limit of the differential quotients & P ( ~ )  - ('7 V(x)) when h + 

h 
O+. It is enough t o  observe that 

to  conclude. 
We refer to  Set-Valued Analysis ([14]) for further details on these concepts 

and their properties. 



3 The Tricks 

Let us consider a control system (U, f )  defined by 

a feedback set-valued map U : X - Z 

a map f : Graph(U) H X describing the dynamics of the system 

governing the evolution 

(5) 
i )  for almost all t ,  xf(t) = f (x(t), u(t)) 
i i)  where u(t) E U(x(t)) 

Let us remark that when we take for controls the velocities, i.e., U(x) := 
F(x)  and f (x, u) := u, we find the usual differential inclusion x' E F(x) .  
Conversely, the above system is the differential inclusion x' E F (x )  in dis- 
guise where F(x)  := f (x, U(x)). 

We say that  a closed subset K C Dom(U) is viable under (U, f )  if from 
any initial state xo E K starts a t  least one solution on [0, co[ to  the control 
system (5) viable in K (in the sense that for all t > 0, x(t) E K) .  

We associate with any subset K c Dom(U) the regulation m a p  RK : 
K --t Z defined by 

where TK(x) is the contingent cone to K at  x E K. 
We say that  K is a viability domain o f  (U, f )  if and only if t h e  regulation 

m a p  RK is strict (has nonempty values). 
The Viability Theorem holds true for the class of Marchaud systems, 

which satisfy the following conditions: 

i )  Graph(U) is closed 
ii) f is continuous 
i i i)  the velocity subsets F (x )  := f (x, U(x)) are convex 
iv) f and U have linear growth 

Theorem 3.1 (Viabi l i ty  Theorem) Let us consider a Marchaud control 
system (U, f ) .  Then a closed subset K c Dom(U) is viable under (U, f )  if 
and only if it is a viability domain of (U, f ) .  

Furthermore, any "open loop" control u(.) regulating a viable solution 
x(-)  in the sense that 

for almost all t ,  ~ ' ( t )  = f ( ~ ( t ) ,  ~ ( t ) )  



obeys the regulation law 

(7) for almost all t ,  u ( t )  E R K ( x ( t ) )  

Otherwise, i f  K is not a viability domain of the control system ( U ,  f ) ,  
there exists a largest closed viability domain of (U ,  f )  contained in  h' (possibly 
empty), denoted Viab(h7), called the viability kernel of K ,  and equal to the 
set of states xo E K from which starts a solution of the control system viable 
in  K .  

Finally, the upper limit of closed viability domains K n  of control systems 
(Un,  f,) satisfying uniform linear growth is a viability domain of ~ F u ( x ( - ) ) ,  
where F M  is the graphical upper limit of the maps defined by F,(x) := 

fn(x7 Un(x ) ) .  

What we are aiming a t ,  now, are closed loop or feedback controls T ,  which 
are single-valued selections of the regulation map R K  : V x E K ,  T ( X )  E 
R K ( x ) .  

One can naturally use selection procedures of the regulation map. (See 
Chapter 6 of Viability Theory, [5, Aubin]). This raises some problems because 
the graph of the regulation map is not closed whenever inequality constraints 
are involved in the definition of K . )  

The idea we propose here is t o  find systems of first-order partial differ- 
ential inclusions the solutions of which are such feedbacks. 

The trick is then to  set a bound t o  the velocities of the controls: we asso- 
ciate with the control system and with any nonnegative continuous function 
( 2 ,  u )  + ~ ( x ,  U )  with linear growth4 the system of differential inclusions 

( 8 )  
i )  ~ ' ( t )  = f ( x ( t > ,  4 1 ) )  
ii) ~ ' ( t )  E ~ ( x ( t ) ,  u ( t ) ) B  

and we regard the condition u ( t )  E U ( x ( t ) )  as a new viability constraint 
defined on the state-control pairs by: 

Observe that  any solution ( x ( . ) ,  u ( . ) )  to  ( 8 )  viable in Graph(U) is a an 
absolutely continuous solution to the control system ( 5 ) .  
- - - - -  - 

'which can be a constant p,  or the function (z, u) -r c11uJ(, or the function (z,u) + 

c(11uII + llzll+ 1). One could also take other dynamics u' E @(z, u) where is a Marchaud 
map. 



From now on, we assume that K := Dom(U) (by  setting U ( x )  := 8 when 
x 4 K i f  needed.) 

W e  are looking for closed set-valued feedback maps R contained in R K  
(and thus, in U ) ,  called subregulation maps, the graph of  which i s  made o f  
the initial state-control pairs yielding viable solutions t o  the control system. 
Among these subregulation maps, we shall be particularly interested by 
single-valued subregulation maps - which are closed loop controls we are 
looking for. 

4 The Theorems 

This is naturally possible thanks t o  The  Viability Theorem. 

Theorem 4.1 Let us assume that the control system (5) satisfies 

(9) 
i )  Graph(U) is closed 

i i)  f is continuous and has linear growth 

Let ( 2 ,  u )  --, p (x ,  u )  be a nonnegative continuous function with linear growth 
and R : Z - X a closed set-valued map contained in U .  Then the two 
following conditions are equivalent: 

a) - R is a subregulation map: from any initial state xo E Dom(R)  
and any initial control uo E R ( x O ) ,  there exists a state-control solution 
( x ( - ) ,  u ( . ) )  to the control system (5) starting at ( x o ,  uo) and viable in the 
graph of R : Q t >_ 0 ,  u ( t )  E R ( x ( t ) )  

b, - R is a solution to the system of  first-order partial differential 
inclusions 

(10)  Q ( x ,  u )  E Graph(R),  0 E D R ( x ,  u ) ( f ( x , u ) )  - c p ( x , ~ ) B  

satisfying the constraint: Q x E K ,  R ( x )  C U ( x ) .  
Such a subregulation map R is actually contained in the regulation map 

R K .  The law regulating the evolution of state-control solutions viable in the 
graph of R takes the form of the system of differential inclusions 

i )  x l ( t )  = f ( x ( t > , u ( t > )  
(11)  

ii) ul ( t )  E G R ( x ( ~ ) ,  ~ ( t ) )  

where the set-valued map G R  defined by 



is called the metaregulation map associated with R. 
Furthermore, there exists a largest subregulation map denoted RV con- 

tained in U. 

In the case of single-valued regulation maps, the system of first-order 
partial diflerential inclusions (10) can be written in the form 

If r is differentiable and if we set B := [-I, +lIm, it boils down to  

In this case, it is a "viable manifold" of the characteristic system (8). 

4.1 Heavy Viable Evolution 

Assume that a subregulation map R is given. We introduce its minimal selec- 
tion gh associating with each state-control pair (2, u) the element gh(x, u) 
of minimal norm of DR(x, u)( f (x, u) )  (which also minimizes the norm of 
elements of GR(x, u)). 

We shall say that the solutions to  the closed loop differential system 

i) xl(t) = f (x( t ) ,  4 t ) )  

i i)  ul(t) = g&(x(t), u(t)) 

are heavy viable solutions to the control system (U, f )  associated with R. 
This minimal selection can be regarded as an instance of dynamical closed 
loop control. 

Theorem 4.2 (Heavy Viable Solutions) Let us assume that U is closed 
and that f ,  cp am continuous and have linear growth. Let R(.) c U(.) be 
a subregulation map such that the associated metaregulation map is lower 
semicontinuous with closed convex images. Then from any initial state- 
control pair (xo, uo) in Gmph(R), there exists a heavy viable solution to the 
control system (U, f )  associated with R. 

The case when the growth cp is equal to  0 is particularly interesting, 
because the inverse NO of the 0-growth regulation map RO determines the 



areas NO(u) regulated by the constant control u, called the viability cell or  
niche of u. A control u is called a punctuated equilibrium if and only if its 
viability cell is not empty. Naturally, when the viability cell of a punctuated 
equilibrium is reduced to a point, this point is an  equilibrium. So, punctuated 
equilibria are constant controls which regulate the control systems (in its 
viability cell). 

Any heavy viable solution (x(.), u(-)) to the control system (U, f )  satisfies 
the inertia principle: "keep the controls constant as long as they provide viable 
solutions". 

Lndeed, set 

CR(U) := {x E K 1 0 E DR(x,  u)(f(x,  u))) 

We observe that if for some time t l ,  the solution enters the subset CR(u(tl)),  
the control u(t) remains equal to  u(t l)  as long as x(t) remains in CR(u(tl)).  
Since such a subset is not necessarily a viability domain, the solution may 
leave it. 

If for some tf > 0, u( t f )  is a punctuated equilibrium, then u(t) = ut, 
for all t 2 tf and thus, x(t) remains in the viability cell NP(u(tf))  for all 
t 2 t f .  

This approach has been used in the regulation of AUV (autonomous 
underwater vehicles) by Nicolas Seube, when neural networks are introduces 
to learn in an adaptive way the feedbacks regulating viable evolutions of a 
tracking problem. See [47, Seube] and [7, Aubin] for further details. 

We refer to  Viabililty Theory ([5]) for an exhaustive presentation of these 
concepts and their properties. 

We shall derive the existence of a feedback control from a Variational 
Principle. 

We denote by C ( K , X )  the space of continuous single-valued maps T : 

A' H Z.  A closed (convex) process is a set-valued map whose graph is a closed 
(resp. convex) cone. Closed convex processes share most of the properties 
of continuous linear operators, and in particular can be transposed (see 
Chapter 2 of Set-Valued Analysis, [14]). The transpose of a closed process 
A : X -v, Y is the closed convex process A* : Y* - X *  defined by 

p E A*(q) if and only if V u, V v E A(u), (p, u) < (q, v) 

Since the contingent derivative DT(x) : X - Z is a closed process, we 
can define and use its transpose DT(x)* : Z* - X*. If T is differentiable, 



we obtain the usual transpose of the linear operator rl(x): Dr(x)* = rl(x)*. 
We introduce the functional i@ defined by 

This functional is lower semicontinuous on C(K, X)  (supplied with the com- 
pact convergence topology), even though this functional involves the "deriva- 
tives" of T. This basic nontrivial property of implies the  following existence 
theorem: 

Theorem 4.3 Let R C C(K,  Y) be a nonempty compact subset of selections 
of the set-valued map U (for the compact convergence topology.)5 Suppose 
that the functions f and (P are continuous and that 

c := inf @(T) < +m 
ER 

Then there exists a single-valued solution T(.) to the partial differential in- 
clusion 

v 5 E K ,  0 E Dr(x) ( f  (x, r(x))) - ( ~ ( 2 ,  T(x)) + c)B 

which is a closed-loop control of the system (U, f ) ,  i.e., a continuous map 
satisfying r(x) E U(x) for every x E K such that from every xo E Ii' starts 
a viable solution to the diflerential equation xl(t) = f (x(t), r(x(t))) and 

In the case of partial differential inclusions, this variational principle is 
related t o  the concept of viscosity solutions. Naturally, this may force us 
t o  change the initial bound on the growth of the velocity control by adding 
this constant c. 

Another way to proceed is to  modify the bound on the velocity of the 
controls by replacing (8)ii) by 

) = f(x(t) ,  u(t>> 
(12) 

ii) ul(t) - Au(t) E cp(x(t), u(t))B 

5Let us recall that the Michael Theorem implies that every lower semicontinuous map 
with closed convex values from a metric space to a Banach space has continuous selections. 



where A E C ( Z ,  Z )  is a linear operator with X := i n f l l z l l = l ( A x , x )  > 0 large 
enough. 

Then the associated single-valued subregulation maps r are closed set- 
valued solutions to  system of first-order partial differential inclusions 

Theorem 4.4 Assume that the map f : X x Y H X is Lipschitz, that 
cp : X x Y H Y as Lipschitz with nonempty convex compact values and that 

Let A E C ( Z ,  Z )  such that X > max(y,4ll f ) ) A ) ) c p l l A )  (where ( 1  f ) I A  denotes 
the Lipschitz constant of f ) .  Then there exists a bounded Lipschitz contin- 
gent solution to the partial differential inclusion (13), which is a closed-loop 
control of the system (U,  f), i.e., a continuous map satisfying r ( x )  E U ( x )  
for every x E K such that from every xo E K starts a viable solution to the 
differential equation x ' ( t )  = f ( x ( t ) ,  r ( x ( t ) ) )  and 
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