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Foreword 

One of the basic elements of dynamic modelling of complex systems is the linkage and synchro- 

nization of subsystems that develop in different time scales. The relevant techniques applied 

here are related to a singular perturbation theory for differential systems. A more complicated 

issue arises for uncertain systems described by differential inclusions, for which an appropriate 

theory is being developed. In order to  make the theory constructive, some further steps are nec- 

essary. These are presented in this paper, where a computer-implementable 'ellipsoidal' version 

is given. 

The results are particularly relevant t o  the linkage of models related to environmental, de- 

mographic and economic problems. They were derived within the Activity Plan of the SDS 

Program of IIASA. 
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1 Introduction 

The paper deals with problems of guaranteed state estimation for dynamic systems described 

by linear differential inclusions with state constraints, namely 

Here x E R n ,  to 5 T 5 19, A(.) E Mn,n[to,19], G(.) E Mm,n[to,19], XO E convRn with Rn 

standing for the n-dimensional Euclidean space, Mk,l[ to,  d ]  for the space of continuous k x 1 

matrix valued functions defined on [to, d ]  and conv Rn for the space of all convex and compact 

subsets of Rn. The multifunctions P : [to, dl -) conv Rn and & : [to, 291 -+ conv Rm are assumed 

t o  be continuous. 

The relations of type 1.1,1.2,1.3 may be considered as a mathematical model for an uncertain 

dynamic process with set-membership description of the unknown parameters, [ ~ c I ] ,  [2], [4], [8], 

[9] and [7]. To solve an optimization or estimation problem through the theory of control 

and observation under uncertainty conditions, the main point to  start  with is t o  construct the 

attainability (reachability) sets for the system. In the theory of observation under uncertainty, 

when the state constraints 1.3 are due to  incomplete state measurements, these attainable sets 

are also known as the informational domains [3]. 



There has been much activity in studying the attainability sets for the system 1.1, 1.2 

without state constraints and also for the more complicated case that  also involves 1.3. We 

should indicate that  there exists a close relation of these problems with those of viability theory 

[I]. since the reachable set of 1.1, 1.2, 1.3 a t  instant T is precisely the T-section of the tube of all 

the solutions to  1.1, 1.2 that  are viable on [ to , r ]  with respect to  constraint 1.3. Here we follow 

an earlier version of this approach that  appeared in [5] in order t o  find a precise description 

of these sets. The principal ideal of those papers was t o  avoid the procedures of constructing 

tangent cones to  the map & that  defines the restriction 1.3 and also to  consider a broader class 

of set-valued functions & (for example, those that are semicontinuous or even measurable in 

time t ) .  

Much of the basic material for this presentation is derived from the theory of ellipsoidal 

approzimations for the problem that  has been treated in [8], [9] and [ll]. The aim of this paper 

is t o  combine the ellipsoidal calculus techniques that  are effective in computer sinlulations with 

those of the above-mentioned approaches by introducing the techniques of singular perlurbnlions 

for the system 1.1, 1.2, 1.3. 

2 Estimation via Ellipsoids 

Preliminary Results 

We will first investigate the system 1.1 assuming the data  to  be ellipsoidal-valued. 

Here &(q,Q)  is an  ellipsoid in Rn with center q and a symmetric positively definite matrix 

Q representing its "shape". The support function  el&(^, Q ) )  of the set &(q, Q )  has the form 

where the prime stands for the transpose. For the convenience of the reader we will indicate 

some basic results in ellipsoidal calculus [9], [ l l ] .  

Let us consider the Minkowski-sum El + f2 of two ellipsoids 

The following Lemma gives external estimates for El + E2 with respect to the inclusion of sets. 



Lemma 2.1 The following equality is true 

where 

Q(u) = (1 + U-')QI + (1 + v)Q2. 

Formula 2.6 for non-degenerate ellipses El and E2, as well as the following theorem have been 

proved in [ I  I.]. 

Let us denote the attainability set a t  instant t E [to,$] for the system 1.1, 1.2 by X(t)  and 

the set of all continuous positive real valued functions defined on [to, d] by the symbol C[ to ,  d]. 

Theorem 2.1 For every t E [to, d] the following equality is fulfilled 

where z : [to, 61 -+ Rn, Z(., a) : [to, 8) -+ Rnxn are the solutions of the following difJerentia1 

equations 

The result of the above lemma, however, is also true in a more general situation. 

Lemma 2.2 Let El = &(ql, Q1), 1 2  = &(q2, Q2) where 

A1 E zkxk, A2 E R'~ '  symmetric positive definite matrices with k + 1 = n. 

Then 

with 



Proof. The upper estimate 

for v > 0 can be obtained on the basis of comparing the support functions, along the lines of 

the proof of Lemma 2.2. 

Consider now an arbitrary vector w = {b, c} E Rn, b E Rk, c E R1 such that  b # 0, 

c # 0. It is not difficult t o  demonstrate that  p(wl f l  + f 2 )  = wl(ql + q2) + (blAlb)b + (c1A2c)+ = 

wl(q l+  9 2 )  + ( w l ~ ( v ) w ) f  for 

This yields 

for every direction w = {b, c} with b # 0 ,  c # 0. From 2.8, 2.9 it follows that  

Indeed from relation 2.11 and the continuity of the support functions of the convex coinpact sets 

f 1  + f 2  and n{&(q l  + 92, Q ( u ) ) J v  > 0 )  we conclude that  the last equality is true for all w E Rn. 

Then relation 2.4 is also true. Q.E.D. 

We now indicate a slight modification of this theorem related t o  the result of Lemma 2.2. 

Consider the system 1.1, 1.2 with data  of the form 

where f k ( s ( t ) , S ( t ) )  C Rk, f 1 ( r ( t ) ,  R ( t ) )  C R1, k + 1 = n. Let us keep the notation X ( t )  for the 

attainability set of the above system a t  time 2 .  

Theorem 2.2 For every t E [to, d ]  the following equality is true 

where z : [to, d ]  -+ Rn, Z( . ,  K ,  u) : [to,  d ]  -+ RnXn are the solutions to the differential equations 



with 

w ( t )  = { s o ) ,  r ( t ) I ,  

Proof. This theorem is a combination of Theorem 2.1 and Lemma 2.2. Q.E.D. 

3 Perturbation Techniques 

In this section we do not further assume that our data  for the system 1.1, 1.2,1.3 are ellipsoidal- 

valued. We recall here some facts from the singular perturbations approach suggested in [5]. 

Consider the system of differential inclusions: 

Here y E Rm , 2 0  E conv(Rn) x conv(Rm), and E E R is positive. By X ( . ,  t o ,  &, r )  let us denote 

the set of all the solutions x(.)  to  1.1, 1.2 that  satisfy 1.3 for all t E [to,  r]  - that is X( . , to ,  Xo, r )  

is the bundle of viable trajectories, [ I ] ,  - and by X [ r ]  its cross-section a t  time r ,  so that  

4.1 = X ( r ,  to, Xo, r ) ,  7 E [to, 291. 

The symbol 2(- ,  to, 2 0 ,  r ,  E )  will denote the tube of solutions z( .)  = { x ( - ) ,  y ( . ) )  for the system 

3.14, 3.15, 3.16 over to  5 t 5 r. 

Let Z ( r ,  to,  20, E )  = 2( r ,  to, 2 0 ,  r ,  E ) .  We will also use the notation HXW for the projection 

of the set W C Rn x Rm onto the space Rn of z-variables. 

Theorem 3.1 Assume that 

Xo C rIxZo. (3.17) 

Then for every trajectory x( . )  E X[.]  of 1.1, 1.2, 1.3 there exists a vector yo E Rm such that 

and for every r E [to, 291 

= {z(.), Yo) E 2( r ,  to, 2 0 ,  E )  

for all E > 0. 



Corol lary  3.1 Assume relation 3.1 7 to be true. Then for every T E [to,  291 

Let us now introduce another system of differential inclusions of type 3.14, 3.15, 3.16 but 

with a matrix time-dependent perturbation L( t ) ,  to 2 t 5 T ,  instead of the scalar E > 0:  

The class of all continuous invertible matrix functions L E M m , , [ t o , ~ ]  will be denoted as 

M;,,[to, T I ,  and 2(., to, 20, L )  = 2(- ,  to, 2 0 ,  r, L )  will stand for the solution tube to the system 

3.19, 3.20 with initial condition 3.21 over the interval to 5 t 5 T .  

The following analogy of Theorem 3.1 is true. 

T h e o r e m  3.2 Assume relation 3.17 to be true. Then for every x(.) E X [ . ] ,  there exists a vector 

yo E Rm such that 

 to), YO)  E 20 

and for every T E [to,  291 

4.) = { X ( T ) ,  YO)  E 2 ( r ,  to, 2 0 ,  L )  

whatever is the function L E M k , , [ t o , ~ ]  

Corol lary  3.2 Assume relation 3.17 to be true. Then for every T E [to,  291 

X [ T ]  C n x ( n { 2 ( ~ ,  to, 20, L)IL E Mk,,[to, T I ) )  (3.22) 

The principal result of the singular perturbations method applied to  the problem under 

discussion is formulated as follows 

T h e o r e m  3.3 Suppose 

n,zo c XO. 

Then for every T E [to, 291 

In a slightly different form this result was announced in [6] ,  its full proof will appear in [7].  

From Corollary 3.1 and the Theorem 3.2 we obtain the exact description of the set X [ T ]  by 

means of perturbed differential inclusions without state constraints. 



Theorem 3.4 Under the assumption 

the following formula is true for any r E [to,  191 

4 The Principal Theorem 

Consider the system 1.1, 1.2, 1.3 where all the sets involved are ellipsoids: 

Here p : [to,  191 --+ Rn, q : [to,  191 --+ Rm, P E Mn,n[to,  191, Q E Mm,m[to,  191 zo E Rn, the matrices 

X o ,  P ( t ) ,  E Rnxn and Q ( t )  E Rmxm are symmetric and positive definite. 

Our g o d  will be to find the ezact ellipsoidal estimate to the attainable set X [ T ]  = X ( T ,  to ,  Xo) 

for the system 4.24, 4.25, 4.26. 

After reviewing some preliminary results given in Sections 2 and 3 we are now in a position 

t o  respond to this aspiration. 

Theorem 4.1 Given an instant T E [to,  61, the following exact formula is true for every T E 

[to, 191 

where z ( t )  and y ( t )  of 

~ ( t ,  L )  = { x ( t ) ,  ~ ( t ) )  

are solutions to the system 

and Z; ( t ) ,  i = 1,2 ,3  of 



to  the matr iz  diflerential equations 

with I E Rmxm being the identity matr iz .  

Proof. We first introduce the perturbed system 

Applying consequently Theorems 3.3 and 2.2 t o  the systems 4.28, 4.29 and 4.24,  4 .25 ,  4.26 

we come to  equality 4.27. Q.E.D. 

Concluding this section we wish to  emphasize that  the proposed techniques may be extended 

to the case of measurable multivalued functions P,  Q appears to  be especially important for 

the problems of observation for uncertain systems. The procedures presented here allows to  

construct effective algorithms for computer calculations and simulations on the basis of parallel 

visual representations of the solutions t o  the problem. 

5 Numerical Examples 

We take a 2 dimensional system ( 1 . 1 ) ,  (1 .2 )  over the time interval [O, 51. 

The initial s tate is bounded by the ellipsoid Xo = £ ( x o ,  Xo)  at  the initial moment to = 0 

with 

x o  = (:) and Xo  = (: :) 



We consider a case when the right hand side is constant: 

describing the position and velocity of an oscillator. Inputs u(t) are also bounded by time 

independent constraints P ( t )  = &(p(t), P( t ) )  with 

State constraint (1.3) is 1 dimensional, and is defined by the data  

Additionally we suppose the initial condition: 

therefore we have that  

The time interval divided into 100 subintervals of equal lengths, calculations are based on 

the discretized version of the system (1.1), (1.2), (1.3). 

We will illustrate Corollary 3.2 and Theorem 4.1 by calculating the ellipsoidal estimates in 

the inclusion 

for the following choices for the  function L: 

Parameters n and a are chosen according t o  the rule 

and 

that are known to  create so called locally Tr-minimal external estimates, (see [ l l ] ) .  

Noting that ,  in general, the relation 



is a proper inclusion, we will show the projections onto the space of state variables of the 

ellipsoidal estimates associated to  L+ and L-, as well as the projection of their intersection. 

The above phenomenon is illustrated in Figure 1, where El = &(ql,Q1), f2 = &(q2,Q2) SO that 

The left upper window shows the projections onto the plane spanned by the first two variables, 

while on the right upper window we see the projection onto the plane of the first and third 

variable, and in the lower window onto that of the second and third. 

To calculate the extreme point x E n E2, we need the following: 

Lemma 5.1 If l E Rn is the normal vector to the supporting hyperplane containing the extreme 

point x E E(q1, Ql )  n E(q2, Qz) then one of the following holds: 

(i) x E aE(q;, Qi) n int(E(qj, Qj))  for i # j ,  and then x satisfies 

(ii) x E a&, n at2. and then x satisfies 

and 

Proof. In the more complicated case of (ii), the statement follows from the Lagrange necessary 

condition as we have 

x = argmax{lfw E R ( w  E El r l  f2.) 

Q.E.D. 



In case ( i i)  we have t o  find o and ,L3 E R such that f ( o , P )  = 1 and g (o ,P)  = 1, where 

z = ( (YQ;~ + ~ ~ ; l ) - l ( e  + C Y Q I ~ Q ~  + P Q Z ~ Q ~ )  

and 

As the derivatives of the above functions can be calculated explicitely, we can use Newton's 

iteration to obtain thesolution to the above system. 

Figure 2. shows the two estimates developing over time with the range of coordinate axes 

being -30 t o  30. The left upper window shows the projections onto the plane spanned by 

the two state variables. Here they coincide as expected. In the right upper window we see 

the projection of the two estimating tubes onto the plane of the measurement variable and the 

first s tate variable, while in the lower window onto the plane of the measurement variable and 

the second state variable. In Figure 3. we see the estimates (in the same arrangement of the 

windows and in the same scale) a t  the moment t = 4.25, drawn by thin lines, and the projection 

of their intersection, drawn by a thicker line. It is to  be noted here, that  in the space of the first 

two variables, the projections of the two estimates coincide again, but the projection of their 

intersection is a proper subset. 
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Figure 1: Proper inclusion in n,(fl U f2) C n x ( f l )  U n ~ ( f 2 ) .  



Figure 2: Ellipsoidal estimates developing over time. 



Figure 3: Ellipsoidal estimates and the projection of their intersection. 


