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Abstract 

In this paper we study a system consisting of c parallel identical servers and a common 
queue. The service times are Erlang-r distributed and the interarrival times are Erlang-k 
distributed. The service discipline is first-come first-served. The waiting process may be 
characterised by (n-1, no, nl ,  . . . , n,) where n-1 represents the number of remaining arrival 
stages, no the number of waiting jobs and ni, i = 1, . . . , c, the number of remaining service 
stages for server i .  Bertsimas has proved that the equilibrium probability for a saturated 
state (all ni > 0, i = 1, . . . , c) can be written as a linear combination of geometric terms with 
no as exponent. In the present paper it is shown that the coefficients also have a geometric 
form with respect to n-1, nl, . . . , n,. It is also shown how the factors may be found 
efficiently. The present paper uses a direct approach for solving the equilibrium equations 
rather than a generating function approach as Bertsimas does. The direct approach has been 
inspired by previous work of two of the authors on the shortest queue problem in particular 
and the two-dimensional random walk more generally. Although the paper extends results 
of Bertsimas it is self-contained. 

1 Introduction 

The EklErJc queueing system is a typical example of an elegantly modelled and seemingly sim- 
ple system which, nevertheless, has never been analyzed satisfactorily. Apparently, the system 
behaviour is more complex than the simple formulation suggests. A generating-function ap- 
proach may be found in Poyntz and Jackson [9], where it has been worked out a little bit for 
c = 2 and c = 3. This approach however, doesn't yield exact expressions for the equilibrium 
probabilities, but merely leads t o  involving numerical procedures. In the present paper a rather 
direct approach (without generating functions) will be presented for solving the equilibrium 
equations. The inspiration for using this approach came from its relative success in solving the 
equilibrium equations for the shortest queue problem (cf. [I], [2]) and its generalization to  the 
two-dimensional random walk on the integer grid in the first quadrant (cf. [I], [3]). In these 
cases the essential idea was to  avoid the integration of the equations for boundary states with 
the equations for states in the inner region by constructing the usual functional equations for 
the generating functions. This integration could be avoided by first constructing a sufficiently 
rich solution base for the equilibrium equations in inner points and then use this base for finding 
a linear combination which also satisfies the equations for the states on the boundary. In [I], [2] 
and [3] the linear combination is found by a compensation procedure. 

To some extent, a similar approach is followed by Bertsimas [4] for the CklCrlc problem, which 
is more general that the Ek(Er(c  problem. Bertsimas proves in this way that  the equilibrium 
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probabilities for saturated states can be written as a linear combination of terms which are 
geometric in the number of waiting customers. In the present paper it is shown that Bertsimas' 
representation can be refined considerably for the EklE,lc problem. This refined representation 
gives more insight in the behaviour of the processes and is also very useful for computational 
purposes. The refinement is obtained by a complete direct analysis of the equilibrium equa- 
tions, contrary to the approach of Bertsimas, who also separates the equilibrium equations for 
boundary and inner states, but still treats the latter by generating functions. Extensions of the 
present approach to  more complicated distributions are possible, however, in such cases the re- 
sults are correspondingly more complex. Therefore, i t  seems sensible to introduce our approach 
for EkJ E, lc problems separately. 

This paper is organised as follows. In section 2 the model is introduced and the relevant equilib- 
rium equations are formulated. In section 3 the products of powers are constructed satisfying the 
equations in the states with all servers busy. Section 4 presents the main theorem, stating that 
the equilibrium probabilities can be expressed as a linear combination of products of powers. In 
section 5 the symmetry of the model is exploited and in section 6 two special cases are worked 
out in more detail. The final section is devoted to comments and conclusions. Two technical 
lemmas are proved in the Appendices A and B. 

2 Model and equations 

Consider a system with c parallel identical servers and a common queue. The service times are 
Erlang-r distributed with mean r / p  and the interarrival times are Erlang-k distributed with 
mean k/A. An Erlang-1 distributed time with mean l/v is interpreted as to be composed of 1 
stages, each with a negative-exponentially distributed length (parameter value v). The service 
discipline is first-come first-served. An arriving job, who finds any free servers, chooses each 
free server with equal probability. This queueing system can be modelled as a continuous- 
time Markov process with a state space consisting of the vectors % = (n-1, no, nl ,  . . . , nc), 
where n-1 is the number of remaining arrival stages, no is the number of waiting jobs and n; 
is the number of remaining service stages for server i ,  i = 1,. . . ,c. Below we formulate the 
equilibrium equations for the states % with all servers busy, i.e. n; > 0 for i = 1,. . . , c. Let 
- e; = (0,. . . ,0,1,0, .  . . ,0) have c + 2 components, with the one at the same place as n; in % and 
let vii. denote {i 2 1 1 n; = r). By equating the rate out of and the rate into state 7i we obtain 

p(%)(X+cp) = x p(%- ( k -  1 ) ~ - ~  - rE,)X+ C p ( % + E o  - ( r  - l ) ~ i ) p +  
i €qy  i€vii. 

+ C p ( 7 i + z i ) p ,  n-l = k , n o = O , n ; > O , i = l ,  . . . ,c .  
i4vii. 



Bertsimas essentially proves in [4] that p(E) may be written as 

where for each j the factor wj is characterized by a system of nonlinear equations involving 
the Laplace transforms of the interarrival and service time distributions and the coefficients 
Dn-, j and R(nl,...,nc),j have t o  be solved from a system of k respectively a(c, r) = (7:;') linear 
homogeneous equations. In fact, he uses a slightly aggregated state concept, which exploits the 
fact that  servers are identical. 

In section 3 we will develop a more detailed representation in which also the D- and R- factors 
are replaced by geometric forms. Although we assume to  have identical servers, we don't use 
this assumption explicitly and the results of sections 3 and 4 can easily be extended t o  the case 
of non-identical servers. 

3 Analysis of the equations for nonboundary states 

The geometric forms we will investigate as solutions for (1) and (2) are P2i1P7 . . .P;C. We 
will first characterize the products which satisfy ( I ) ,  (2) and then we will use these products to  
construct a linear combination also satisfying the boundary conditions. The boundary conditions 
are formed by (3) and by the equilibrium equations for states with n; = 0 for some i E (1, . . . , c}. 

Inserting p(K) = ~ ~ T ' P ~  . . .ppc in (1)-(2) and then dividing both sides of the resulting equations 
by the common powers leads to  the following characterization: 

Lemma 1: The product P>;'P? . . .ppc satisfies (1)-(2) iff P-l, Po,. . . ,PC satisfy 

POP x + c P = P - ~ A + C ~ + C P ~ P  
ie V iqV 

for each V c {1,2,. . . , c}. 

This lemma states that the parameters P-1, Po,. . . ,PC are characterised by a set of 2'+' equa- 
tions. Luckily, it can be shown that most of these equations can be expressed by a linear 
combination of a set of c + 2 basic equations, which are formulated below. 

Lemma 2: The product P1yl P? . . . Pcnc satisfies (1)-(2) iff P-1, Po, . . . , PC satisfy 



Proof: The equations (6)-(8) are a subset of the equations (4)-(5). So it remains to  prove that  
each equation in the set (4)-(5) can be found as a linear combination of the equations (6)-(8). 
Let V C (1,. . ., c ) .  Then equation (4) is obtained by addition of equation (7) for all j E V and 
then subtracting IVI - 1 times equation (6). Equation (5) follows by addition of equation (7) for 
all j E V and equation (8) and then subtracting IVI times equation (6). 

We now solve the equations (6)-(8). Subtracting (6) from (8) yields that  Pi = Po for j = 1,. . . , c. 
Hence, by introducing the parameters zi satisfying zf = 1 for i = 1,. . . , c, we may write 

for some y. Subtracting (6) from (8) yields that pkl = l/Po and thus /3kl = l /yr  by (9). Hence, 
if we set 

then we obtain that  pkl = l/ark. So, by introducing 2-1 satisfying zkl = 1, we have 

Insertion of (9)-(11) in equation (6) leads t o  the following equation for a: 

ar(A + cp) = z-lA + a'+k zip. 

On the other hand, it is easily verified that for any root a of this equation the product 
P"'P2 . . . P,"c with P-1, Po, . . . , PC satisfying the specifications (9)-(1 I ) ,  is a solution of the 
equations (6)-(8). These findings are summarized in the following lemma. 

Lemma 3: The p d u c t  P2;'/32 . . . PFc satisfies (1)-(2) iff P-1, Po, . . . , PC satisfy 

whew = zf = 1 for i = 1,. . . , c and a is a mot of equation (12). 

This lemma characterizes the set of products /3:;'/32 . . .P:c satisfying (1)-(2). Clearly, only 
products which can be normalised, i.e. whose sum over all states A converges absolutely, are 
useful. This implies that  lPol < 1, or equivalently la1 < 1. The next lemma, which is proved in 
appendix A, states how many roots of equation (12) lay inside the unit circle. The condition in 
that  lemma states that  the offered workload per unit time may not exceed the maximal service 
capacity. 

Lemma 4: Provided < c,  equation (12) has ezactly r simple mots inside the unit circle for 

each set of parameters z; satisfying zkl = zf = 1 for i = 1,. . . , c .  

We henceforth assume that  the utilisation condition in lemma 4 is satisfied. 

A Assumption: $ < c. 



According to  the lemmas 3 and 4, there are r products PIfylP? . . .ppc with lPol < 1 satisfying 
(1)-(2) for each feasible choice of z - l , z l , .  . . , z,. So we find rkrC products. However, below we 
show that some of them are identical. 

We may write 

r = pd, k = ~ d ,  

where d = gcd(r, k) and gcd(p, n) = 1. For each a satisfying (12) i t  follows that u a  with ud = 1 
also satisfies (12) and both roots lead to  the same products, since the factors Pi depend only 
upon ad. Therefore we set y = ad. Then equation (12) reduces to  

and lemma 3 can be restated as follows. 

Lemma 5: The product pn;'P? . . .pP satisfies (1)-(2) ifl P-1, Po,. . . ,PC satisfy 

where zkl  = zy = 1 for i = 1,. . . , c and y as a root of equation (13). 

For two roots yl and 72 of (13) inside the unit circle, it is easily verified that 7," # 7," (see 
also lemma 7), and so yl and 7 2  lead to  different values for Pi. Hence, from lemma 4 (with r, k 
replaced by p, n) it follows that for each feasible choice of the parameters z; there are p products 
P"' . . . P,"c with lPol < 1 satisfying (1)-(2). So, by letting run the parameters z; through all 
feasible values, we find pkrc products. However, there still are duplicates among these products, 
since the two sets of parameters 2-1 /uplK, U Z ~ ,  . . . , UZ, with uf = 1 and vz-l ,zl , .  . . , zc with 
vK = 1 lead to  exactly the same products as the original set z - l , z l , .  . . ,zc. This follows by 
observing that if 7 is a root of (13) for the original parameter set, then y/ul/" and wy with 
w satisfying wK = 1 and wp = v, are roots of (13) for the first, respectively second parameter 
set, and the three roots lead to  the same product. Hence, there are rn  copies of each product. 
To avoid these copies we arbitrarily decide to  restrict the feasible values for z l  to z l  = 1 and 

2 r i  
the feasible values for 2-1 to  the first d roots of the equation zkl  = 1, i.e. z-1 = e T n  for 
some n = 0,1,. . . ,d  - 1. Now, by letting run the parameters zi through this restricted set of 
feasible values, we find pdrc-I = r products and it is readily verified that there are no duplicates 
among them. We label these products PliiPonoJ.. .PC;, j = 1,2,. . ., rc. In this way we have 
characterised the set of product forms which satisfy the equilibrium equations (1) and (2). In 
the next section, we will prove our main result which states that p(A) can be expressed as a 
linear combination of the products Pl;tjP$. . . .P,",;, j = 1,2,. . . , rC  for states A with all servers 
busy. 

4 Satisfying the boundary conditions 

Theorem 1: For all states A with n; > 0 for i = 1,. . . , c, it holds that 



for suitably chosen coeficients a , .  

Proof: For each choice of the coefficients a j  the linear combination 

satisfies the equations (1)-(2). The remaining equations are the equations (3) and the equilibrium 
equations for states with at  least one server free. These equations form a linear, homogeneous 
system for the unknowns a, and the unknown quantities p(A) in states with at  least one server 
free. The number of equations is equal to the number of unknowns. Hence, by first omitting the 
equation in D, the reduced system has a nonnull solution. The equation in D is automatically 
satisfied, since inserting the solution p(K) in the equations in states ii # D and then summing 
over these equations and changing summations exactly yields the desired equation. Changing 
summations is allowed, since the sum of p(?i) over all states absolutely converges. This follows 
from the fact that lPo,jl < 1 for all j. Hence, p ( ~ )  is an absolutely convergent solution of all 
equilibrium equations. It remains to  show that p(?i) is a nonnull-solution. This follows from the 
next result, which is proved in the appendix. 

Lemma 6: The products P";f Po",;. . . P,:;, j = 1,. . . , rc are linearly independent on the set of 
states ?i with all servers busy, i .e.  

From a result of Foster [5] we may now conclude that the Markov process is ergodic and nor- 
malization of the p(E) produces the equilibrium probabilities. I7 

5 Exploiting the symmetry 

Since we have not used the fact that all servers are identical, the results in the previous sections 
are still valid in case server i works with rate pi, where the rates p; are not necessarily identical. 
In this section, however, we exploit the fact that all servers are identical and we show that the 
number of coefficients aj to  be determined, can be reduced from rC  to  ('fl;'). The same result 
could have been obtained directly by chosing the same aggregated state concept as in [4]. 

By letting the parameters z; run through all feasible values, we find pkrC products satisfying 
(1)-(2) (including, of course, exactly KT copies of each product). Since equation (13) is invariant 
under permutations of z l , .  . . , z,, i t  follows that for each P ~ ~ l p ~  . . .PFc satisfying (1)-(2), all 
products obtained by permuting the factors PI,. . . ,PC also satisfy (1)-(2). This suggests to  split 
up the set of pkrC products into subsets of products, which are equal up to  a permutation of 
the last c factors. The number of such subsets is p k ( c f ~ ~ l ) .  However, since each product has 
exactly KT copies, each subset also has exactly KT copies. So there are ( C f ~ i l )  different subsets. 
Let I l l  be the set of labels of the products Plf;fjpt,"j.. .P,:; in the I-th subset. Then expression 
(14) may be written as 



By symmetry 

~ ( n - ~ ,  no, nl ,  . . . , n,) = ~ ( n - 1 ,  no, n ~ ( i ) ,  ., 

for each permutation r of (1, . . . , c ) .  Hence, for all states A with n, > 0 for i = 1, . . . , c 

Since the products pn;tjpOnpi.. .PEf are linearly independent on this set of states, it follows that  
for each 1 the coefficients a1 with j E 111 are identical. So, denoting some arbitrarily chosen index 
in 111 by jl, we obtain from (16) that  

For each state A we denote by s;(A) the number of servers with i remaining service stages. Then 
i t  is readily seen that  

where Bl(ii) is the coefficient of I;'('). . . dr(') in the polynomial 

Since P;j, = zi,j,Pl,jl with xi,jl = 1 we may write 

where Cl(H) is the coefficient of z;"~. . . grO in the polynomial 

These findings are summarized in the following theorem. 

Theorem 2: For all states A with n; > 0 for i = 1,. . . , c ,  it holds that 

for suitably chosen coeficients aj, . 



6 Two special cases 

Of course, for particular cases, the results can be made more explicit. In this section we work 
out in more detail the results for the Ek(E21c queue and the EklE,I1 queue. 

Let us first consider the EklE2(c queue. For k being odd, we can restrict the feasible values for 
2-1 to  x - ~  = 1, so equation (13) reduces to 

where I is the number of parameters zi with z; = -1. We now define 721 and 721+1 as the roots 
inside the unit circle of (18) for I = 0,1,. . . , [(c - 1)/2] and, if c is even, then 7, is the positive 
root of (18) for 1 = 4 2 .  F'rom theorem 2 it easily follows that for states Ti with all servers busy 

for suitably chosen coefficients a/, where P - ~ J  = ~ f ,  Po,, = 7fk and PI,/ = 71 and Ci(E) is the 
coefficient of z;' (E)z;2(q = z;~(')z;-"' (' in the polynomial 

For k = 1 these results are equivalent to the ones in Shapiro [ll]. The case that k is even can 
be treated similarly. 

Let us now consider the Ekl E, 11 queue. F'rom theorem 1 it follows that for states Ti with a busy 
server 

p(z) = p(n-1, no, n1) = C ajP1;:P;;P;:. 

In general the coefficients a j  have to  be solved numerically from the boundary equations. How- 
ever, in this case, they can be solved explicitly from the equations (3) stating that 

Substitution of expression (19) in equation (20) and using (8) yields 



This set of equations can be solved by using Cramer's rule. Since the determinants involved are 
VanderMonde determinants, we easily obtain 

for some constant C .  To satisfy equation ( 2 1 )  we have to set 

Finally, the constant C can be determined from the following equation stating that l l k  is the 
fraction of time there is one remaining arrival stage. 

By substituting the expressions ( 1 9 )  and (23 )  in the left-hand side of ( 2 4 )  it follows that 

- - 1  

c l l j < l  - P 1 , j ) '  

The last equality follows by observing that the polynomial 

with degree r - 1  satisfies P ( l / P l j )  = 1  for j = 1 , .  . . , r ,  so P ( x )  - 1 and thus P ( l )  = 1. From 
( 2 4 )  and (25 )  we find 

Hence, for the EkJ Er 11 queue the probabilities p ( ~ )  are characterised explicitly by the expressions 
( 1 9 ) ,  ( 22 )  and (26 ) .  Similar expressions may be found for the mean queue length and the mean 
waiting time, compare e.g. the results in Ikeda [7], where an expression for the mean waiting 
time in terms of a double series is derived. 



7 Comments and conclusions 

It has been shown that the equilibrium distribution for the EklE,(c queue may be characterised as 
a finite linear combination of products of powers. In these products each component of the state 
is represented by one power-factor. These power-factors have been characterised completely. 
The weights of the linear combination are determined by a set of linear equations. Although 
the analysis has been worked out for the case of identical servers, the main result (theorem 1) 
can easily be extended to  the case of nonidentical servers. In that case the linear combination 
contains rC terms which makes the solution tractable from a computational point of view. If there 
are some groups of identical servers, then the required number of terms decreases considerably. 
In the case that all servers are equal, the number decreases to ( c : ~ i l ) .  For the case c = 1, the 
equations for the weights can be solved explicitly. Also in other special cases the results can be 
made somewhat more explicit. 

With respect to possible extensions, there are several directions of interest. One interesting 
direction is constituted by the case of separate queues for the c servers with some sort of allo- 
cation of the incoming jobs to the respective servers. For such systems it has been proved that 
the so-called shortest-delay routing is optimal under some conditions (see Hordijk, Koole [6]). 
Shortest-delay routing allocates an incoming job to  the server with the lowest number of phases 
in its queue. This situation has been treated to  some extent by Adan in [I] (see section 6.2) for 
the case c = 2, k = 1. In this situation one gets a linear combination of countably many terms 
which can be computed according to a tree-like recurrent scheme. The results are complete for 
r  = 2. For r  > 2, however, some properties of the recurrent scheme are not established yet. 
For c > 2, it is unlikely that the approach will work, since it apparently does not work for the 
shortest queue problem with 3 servers, Poisson arrivals, and exponentially distributed service 
times. 

Another interesting direction of extension consists of replacing Ek and/or E, by more general 
distribution classes. One may think here of Coxians (cf. Bertsimas [4]) or of finite mixtures of 
Erlang distributions with the same scale parameters, but also of general phase-type distributions 
(cf. Neuts [8]). The class of finite mixtures of Erlang distributions with the same scale parameters 
is dense in the set of all distributions (cf. Schassberger [lo]) and leads to the same state 
description as the one in the present paper, however, with slightly more complicated transition 
behaviour. A simplification would be to accept only mixtures of two Erlang distributions with 
k - 1 and k phases for the interarrival times and with r  - 1 and r  phases for the service times, 
since (as Tijms [12] points out) this class seems to  be sufficiently rich for most practical purposes. 
Particularly for the two last-mentioned situations, it seems most likely that similar results may 
be derived as in the present paper. 

Appendix A: Proof of Lemma 4 

Let 

f ( t )  = %,(A + cp) - 2 - 1 A ,  

Then we have to show that f ( t )  +g(z) has r  simple zeros inside the unit circle. It readily follows 
that 



Since L( l )  = l(1) and L1(l) < 11(1) by virtue of the condition Xrlkp < c, there exists an r > 0 
such that  L ( l -  r )  > Z(1- r). Hence, from Rouchd's theorem we can conclude that f (z) + g(z) 
has r zeros inside the circle lzl = 1 - r. It remains t o  show that all zeros are simple. Assume 
that  f (z) + g(z) and fl(z) + gl(z) vanish for some z, i.e. 

zT(X + cp) - L I X  - zT+k C z ip  = 0, 

Below we argue that  this assumption leads t o  a contradiction. If Cf=o z; = 0, then the equations 
(27) and (28) have no solution. If C:=, z; # 0, it follows from (28) that 

and insertion of (28) in (27) yields 

Taking absolute values in (29) and (30) and combining these two equalities gives 

However, below i t  will be shown that  h(X) > 0 contradicting (31). Then we may conclude that  
there are no values of z satisfying (27) and (28). First, note that h(0) > 0 and hl1(z) > hl1(O) > 0 
for all z > 0. Then hl(0) 2 0 implies h(z) > 0 for x'> 0 and thus in particular h(X) > 0. 
Otherwise, if hl(0) < 0, then hl(z) = 0 for a unique i > 0 given by 

It is easily verified that  

If 1 EL1 z;1 < C, then h ( i )  > 0 and thus, since i is the global minimum of h(z) for z > 0, it 
follows that  h(X) > 0. Finally, if I Cf=, z;l = c, then h ( i )  = 0 and i simplifies t o  f = cpklr .  
The condition Xrlkp < c implies that X < i, so h(X) > h ( i )  = 0, completing the proof of lemma 
4. 



Appendix B: Proof of Lemma 6 

Let us assume that (15) holds. By substituting p0,j = Pi,j and Pi j  = zi,jPlljl i = 2,. . . , c where 
z;,, are solutions of zTBj = 1, into equation (15) and introducing the variable m denoting the 
total number of uncompleted service stages in the system, i.e. 

m = nor + nl + .  ..+ n,, 

it readily follows that equation (15) implies 

rC 

C a j / 3 ~ ; ~ / ! ? ~ z ~ ~ . . . z $ = 0  (O<n- l  < k , m t c r , O < n ; < r , i = 2  ,..., c). (32) 
j=1 

For each feasible choice of n-1, m, 723,. . . , nc we obtain from (32) that 

r-1 

a j P ~ i > P ~ , ~ ~ >  . . .z:; (e?.) " = 0 (0 < n2 5 r). 
n=O 

By well known properties of the VanderMonde matrix this implies that for n = 0,. . . , r - 1 

n-l pm. "3. . . . 2 ° C .  = 0 C a ,  , I ~ ,  CJ ( O < n - 1 5 k , m > c r 1 O < n ; 5 r , i = 3  ,..., c). 
k n  r2, j=e r 

By repeatedly applying this procedure, equation (32) eventually decomposes into rC-' sets of 
equations, i.e. for each choice of z j  satisfying z j  = 1, j = 2,. . . , c we obtain 

C a J .pn-'.PCj -1 ,~  = 0 (0 < n-1 5 k, m 2 cr). 
x2,j=x2r...rxc,j=xc 

The sum in (33) runs over exactly r products of which the factors P-l,j and Pllj are given by 
2ni 

P-l,j = Z - ~ / ~ P  and P l j  = 7% with x-1 = e T n  for some n = 0,1, ..., d -  1 and 7 is a r o o t  
inside the unit circle of 

From the next lemma it follows that the products in (33) have different factors P I j  implying 
that a j  0. Since, on the other hand, a j  = 0 trivially implies (15), this completes the proof of 
lemma 6. 

2ni 
Lemma 7: Let 71 and 7 2  be mots inside the unit circle of (34) with 2-1 = e T n l  and 2-1 = 

2ni 
e T n 2  respectively, where 0 I nl < n2 < d. Then 7? # 7;. The same result holds if nl  = n2 
provided that 71 # 7 2 .  

Proof: It is shown that the assumption 7? = 7; leads to  a contradiction. The roots 71 and 7 2  

satisfy 



Zni Zni 
where yl = e T n l  and y2 = e T n 2 .  Multiplying (35) with y2 and (36) with yl and then 
subtracting both equations and inserting 7; = 7 t  yields 

If we can prove that  y27; - yl 7:  # 0, then division of (37) by this term results in 

which contradicts that  lrll < 1 and thus completes the proof of lemma 7. Hence, it remains to  
prove that  y27f # yl$. Let us suppose to  the contrary, i.e. 

On the other hand, since 72 # 71 and 7 ;  = 7f, it follows that  72 = e%n71 for some n = 
1,2, .  . . , rc - 1. Substitution of this relation in (38) yields 

This equality implies that  (recall that  k = ~ d )  

for some integer m. Since n2 - nl < d it follows that (39) leads to  a contradiction if n2 > n l .  
Otherwise, if n2 = nl , then, since gcd(p, rc) = 1, equality (39) implies that  n can be divided by 
rc contradicting that  0 < n < rc. 
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