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Abstract 

We study the capabilities of two-layered perceptrons for classifying exactly a given subset. 
Both necessary and sufficient conditions are derived for subsets to  be exactly classifiable 
with two-layered perceptrons that use the hard-limiting response function. The necessary 
conditions can be viewed as generalizations of the linear-separability condition of one-layered 
perceptrons and confirm the conjecture that the capabilities of two-layered perceptrons are 
more limited than those of three-layered perceptrons. The sufficient conditions show that 
the capabilities of two-layered perceptrons extend beyond the exact classification of convex 
subsets. Furthermore, we present an algorithmic approach to the problem of verifying the 
sufficiency condition for a given subset. 
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1 Introduction 

Classification is a basic capability of multi-layered perceptrons that plays an important role in 
the application of this type of neural network to other problem areas such as combinatorial op- 
timization. In [14] we proved that any combinatorial optimization problem can be solved with 
a three-layered perceptron under some linearity constraints. This result is based on a necessary 
and sufficient condition for a subset to  be exactly classifiable with a three-layered perceptron. 
Furthermore, we proved that subsets which can be classified exactly with an m-layered percep- 
tron for some integer m, can also be classified exactly with a three-layered perceptron. So, from 
this point of view it is needless to use more than three layers. There may, however, be arguments 
for using more than three layers. For instance, using four layers might require a smaller total 
number of nodes in the network than using three layers. 

One may pose the following question. Are the cla.ssification capabilities of two-layered percep- 
trons less than those of three-layered perceptrons, and, if there is a difference, how can it be 
characterized? This question is of practica.1 interest since two-layered perceptrons are believed 
to  learn much faster than three-layered perceptrons. Furthermore, the learning in two-layered 
perceptrons is more easy to analyze tha.n in three-layered perceptrons. 

In this paper we consider the problem of finding two-layered perceptrons that exactly clas- 
sify a given subset. Furthermore, we restrict ourselves to  perceptrons with a hard limiting 
response function. So far, few results have been reported on the exact classification capabili- 
ties of two-layered perceptrons using the hard limiting response function. In his introductory 
paper, Lippmann briefly discusses the classification capabilities of multi-layered perceptrons [8]. 
Lippmann states that a subset has to be convex for being classifiable with a two-layered percep- 
tron. However, several a.uthors have pointed out t hat the capabilities of two-layered perceptrons 
extend beyond the exa.ct classification of convex subsets. Wieland and Leighton [13], Huang 
and Lippmann [GI and Makhoul et al. [9] demonstrate this by some hand crafted examples of 
non-convex subsets that can be exactly classified with a two-layered perceptron. We extend 
these results by presenting formal and more general results on the classification capabilities of 
two-layered perceptrons. 

Some recent papers consider the approximate classification capabilities of two-layered percep- 
trons that use a sigmoidal response function. Cybenko (11, Funahashi (31, and Hornik et al. (51 
show that two-layered perceptrons are capable of classifying a given subset within arbitrary pre- 
cision. Although these results can also be used to obtain results about the exact classifiability of 
a given subset, as is shown by Cybenko (11 and Li [7], they do not say anything about the required 
number of hidden nodes. A first attempt to solve this problem is presented by Cybenko [2], who 
derives an upper-bound on the required number of hidden nodes. Our approach concentrates 
on finding the minimal number of hidden nodes for exactly classifying a given non-finite subset. 

The remainder of the paper is organized as follows. In Section 2 we briefly summarize some basic 
definitions and known results. Section 3 presents necessary and sufficient conditions for a subset 
to be exactly classifia.ble with a two-layered perceptron. Furthermore, this section contains 
algorithms for the verificat,ion of the sufficiency condition. Section 4 presents a discussion and 



some concluding remarks. The  paper ends with an appendix that  contains the proofs of the 
lemmas of Section 3. 

2 Preliminaries 

We consider the  standard architecture of m-LPs, m = 1,2, .  . ., i.e., multi-layered perceptrons 
with one output layer and m - 1 hidden layers; see also [8, 11, 141. The output of a node is the 
result of a computation determined by a summation of a bias and the  weighted inputs of that  
node, which is then passed through a non-linear response function 8 : RN + [O, I.]. In this paper 
we only consider the  hard limiting response function O : RN + {0,1) that  satisfies O(X) = 1, if 
X 2 0, and O(X) = 0, if X < 0. We consider the  exact classification of non-finite subsets of IRN 
for some fixed N E IN, which implies that  the corresponding 2-LPs have N inputs. As usual R 
denotes the set of all real numbers, IN = {1,2,3,. . .) and INo = {0,1,2,3,.  . .). 

Let R,,N,~< denote the set of all vector functions from IRN t o  (0, 1IK that  can be associated 
with an  m-LP having N inputs and A' outputs, for N,  K E IN. We define Rm,N,K iteratively. 
First R 1 , ~ , ~  is defined as 

R ~ , N , K  = {f : IRN + {0, 1IK ( f, = O o f;, f; E AN,  i = b . .  . ,I<), (1) 

where A N  denotes the set of all affine functions from RN t o  R given by 

Next, since an ( m  + 1)-LP can be constructed by putting a 1-LP on top of an  m-LP, we express 
Rm+l,N,~< in terms of RI,L,K and R,,N,~,  where L denotes the number of hidden nodes in the 
mth hidden layer. Hence, we obtain 

Abbreviating R r n , ~ , l  as R,, we then say that  V can be classified with an m-LP if there exists 
an  f E R, such that  f ( x )  = 1, if and only if x E V. Furthermore, we define for each function 
f :  IRN + {0,1), the  set J ( f )  C_ IRN by J ( f )  = {x E lRN I f ( x )  = 1). Now i t  follows that  
I/ can be classified with an m-LP if V = J( f ) ,  for some f E R,. The collection of subsets 
of RN that  can be classified with a.n m-LP is denoted C,. I t  is obvious from the above 
that  C, = {J( f )  1 f E R,). Furthermore, one can easily verify the well-known fact that  
C1 = {V C_ IRN 1 V is a closed affine half-space) U {O,IRN). This implies that  if V # O,IRN, 
then V E C1 =. V* 4 C1, where V* denotes the complement of the set V. Finally, we define the 
following four collections. 



GI is the collection of open and closed affine half-spaces. P denotes the set of all polyhedra, 
where a polyhedron is defined as the intersection of a finite collection of closed affine half-spaces. 
P can be viewed as the set of all pseudepolyhedra, where a pseudo-polyhedron is the intersection 
of a finite collection of closed or open affine half-spaces. A polyhedron has all faces belonging 
to the set, whereas a pseudo-polyhedron can have faces belonging either to  the set or to the 
complement of the set. U is the set of all subsets of IEtN that can be represented as a union 
of a finite number of pseudo-polyhedra, which is identical to the set of all subsets that have 
piece-wise linear bounds. Note that P C_ P and C_ P C_ U. 

We use the following basic results; for proofs of these results see [14]. 

Proposition 1 If m > 2, then V E C, + V* E C,. 
Proposition 2 Let {I/; I i = 1,.  . . , I )  be a collection of subsets with V,  E C, or V;' E C, for 
all i, then ni=l I< E Cm+l. 

Proposition 3 Let V C_ lRN, then V can be exactly classified with an m-LP if V E U and 
m 2 3. 

Proposition 4 Let V C_ lRN, then V can be exactly classified with an m-LP only if V E U. 

Combining Propositions 3 and 4 it follows that C, = U for all m 2 3, which gives an necessary 
and sufficient condition for a subset to be classifiable with a m-LP, for all m 2 3. A necessary 
and sufficient condition that formalizes the classification capabilities of 2-LPs is the subject of 
the next section. 

3 Main results 

We concentra.te on the characterization of sets that are exactly classifiable by 2-LPs. From 
Propositions 2 and 4 we know that P 2 C2 C_ U, a result already known for some time; see [8]. 
In Section 3.1 we give a necessary condition for a subset to be classifiable with a 2-LP, which will 
prove that Cz c U. In Section 3.2 we present a sufficient condition for a subset to be classifiable 
with a 2-LP, which will prove that P c C2. Finally, in Section 3.3 we introduce some algorithms 
for the verification of the sufficiency condition of Section 3.1. 

3.1 A necessary condition for the existence of a 2-LP 

In this section we demonstrate that the condition given in Proposition 4 is not sufficient for 
classifying a given subset with a 2-LP, i.e. there exist subsets of IRN that can be classified with a 
3-LP but not with a 2-LP, which implies that C2 is a true subset of C3. We show this by proving 
the necessity of a second condition for cla.ssifying a given subset with a 2-LP. In a recent paper, 
Gibson & Cowan [4] have presented a similar result, which is tailored to the subset presented in 
Figure lb. Although their result call be generalized, it is based on an approach that makes no 



distinction between closed and open half-spaces in the classification, which is not suitable in our 
situation. Our formulation of the necessary condition for a subset to be classifiable with a 2-LP 
requires the existence of a hyperplane, two balls and some other notions, which are defined as 
follows. 

The (open) ball Bl(xo,6), with center xo E RN and radius 6 > 0, is defined as the subset 
{x E ELN 1 115 - xO1l < 6). We use W0 to denote the topological interior of a subset W. W0 is 
defined as the set of all points x for which a ball B exists that satisfies x E B C W. Furthermore, - 
W denotes the topological closure of the subset W,  which satisfies W = ((Wb)O)*. 

We now can express the necessary condition for a subset to be classifiable with a 2-LP by the 
following theorem. 

Theorem 1 Let V 2 I R ~ ,  then V can be classified with a 2-LP only if there do not exist a 
W E C1 and two balls B1, B2, such that 

Proof Assume that I/ E C2, 1.V E C1 and two balls B1, B2 exist that satisfy (7), we show that 
this leads to a contradiction. Since V E C2, we have V = J(f), for some f E R2 ,~ ,1 ,  f = g o  h, 
with g E Rl,K,l, h E R1 ,N,K, I< E IN, and we may assume that h; # hj, for all 1 < i < j 5 K .  
Letg=Oo#with#(u~)=a.w+bforsomea~~~,b~RanddefineV,=J(h;),i=l, ..., K .  

From (7) it follows that W # 8,IEtN, which means that W is a closed affine half-space. Let 
w = W n(WO)* be the llyperplane that bounds both W and (WO)*, and consider Bl n W .  This 
intersection is not empty since B1 n JVO and B1 n W* are not empty. Without loss of generality 
we assume that Bl n w C_ V or B1 rl 1% C V*: if only a part of B1 n w is a subset of V, 
then we can shrink the size of B1 such that one of the two statements becomes true, using that 
V has only a finite number of defining half-spaces hi. The same argument holds for B2 n W ,  so 
that we obtain the following four cases. 

( i )  Bl n w c V and B2 n1:t7 c V, 

(ii) Bl n w G V and B 2 n 1 v  C V*, 

(iii) B1 n w c V* and B 2 n  w c V, 

(av) B1 n w V* and B2 n 1fi.' C_ V*. 

We show that ( i )  and (ii) lead to a contra,diction. This implies that the same holds for (iii) and 
(iv), as they can be obt,ained from (ii) and (i), respectively, by interchanging V and V*, and 
using Proposition 1. To prove that ( i )  and (ii) lead to a contradiction, we need the following 
lemma. As with all lemmas in this section, the reader is referred to the appendix for the proof 
of this lemma. 



Lemma 1 LetV = J(f), for some f E R2,~,1,  f =gob, with 9 E RI,K,I, h E R~,N,K,  K E IN, 
and hi # hj, for all 1 5 i < j 5 I f .  Let g = O oi j  with ij(w) = a - w  + b for some a E IRK, 
b E R and define VI. = J(hi), i = 1,. . . , I f .  If there exists a W E C1 and a ball B such that 

0 # B n l V  V 
0 # B n W *  V*, 

then W = VI. for some i E (1,. . . , k) with ai > 0. Furthermore, if V, = (WO)* for some j # i 
then a; > aj.  

(4). In this case (7) assumes the following form 

Apply Lemma 1 to B1 and W ,  then we obtain 1V = V, for some i E (1, ..., I f )  and if V, = 
(WO)* then ai > aj .  Apply Lemma 1 to B2 and (lYO)*, then we obtain (WO)* = V, for some 
j E (1, ..., I<) and hence a; > aj .  However, since VI. = W = (((WO)*)O)*, we also find a j  > a;, 
which obviously leads to a contradiction. 

(ii). Now (7) becomes: 

Applying Lemma 1 to B1 and W, we obtain 1V = V,, for some i E (1, ..., K )  and ai > 0. 
Without loss of generality we may assume j(h(x)) # 0, for all x E RN, which implies that 
V' = O o (-4) o h. By applying Lemma 1 to V*, W and B2, we obtain W = V,, for some 
j E (1, ..., I<) and -aj  > 0. This would yield a pair i # j with V, = V,, contradicting the 
assumptions. 

In the above theorem the subset W corresponds to a closed affine half-space, i.e. W = {x E 
lRN 1 a z + b 2 0) for some a E lRN \ (0) and b E R .  The conditions in (7) do not specify 
whether the hyperplane W = {x I a .x + b = 0), or parts of it, belong to V or V*. The conditions 
are only concerned with parts of the open affine half-spa.ces W0 = {x 1 a - x + b > 0) and 
W* = { z l a . x + b < O ) .  

Suppose that V & RN satisfies the conditions of Theorem 1 and f :  RN -+ {0,1) satisfies 
J '(f)=V,then f ( x ) =  1 , f o r a l l x E  B 1 n W O , x E  B2nU'*,and f ( x ) = O , f o r a l l x E  B1nW*,  
x E B2 n WO. Thus f solves some kind of generalized exclusive-or problem. Theorem 1 proves 
that f @ C2. Hence, the condition in (7) can be viewed as a generalization of the condition of 
linear separability for a subset to be classifiable with a 1-LP, since this condition is responsible 
for the non-existence of a 1-LP for the exclusiveor problem. In Figures l a  and l b  we present two 
examples of subsets in IR2 that do not belong to C2. The subsets of lR2 given in Figures l a  and l b  
cannot be classified by a 2-LP since these subsets do not satisfy the conditions of Theorem 1; the 
circles correspond to the balls B1 and B2. Although the subset presented in Figure l c  satisfies 



Figure 1: Three subsets that cannot be classified exactly by a 2-LP. Note that solid boundary 
lines do and thin boundary lines do not belong to the presented sets. 

the conditions of Theorem 1, it can be shown tha.t this subset cannot be classified exactly by a 
2-LP, using a proof simi1a.r t o  that  of Theorem 1; see also below. 

As already mentioned in the introduction, the results of Cybenko [I] and others show that  a 
subset V E IRN can be approximately classified with a 2-LP with arbitrary precision. In our 
context this implies that  for all E > 0, there exists a V, E C2 such that  ( ( V  + V,IJ < E, where + 
denotes the  set theoretical symmetrical difference and 1 )  I( is a norm defined on the set of subsets 
of RN, for instance JJVJI = J,dV. Let V, = J(g, 0 h,) for some g, E RI,L,,~,  h, E RI,N,L*, 
and L, E IN. The  latter denotes the number of hidden nodes. If V E U satisfies the conditions 
of Theorem 1, then V $! Cz and i t  is intuitively clear tha t  we must have lim,lo L, = cx, in 
that  case. For the  two subsets in Figures la  and l b  we have found approximating subsets 
V, E Cz with L, z I log € 1  and L, x I/€, respectively. I11 Figure 3a, presented in Section 3.3, an 
example is given of a subset in Cz that  approximates the  subset given in Figure lb .  The general 
upper-bound L, = O ( E - ( ~ - ' ) / ~ )  given by Cybenko [2] indicates that  the result for the subset 
in Figure l b  can be improved upon. 

Finally, we note that  the condition given in Theorem 1 is not sufficient for a subset in U t o  be 
classifiable with a 2-LP. This follows from the fact that  there exist subsets in U tha t  satisfy the 
conditions of Theorem 1 but  cannot be classified with a 2-LP. An example of such a subset is 
presented in Figure lc. The  proof that  the  subset in Figure l c  is not classifiable runs along the 
lines of the proof of Theorem 1. Unfortunately we have not been able to  generalize i t  t o  a similar 
general condition as in (7). In the next section we therefore approach the problem of finding a 
characterization of Cz from the other side by deriving a sufficient condition for a subset t o  be  
classifiable with a 2-LP. 

3.2 A sufficient condition for the existence of a 2-LP 

The examples given in the previous section show that  C2 C U ,  i.e., a strict inclusion. In this 
section we consider the problem of proving that  P c C2. To the best of our knowledge the  
literature presents only few examples of subsets in Cz that are not in P; see for instance [6, 9, 
131. One such example [9] is shown in Figure 3a and call be proved t o  belong to  C2 by using 



Theorem 2, which is given below; see also the next section. This theorem presents a sufficient 
condition for a subset to be classifiable with a 2-LP. I t  is the most general sufficient condition 
we found so far, based on the classifiability of the intersection of two classifiable subsets with 
a 2- LP. Moreover, it is the only sufficient condition for which we have found an algorithmic 
verification method. This verification method is presented in the next subsection. 

In the following theorem we use V1\V2\- .\& as a shorthand notation for V1\(V2\(- -)). 

Theorem 2 L e t V =  Vl\V2\...\&, for some 1 E N  andVl,V2, ...,& E p, then V € C 2 .  

Proof For the proof we need the following two lemmas. 

Lemma 2 If V E p, then there are g = O o ij E Rl,k,l, h E R I , N , ~  and k E IN, such that 
V = J(g o h) and ij(h(x)) E {-k, -k + 1,.  . . ,0}, for all x E lRN. 

Lemma 3 Let Vl E p, V2 E C2 and assume that V ,  = J(g; o hi), g; = O o ij; E Rl,ki,l, 
hi E R i , ~ , k ~ ,  ijl(hl(x)) E {-bi, -ki + 1,.  . . ,0) and ij2(h2(x)) E {-a, -a + 1,. . . , P), for some 
kl, k2 E IN, a E IN, P E No, and for all x E lRN. Then Vl\V2 = J(g o h), with h E R1,~,kl+k2 
and g = O 0 j E Rl,kl+k2,1 given by h(x) = (hl(x), h2(z)) and 

respectively. Furthennow ij(h(x)) E {-kl a - P - 1,.  . . , a - 1) for all x E lRN. 

Now we can prove the main result. Let 1 E IN, V; E p, i = 1,. . . , I, then, using Lemma 2, we may 
assume that V ,  = J(g;oh.;), g; = Oo3; E Rl,ki,l, hi E R ~ , N , ~ ,  and ij;(h;(x)) E {-k;, -k;+l , -  a 4) 
for some k; E N and all x E IRN. We complete the proof by showing that V1\V2\- . -\& = J(go h), 
where h E R l , ~ , x ~ ,  and g = O o j E R1,xk,,l are given by h(x) = (hl(x), . . . , hr(x)) and 

respectively, with ij(h(x)) E {-ar , .  . . ,a1-1 - I ) ,  for all x E IRN and the numbers a;, i = 
0,1,.  . . , I ,  recursively defined by a0 = 1 and a;+l = kl-;a; + a;-1, for i = 0,. . . ,1  - 1, where 
a-1 = 0. 

The proof is by induction. The result obviously holds for 1 = 1. Next, we assume that the 
result holds for some 1 E N ,  and show that it also holds for 1 + 1. If (10) holds for 1, then by 
renumbering the variables we find that V2\V3\.-.\fl+1 = J(g 0 h), where h E R1,N,xki+l and 
g = O o ij E R1,xki+l ,l are given by h(x) = (h2(x), . . . , hl+l(x)) and 

respectively, with ij(h(x)) E {-al, .  . . ,al-l  - I ) ,  for all x E IRN and the numbers a; ,  i = 
0,1, .  . . , I ,  recursively defined by a0 = 1 and a;+l = kl+l-icri + a;-1, for i = 0, .  . . ,1- 1, where 
a-1 = 0. 



Next, we apply Lemma 3 t o  V1\V2\. = V1\(V2\- . and find that  Vl \V2\. -\& = 
J(e o f ) ,  where f E R l , ~ , ~ k i  and e = O o E E R1,xki,l are given by f (x)  = (hl(x),  h(x)) = 
( h l ( ~ ) ,  h2(x), . . . , h1+1(x)) and 

respectively, with E( f (x))  E {-klal - al-1,. . .,a1 - 11, for all x E ELN. By defining a/+l = 
klal  + we have proved the result for 1 + 1. This completes the proof of the theorem. 

From Theorem 2 i t  follows that  the required number of hidden units of a 2-LP that  classifies 
Vl \ V2 \ .  - \  & is at most ~ 1 = ~  ki, which equals the total number of half-spaces defining the 
subsets Vl, . . . , &. If these subsets have defining half-spaces in common the required number 
of hidden units can be reduced accordingly. Although the proof of Theorem 2 contains an 
algorithm for the determination of a set of weights for a 2-LP that  classifies a subset of the given 
form, the practical value of this algorithm is limited since these weights can become very large 
( a l  k lk2- . .k l ) .  

Verifying whether a subset V satisfies the conditions of Theorem 2 implies that  we must find the 
appropriate decomposition of V. We have developed an algorithm t o  compute this decomposition 
for a given V if such a decomposition for V exists. This is the subject of the following subsection. 

3.3 A decomposition algorithm 

In the previous subsection, a suficient condition is given for a subset of ELN t o  be classifiable 
with a 2-LP; see Theorem 2. In this section we derive a systematic verification method for 
this condition in a slightly restricted case: for a given subset V E ELN the presented algorithm 
finds Vl,. . . , & E P such that  V = Vl \ V2 \ -  - -\&, if such a decomposition of V exists. The 
decomposition is based on the following ideas. 

Assume that  V = V1\If2, for some unknown subsets If1, V2 E p. In the search for the unknown 
sets Vl and V2, we use t1ia.t V = Vf\(V' \V) ,  if and only if V' > V. Hence, we only need a 
V' > V satisfying V' E p and V ' \V E p. To find such a V' we exploit the property that  
all subsets in p are convex, which implies that  V' and V ' \V must be convex. Using that 
V'\V = Vf\(V1 \V2) = (Vf\V1) U (V' n V2), we find that  V'\V is convex if V' is convex and 
Vl > V'. Since Vl can be any convex set satisfying Vl _> V, we see that  V' has to  be the smallest 
convex set with V' > V. This unique set is generally called the convex-hull of V and denoted by 
conv(V). Of course, the convexity of V' and V'\V does not necessarily guarantee that  V' E p 
and V'\V E p. In Figure 2 below we give an example where the use of convex-hull does not 
suffice. 



Figure 2: Ezample demonstrating the necessity of using the closure of the convez-hull. Note that 
thin boundary lines and circles are not part of the given subsets. 

In Figures 2a and 2b, two subsets Vl, If2 [/2 P are given. Suppose that we want to  decompose 
V = V1\V2, which is shown in Figure 2c. To this end we construct V' = conv(V); see Figure 2d. 
Note that V' 4 P .  The only way to  ensure that V' E P is to take V' = m ( V ) ,  with m ( V )  
denoting the closure of the convex hull of V ,  in which case we have a stronger result, namely 
V' E P. In Theorem 6 presented at the end of this section, we prove that m ( V )  E P for all 
V E U. A disadvantage of using collv instead of conv is that we have to restrict ourselves to 
sets in IRN that have a decomposition consisting of subsets exclusively in P ,  for one can easily 
construct a V = Vl \V2, with Vl,V2 E j ,  for which there do not exist Wl, W2 E P such that 
V = Wl \ W2. In the following theorem the above ideas are used to prove the correctness of a 
DEComposition ALgorithm that calculates the decomposition of a given subset. 

Theorem 3 If for a given subset V BtN there ezists a decomposition of the form V = 
Wl \ W2 \ . . - \  Wk for some k E IN and lV1, . . . , Wk E P ,  then it can be found using the following 
DECAL-1 algorithm. 

program DECAL- 1; 
begin 

1 := 0; 
T := V ;  
while T # 0 
do 

&+I := conv(T); 
T := &+,\T;  
1 := 1 + 1  

od 
end. 

Proof Let V E lELN and V = 1V1\1V2\...\1Vk, for some k E IN and W1, ..., Wk E P .  Then, 
using the equality T = m ( T ) \ ( m ( T ) \ T )  discussed above, one can easily show that V = 
Vl \V2\. - \& \ T  is an invariant of DECAL-1. Furthermore, since V = Wl \ W2\.  . a \  Wk and 
Wl, .  . ., Wk E P ,  we have V E U. Using the result of Theorem 6 below, which says that 
m ( T )  E P ,  if T E U, one can easily show that T E U and VI E P are also invariants of 
DECAL-1. Hence, it remains to be proved that the algorithm terminates, which follows directly 
from the following lemma. 



Lemma 4 Let V be a subset of RN. If V = Wl\W 2\- '\Wk for some k E IN and Wl, . . . , Wk E P, 
then 15 k is an invariant of DECAL-1. 

Figure 3: In (b) the results of the decomposition algorithm are given, when it is applied to the 
subset in (a). In (c) a subset is given that can be classified with a 2-LP, for which the algorithm 
does not terminate because it has no decomposition of the described form. 

Figure 3b presents the intermediate steps of DECAL-1 when i t  is applied t o  the subset V of 
Figure 3a. We obtain V = Vl \ V2 \ - .\ V9, where Vl, V2, . . . , Vg are all rectangles obviously 
belonging to  P. Since most of the example subsets presented in [6] have a decomposition of 
the  proposed form, DECAL-1 can be used t o  find this decomposition for these subsets. In 
some sense, the use of Theorem 3 seems a bit paradoxical, because one can only compute the 
decomposition of a subset if i t  is known t o  exist, and the latter can only be guaranteed by giving 
this decomposition. However, DECAL-1 can also be used t o  find out whether a given subset 
V E U can be decomposed. If the  algorithm terminates when applied t o  V, then i t  follows from 
the proof of Theorem 3 tha t  a decomposition is found. If on the other hand the algorithm does 
not terminate, then Lemma 4 implies that  there does not exist a decomposition of V. 

The remaining problem is t o  determine whether the algorithm terminates. There is no general 
method known that  does this, but we argue that  in our case we can solve the problem. When 
the  algorithm is applied to  V E U, then one can easily show that  K t 1  K for all 1 E IN; see 
the proofs of Lemma 4 and Theorem 5. We claim that  the algorithm does not terminate, if and 
only if = K, for some 1 E IN, or in other words, the situation where K t 1  C K ,  for all 1 E IN 
cannot occur. The first part of this claim is expressed in the following theorem. 

Theorem 4 Let DECAL-1 be applied to a subset V E U. Then the algorithm does not terminate 
if at some stage k in the execution of the algorithm Vk+] equals Vk. 

Proof Let Tl denote the  set T  a t  stage 1 of the algorithm, then Ktl = m ( T 1 )  and TI+] = 
T$+]\T,. Assume that  Vk+] = Vk a t  stage k of the algorithm, then we have that  



using that Vk = =v(Tk-,) _> Tk-1. Since the algorithm reaches stage k, i t  follows that Tl # 0 
for all 1 5 k. Hence, Tktl # 0 and the algorithm reaches stage k + 1, where it calculates 
Vkt2 = m ( T k t l )  = CO~V(T~-~)  = Vk = Vktl. Using the same argument in an iterative way, 
we find that Tltl = T1-1 # 0 and Kt1  = K for all 1 2 k, which proves that the algorithm does 
not terminate 

Although we believe that the opposite of Theorem 4 is also true, we have not been able to  proof 
this. We therefore present it as a conjecture with a sketch of a possible proof. 

Con jec tu re  1 Let DECAL-1 be applied to a subset V E U. Then the algorithm does not 
terminate only if at some stage k in the execution of the algorithm Vktl equals Vk. 

A proof of the above conjecture might be constructed along the following lines. Since V E U, 
V is defined using a nnmber, say n, of affine half-spaces. Assume that the algorithm when 
applied to  V does not terminate, then at  stage n + 2 we have that V = V1\V2\-..\Vn+2\T with 
Vl 2 V2 2 ... 2 Vnt2 2 T. To complete the proof we must show that Vl > V2 > . - .  > Vn+2 
leads to  a contradiction. The first step is to observe that if V,, E P and VI: > K t l ,  then one 
of the half-spaces that defines V, is not needed for defining V,+l. The essential part of the proof 
is then to show that this implies that n + 1 distinct half-spaces can be chosen, one for every pair 
V, ,  V,+l, that are all needed for the definition of V .  

If correct, the above argument would imply that if DECAL-1 does not terminate by itself, then 
after a t  most n +  1 itera.tions of the loop the program can be stopped since one may conclude that 
it will never terminate. As an example of a subset for which the algorithm does not terminate 
we present the subset in Figure 3c. One can easily verify that for this subset we obtain V2 = Vl, 
which implies that V2 = V3 = V4 = . . ., and proves that this subset has no decomposition of 
the proposed form. However, this subset can be classified with a 2-LP, which proves that the 
sufficient condition of Theorem 2 is not a necessary condition. 

So far, we have not discussed the execution of the different steps in DECAL-1. Especially the 
calculation of m ( T )  and Kt1\T are non-trivial and time consuming. We first concentrate on 
the calculation of \T  = K t 1  n T*. The determination of -v(T) is discussed a t  the end 
of this subsection. The following theorem shows that the calculation of T* on every iteration of 
the loop can be repla.ced by a single calclllation of V* at  the beginning of the algorithm. 

T h e o r e m  5 The DECAL-1 algorithm presented in Theorem 3 can be replaced by the following 
DECAL-:! algorithm. 

program DECAL-2;  
begin 

1 := 0;  
T := V; 
while T # 0 
d o  



Vj+1 := =v(T); 
T := n (-l)l+lV 
I := 1 + 1  

od 
end. 

where +V = V and -V = V*. 

Proof First we show that q+1 C_ Vj, for all 1 E IN. Let Vo = RN then T C q is an invariant. of 
DECAL-1. From the proof of Theorem 3 we know that Vj E P is also an invariant. Combining 
these two invariants it follows that = m ( T )  E -(&) = Vj for all 1 E INo. If we assume 
that T = Vj n (-1)'V for some I E INo, which holds for 1 = 0, then 

which proves that T = Vj n ( - 1 ) ' ~  is an invariant of DECAL-1. 

The last part of this section considers the calculation of m ( T ) .  Theorem 6 presents a system- 
atic method for the calculation of m ( V ) ,  for any subset V € U. Before we can explain the 
different steps of this method, we need the following elementary results. 

The convex-hull of a subset V IRN is defined as 

Next, we define the cone of a subset V C_ IRN as the smallest convex cone containing V. A 
convex cone is a nonempty set of vectors C satisfying x, y € C A A,p 1 0 =+ Ax + py € C; 
see [12]. Hence, we have that 

An elementary result in linear algebra states that every polyhedron can be written as the sum 
of a bounded convex-hull and a cone; see Lemma 5 below. We use {z;)!=~ to  denote the set 
(21,. . . , xk) ,  and by definition we have conv(0) = 0 and cone(0) = cone((0)) = (0). 

L e m m a  5 Let V RN,  then V E P ,  if and only if 

for some k ,  p E INo and xi, y; IRN. 

Next, we show that the closure of a pseudo-polyhedron is a polyhedron. Recall that a pseudo- 
polyhedron is a polyhedron with a number of "missing" faces, which implies that the result is 
intuitively clear. 



Lemma 6 Let V E p ,  then V E P. 

We are now ready for the find result of this paper. Theorem 6 proves that the closure of the 
convex-hull of a subset in U is dways a polyhedron. Furthermore, the theorem presents a method 
for the determination of this polyhedron. The method consists of the following three steps. In 
the first step we apply the definition of U telling that every subset in U can be represented as 
a union of a finite number of pseudo-polyhedra. The closure of each of these pseudo-polyhedra 
is a polyhedron by Lemma 6 and, hence, using Lemma 5 this yields the second step. The 
third step follows by using Lemma 5 in the opposite way. The proof of the final result is 
straightforward, using that ufZ1 V; = ufz1T, except that we have to be careful to note that 
there exist Wl, W2 E P for which conv(Wl U W2) @ P. 

Theorem 6 Let V E U, then 

( i )  m ( V )  E P, 

(ii) V' = m ( V )  can be calculated using the following three steps 

1 

1. Determine 1 E N and V ,  E P ( i  = 1,. . . , I )  such that V = U V;. 
i=l 

2. Determine k;,p; E No and z;j, y;j E IRN such that 

1 p  3. Determine V' E P such that V' = conv({zij}l=l:~l) + ~ o n e ( { y ; , } ; = ~ ~ ~ ~ ) .  

Proof (i)  Follows directly from (ii) and Lemma 5. 

(ii) Let V E U, then V = u:=, V ,  for some 1 E N and V,  E p. By Lemma 6 we have that - 
V; E P, and hence, by Lemma 5, it follows that 

for some k;, pi E N and zij, y;j E JRN. By combining this with the fact that 
- 

m ( V )  = conv(u:,l V;)  = c o n v ( ~ ; = ~  V;), 

the result follows from the following lemma. 

Lemma 7 Let Vl, 112,. . . , Vj E P for some 1 E N and V; = c o n ~ ( { z ; , } ~ ~ ~ )  + cone({yij}:Ll), 
k. 

i = 1,. . . , l .  Then m ( u I z l  V, )  = c o n v ( { ~ , ~ } ~ = , ~ ~ ~ )  + ~ o n e ( { ~ ; ~ } f = ~ ~ ~ , ) .  



4 Discussion and concluding remarks 

Suppose we want to  solve a given combinatorial optimization problem with a two-layered per- 
ceptron. This means that we have to  find a 2-LP that classifies the subset V = v!') for fixed i; 
see [14] for a definition of vfi). This can be done dong the following lines. First use DECAL-2 
to  find a decomposition V = Vl \V2\. . -\ of V for some 1 E IN if i t  exists. Note that we have 
an explicit expression for both +V = V and -V = V* in this case; see [14]. If a decomposition 
is found, we can use the algorithm described in the proof of Theorem 2 to  find the weights of 
the corresponding 2-LP. However, due to  the exponential time complexity of the calculation of 
m ( V )  as described by Theorem 6, the practical use of this approach is limited t o  small values 
of the problem size N. Once a general structure of the 6 ' s  is found, one can then try to  prove 
the correctness of the decomposition for general N in a direct algebraic way. 

We have used the above approach to find a 2-LP for solving the Dynamic Lot-sizing Problem 
introduced by Wagner & Whitin; see Zwietering, Aarts & Wessels [15]. For some time we believed 
that the classification problems corresponding to  this combinatorial optimization problem could 
be decomposed in the form given by Theorem 2. When we implemented the decomposition 
algorithm described in Section 3.3 and applied i t  to  the subsets corresponding to  the classification 
problems, we observed that the decomposition algorithm did not terminate. This proves that 
the decomposition does not exist, but i t  does not necessarily implies that the problem cannot be 
solved with a 2-LP. However, a careful examination shows that the subsets corresponding to  the 
Dynamic Lot-sizing Problem have a structure similar to  the one presented in Figure 3c, which 
can be proved not to  be classifiable with a 2-LP, as indicated in Section 3.1. Consequently, the 
Dynamic Lot-sizing Problem cannot be solved with a 2-LP. 

The main part of this paper discussed the classification capabilities of 2-LPs. A detailed analysis 
was used to  find necessary and sufficient conditions for a subset to be classifiable with a 2-LP. 
The necessary conditions can be used to show that a given problem cannot be solved exactly 
with a 2-LP. One such problem is the sorting problem discussed in [16]. Training a 2-LP to 
solve such a problem is bound to  give a poor result, in the sense that the learning algorithm 
cannot converge to  the optimal solution, and one should therefore consider using a 3-LP in this 
case. The sufficient conditions can be used to  prove that a problem can be solved exactly with a 
2-LP and its verification algorithm can be used to  obtain the required number of hidden nodes. 
Although an exact set of weights can also be determined, the relatively large variation in the 
size of the weights implies that the use of a learning algorithm is sometimes more useful for the 
determination of the weights. 
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Appendix 

This appendix contains the proofs of the lemmas presented in this paper. 

Lemma 1 LetV = J(f), for some f E Rz,N,I, f =gob, withg E RI,K,I, h E R ~ , N , K ,  K E N, 
and hi # hj, for all 1 5 i < j 5 K. Let g = O 0 3  with j(w) = a .  w + b for some a E IRK, 
b E R and define V ,  = J(h;), i = 1,. . .,I<. If there exists a W E C1 and a ball B such that 

0 # B n l v  V 
0 # B n l V *  V*, 

then W = Vt: for some i E (1,. . . , k) with a; > 0. Furthermore, if Vj = (WO)* for some j # i 
then ai > aj .  

Proof Let W = {x E IRN I p-x+q 1 0) for some p E IRN\{0) and q E R. By defining h+,  h- E R1 
as h+(x) = O(p. x + q), h-(x) = 0 ( - p -  x - q), we have W = J(h+) and W0 = J*(h-). Since 
we can write f(x) = O(4(h(x))) = O(Oh+(x) + Oh-(x) + zEl a;h;(x) + b), we may assume 
without loss of generality that hl = h+, h2 = h- and hi # h+,h-  for i = 3,. ..,I<. Let 
h;(z) = O(ci - z  + d;) for some c; E RN\{O) and d; E R, with (c;, d;) # X(p, q) for all X E R and 
i =  3, ..., I<. 

Wedeterminex2,x3 ,..., XK E I@= {x E ~ ~ I p - x + q =  0) and €2 > ~ g  > ..., EK > 0, with 
B ( x 2 , ~ ~ )  C B and 

First, since B n W # 0 and B n W* # 0, we must have B n w # 0. Hence, there exists an 
x2 E B n W. Then obviously B(x2, €2) C B for some €2 > 0. 

Next, assume and ~ i - 1  have been determined for certain i E (3,. . . , I<), for which the ball 
B (X; -~ ,E ; -~ )  satisfies the above conditions. We then construct B(x;,E;) satisfying (15). Since 
(c;,d;) # X(p, q) for all X E R, we cannot have c; x + d; = 0 for all z E B(x;-l ,E ; -~ )  n W. 
Hence, there exists an xi E B(X; -~ ,E ; -~ )  n 1ri7 \vith C; x + d; # 0. This implies that B(x;,E;) C_ 

{X E IRN I C; x + di # 0) and B(x;, €i) B(x~-1, for some E; > 0. 

Using (15) we see that x E B(XK,EK) implies tJ1a.t x E B and c; x + di # 0 for i = 3,. . . , I<.  
Take y, z E B(xK, EK) with p .  y + q > 0 and p 2 + q < 0, which is possible since p .  r K  + q = 0. 



It then follows that hl ( z r ; )  = h l ( y )  = hz(z,) = h 2 ( t )  = 1, h l ( z )  = h 2 ( y )  = 0. Furthermore, by 
using (14),  we have zr;, y  E B f l  J ( h + )  = B n W V and z  E B f l  J*(h+)  = B n W* C_ V*, 
which implies that j ( h ( z ~ ) )  2 0 ,  j ( h ( y ) )  _> 0  and j ( h ( z ) )  < 0. Finally, by using B ( x ~ , E ~ )  C_ 
n E 3 { z  E ELN ( c ;  - z  + d; # 0 )  one can show that h i ( z K )  = hi (y )  = h ; ( z )  for i = 3, .  . . , K. Hence, 

and 

which completes the proof. 

Lemma 2 If V E F, then there are g = O 0 j  E Rl,k,l, h  E R 1 , ~ , k  and k  E IN, such that 
V = J ( g  o h )  and j ( h ( z ) )  E { - k ,  -k + 1,.  . . , 0 ) ,  for all x  E RN. 

Proof Let V E p, then V = n;kXl v, ,  for some k  E IN and Vl, .  . . ,Vk E El. Let 0  5 T 5 k  be 
such that V,  E C1 for i = 1,.  . . , T and V: E C1 for i = r  + 1 , .  . ., k .  Furthermore, let h  E R 1 , ~ , k  

and g  = O o j  E Rl,k,l be defined by I< = J ( h ; ) ,  i = 1 , .  . ., T ,  V ,  = J * ( h i ) ,  i = r  + 1 , .  . ., k  
k and j ( w )  = C;=, W i  - CiEr+l w, - r ,  ( w  E Rk), respectively. Then one easily verifies that 

V = J ( g  o  h )  and j ( h ( x ) )  E { - k ,  -k + 1,. . . , 0 )  for all x  E RN. 

Lemma 3 Let Vl E P ,  Vz f C 2  and assume that V ,  = J(g i  o  h i ) ,  g, = O o  j; E Rl,ki,l ,  
hi E R l , ~ , k ~ ,  3 i ( h l ( ~ ) )  E { - k i ,  -kl + 1,. . . , 0 )  and j2(h2(x))  E {-a, -a + 1,.  . . , P I ,  for some 
k l ,  k2 E N ,  cr E IN, P E INo, and for all x  E RN. Then Vl \V2 = J ( g  o  h ) ,  with h  E R1,~,k,+k2 
and g  = O 0 j  E Rl,kl+k2,1 given by h ( x )  = ( h l ( x ) ,  h 2 ( x ) )  and 

respectively. Furthermore j ( h ( x ) )  E {-klcr - P - 1,.  . . ,a - 1 )  for all x  E lRN. 

Proof If x 61 V l  then j l ( h l ( z ) )  5 -1 and hence, j ( h ( x ) )  _< -a - j 2 ( h 2 ( x ) )  - 1  5 -1. 
If x  E Vl then j l ( h l ( x ) )  = 0  and hence, j ( h ( x ) )  = - j 2 ( h 2 ( x ) )  - 1  2 0  if and only x  51 V2. 

It remains t o  show tha.t j ( h ( x ) )  E { - k l a  - p - 1, .  . . , cr - 1 )  for all x E lRN,  which follows 
directly from (16) .  0 

Lemma 4 Let V be a  subset o f lRN.  If1/ = lV1\l/ti\. - -\Wk for some k  E JN and Wl ,  . . . , Wk E P ,  
then 1 5 k  is  an  invariant of DECAL-1. 

Proof Suppose V = Wl \ 14'2 \. . -\ Wk with IV; E P ( i  = 1,. . . , k ) .  Define the sets Ti, c. and 2; 
(i = 0 ,  . . . , k )  by: 

Zk = 0 ,  
Z;  = Wi+1\ z i + ~  ( i =  k -  1 ,  ..., 0 ) ,  (17)  

vo = IRN, - 
= E Z ~ T ( V , - ~  n Z i - l ) ,  ( i =  I ,  ..., k ) ,  (18) 

To = I / ,  
Ti = C\T;-~, ( i  = I , . . . $ ) .  ( 19)  



Using (17) one can easily show that %-1 n Zi-1 = ( c -1  n Wi)\Wi+l \. . -\ Wk, for i = 1,. . . , k. 
Hence, using (18), vo E P, Theorem 6 and mathematical induction we find that c E P for 
i = 0, . . . , k. This implies that we also have n c-1 n Wi E P, for all i = 1, . . . , k, which we 
use t o  derive: c-1 n =. c\ Zi, (20) 

for all i = 1,. . . , k. This proof goes as follows. Using (18) and (17) we find that 

and hence, since c n rl W; E P implies c n n W; closed and convex, we have c n n-l n 
Wi = T6iiV(%:._1 n Z;-l) = v;. Substituting this back into (21) we get (20). 

Now we use (20) t o  show that: 
T, = c. n zi, (22) 

for all i = 0,1,. . . , k. We start with To = V = IRN n V = vo n Zo. Next, assume (22) holds for 
some i E (0,. . . , k - I ) ,  then from (20) it follows that Ti = c+l\Z;+l , 'and hence: 

hereby completing the proof of (22) by mathematical induction. From (22), (18) and (19) we 
conclude that c and T; sa.tisfy: 

for all i = 0,. . . , k - 1. Since To = V, this proves that T = Tl and & = are invariants of the 
DECAL-1 algorithm. The result now follows from Tk = Pk n Zk = 0. 

Lemma 6 Let V E P, then V E P. 

Proof Let V E P ,  then V = nf=, V , ,  for some 1 E IN and VI. E El. Assume V ,  = (x I a;. x + b; 2 
0), i E 11, and V ,  = (x I a ; .  x + b; > 0), i E 12, for some ai E RN, b; E IR (i = 1,. ..,I), and 
define: 

1 

W =  n { x l a i . x + b i ~ O ) .  
i=l 

Since V 2 W, we have 7 E = 14'. To prove that W E V we take x E W \ V  and E > 0. 
Then a; x + b; = 0 for i E I3 2 I 2  and ai . x + b; > 0 for i E 13\12. Let 6 > 0 be such that 
a; y + b; > 0 for all i E 13\IZ a.nd y E RN with 1Jx - yll < 6. 



We may assume that V # 0 (otherwise the proof is trivial), which implies that s E V for some 
z E IRN. Let X = min(~,6,1)[11x((+ llsll + I)-' and define y = (1  - X)x + A s .  Then llx - yll < E 

and it remains to  show that y E V. 

Firstly, since x, z E W, X E (0,j.l and W is convex we find that y E W ,  which implies that 
a ; .y+b.  I - > Ofor all i E Il. Secondly, wehavethat a i .y+bi  = ( 1 - X ) ( a i - x + b i ) + X ( a i - s + b i )  = 
X(ai s+ b;) > 0 for all i E 13. Finally, ()x - yJI < 6 implies that ai y+  bi > 0 for all i E 13\12. 

Lemma 7 Let Vl, V2,. . . , I4 E P for some 1 E IN and V ,  = conv({~~~}:&~) + ~ o n e ( { ~ ~ , } ~ ~ , ) ,  
k. i = 1,. . . , l .  Then F6iTv(uf,, K) = c o n ~ ( { z ~ , } f = ~ ~ ~ ~ )  + c ~ n e ( { ~ ~ ~ ) f , ~ ~ ~ ~ ) .  

Proof If 1 = 1 the proof is trivial, we therefore assume 1 2 2. 
Define the subsets W, V' I R ~  by: 

Using that V,  is convex one easily shows that m ( V )  = W. Hence, the proof is completed by 
showing that W = V'. Since W 5 V' implies W 5 V' V', i t  remains to  verify that V' 5 W. 
Let x E V', then from from the definition of V' it follows that: 

for some p;j 2 0, ~ ; j  2 0 with ~ i = ~  Ck: 1 - 1  pij = 1. If kl = k2 = . . . = ki = 0, then 

1 1 P i .  

= C 7 C("-ij)yij E W, 

otherwise we assume without loss of generality that kl _> k2 2 . . .>  k, > 0, k,+l = . . . = kl = 0 
for some 1 2  T 5 1 and p11 > 0. 

Take E > 0. Let 6 = m i n ( ~ p l l , ~ ( C ; I , ~  JJxi l (J  + I)-') > 0 and define: 

6 .  where XI = C:&, p l j  - 6, X i  = C:L~ pij  + m, ( t  = 2,. . .,1), fill = (pil  - 6)/X1, jiil = 
6 (pi1 + =)/Xi, ( i  = 2,.  . ., T ) ,  fiij = pij/Xi, ( i  = 1,. . . , T, j = 2,. . . , k;) and f j j  = T;~/X;. This 

implies that y E W since Xi > 0, Ci=l Xi = 1 and C:;, ji;, = 1 ( i  = 1,. . ., r ) .  

Finally, we have that (12 - yll = 116x11 - CrZ2 &x;1)11 < 6(CL1  IIxilll) < E, which completes 
the proof of the lemma. I3 


