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Foreword 

The paper deals with the comparison of the quality of continuous-in-time and discrete-in-time 

observations for a distributed parameter system of a parabolic type. A direct method of con- 

structing the discrete observations that preserve the property of continuous observability is given, 

based on the "sensitivity" points of an associated system with observations that are continuous 

in time. 
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1. Introduction, Statement of Problem. 

We consider the following homogeneous problem for the parabolic equation: 

with an unknown initial condition uo(x). 

In the above R is a simply-connected open bounded domain with sufficiently smooth 

boundary dR ( dR E c 2 )  and an operator A(t) satisfies the condition of uniform parabolicity, 

namely, 

d d n d 
A(t) = C -(aij(x9 1)- + ai(x, t ) )  - C bi(z,t)- - a ( z , t ) ,  

i,j=l 
dx; a x j  i=l dx; 



Assuming that the coefficients in (1.1) are sufficiently regular, we will treat the solution of 

the initial-boundary value problem (1.1) as a generalized one [9, 101 from the Sobolev space 

H;?'(Q), with [15] 

Ln physical situations the space of observations is finite-dimensional. Consequently, we as- 

sume that all the measurement data on the actual state of the system (1.1) are scalar values 

and, furthermore, they are available at the discrete times 

We set, therefore, 

Yk = G ( t k ) ~ ( . ,  .), k = 1,. . . , 

where yk, k = 1,. . . are data and the operator G(tk)  describes the structure of observations. 

Below we shall consider a measurement data of two types. 

We begin with the discrete-time pointwise observations when the measurements are taken 

at  some spatial points of the domain R. 

Let {zl,  . . . , zk ,  . . .} be a sequence of spatial points of the domain R . Then we set 

The following type of observations describes the spatially-pointwise time-averaged (but avail- 

able at discrete times) observations [12]: 

when the measurement data are quantities of the solution u(2,t) , taken at  the spatial points 

zk ,  k = 1, . . . and time-averaged over the intervals 

with r k ,  k = 1, ... being given. 

To ensure the meaning of the values in the right-hand sides of (1.3), (1.4) we require a proper 

regularity of solutions to the mixed problem (1.1). 

If the dimension n of the spatial variable z is equal to  1, due to embedding theorems [9, 

10, 151 we have 

H ~ ( R )  c c(n) 

and the observations (1.4) are well-defined. 



For the case of n = 2 , 3  applying the embedding theorems (namely, -H2(R) c C(a ), [9, 

10, 151) again ensures the meaning for all the values in (1.4). 

For sake of simplicity, when working with the observations of type (1.3), (1.4) we shall assume 

below that  any solution t o  the system (1.1) is continuous function in t and x , when t > 0 

(see [3, 9, 101). 

Definition 1.1.([6,4], see [14, 1, 21) The system (1.1), (1.2) is observable, if a final (or initial) 

state of the system can be uniquely determined from the observations yl, 32, . . . . 

We remark here that  observability indicates, in fact, the existence of some one-to-one oper- 

ator. 

However, the infinite - dimensional nature of distributed - parameter systems generates var- 

ious definitions of observability that are determined by the topological structure of the problem 

(1.1) - (1.2). 

Denote by 

Y = ( ~ l , . . . , Y k , . . . )  

the sequence of all the measurement data. Then we can rewrite the equation (1.2) in the form 

where 

Gu(., -) = (G(tl)u(.,..), . . .G(tk)u(*,  a ) ,  . . .). 

Let us assume that the space of outputs y for the problem of (1.1), (1.5). is a Banach space 

and denote the latter by Bd . 
Definition l.&.(see [14, 1,  21) The system described by (1.1) and (1.2)((1.5)) is said to  be 

continuously observable a t  final time t = 8 , if 

37d > 0 such that 11 GU(., I I B *  2 yd 1 1  u(.,o) I I L ~ ( R )  (1.6) 

for any solution u(x , t )  of the system (1.1). 

It is clear that Def.l.2 implies observability. 

Below we shall consider the case when Bd = lW, so that  

I 1  Y ll1m= SUP I Y i  I - 
k = l ,  ... 

We remark also that all the results below may be extended to  the more "narrow" space 

Bd = l2 , where the Hilbert space l2 has its standard meaning. 



The case of stationary discrete-time observations of type (1.3) (when z k  = Z, k = 1, .  . . ) 
in infinite and finite time horizon has been considered in [4, 61 on the basis of the theory of 

harmonic analysis. For the stationary parabolic system the authors have derived the necessary 

and sufficient conditions for observability (in the sense of Definition 1.1). 

One of the problems that naturally arises here is the comparison of the quality of continuous- 

time and discrete-time observations. We propose a method of constructing the pairs {zk, tk);lo=l 

for observations that ensure an approximation (optimal in the sense that will be specified below) 

of the continuous-in-time measurements by the discrete ones. 

Consequently, the latter enables us to derive (on the basis of results for an associated system 

under continuous-in-time observations) sufficient condition for continuous observability (in finite 

time horizon) for the nonstationary system (1.1) in the case of discrete observations (1.3), (1.4). 

It,  in turn, supplies us with the observability property at  final time. 

In Section 3 we illustrate the main result for an example of one dimensional heat equation 

under stationary observations. 

2. Interrelation Between Continuous-in-Time and Discrete Ob- 

servat ions. 

Let 2(t) E fl, t E T denote a spatial piecewise continuous trajectory in the domain fl. 

Assume that the measurement data are defined by a moving sensor (it is stationary, if 

Z(t) = 2, as well), so as 

where a scalar function y(t), t E T is a measurement data and E is given, E > 0. 

The system described by (1.1) and (2.1) is said [14, 1, 21 to  be continuously observable a t  

final time t = 8 ,  if 

for any solution u(- , - )  of the system (1.1). 

In the above Bc is a Banach space of outputs of the system (1.1), (2.1). In accordance 

with (1.6) we set B, = LM(Tc) or, when it is possible (namely, when 3(t)  is continuous), 

B, = C(T,). 



Assume now that  the measurement curve z(t)  at  the instants ti, i = 1, .  . . passes through 

the points xl ,  x2, . . . , so as 

3( tk)  = xk,  k = 1,. . . . (2.3) 

We note easily that  

II u(.(-), .:I I ~ L ~ ( T , )  I 1, 

implies 

1 u(xk,tk) I 5 1, k = 1,. . .. 

Combining (2.4) and (2.5) leads t o  

Lemma 2.1. Let Bc = Lm(Tc), Bd = lm and (2.3) be fulfilled. If the system (1.1), (1.3) is 

continuously observable a t  final time with the constant 7d , then the system (1 .I) ,  (2.1) is also 

continuously observable a t  final time and 7 ,  2 7d . 

We proceed now t o  the method of constructing the measurements of discrete type that  

enable to preserve both observability and continuous observability a t  final time of the system 

(1.1) under observations of continuous-in-time type (2.1) (if the latter exists). 

Denote by Ulc(.) a set of aU those solutions t o  the system (1.1) on the time interval [&,el 
that  have a unit norm (in the space L2(R) ) a t  the instant 8 , so as 

In turn, due t o  (2.1) the latter generates a set of outputs Ylc(.) , so as 

We note next that  for any positive number 6 we may select in Ul,(-) a denumerable 6-net 

~16 , ( - )  in the norm of c(Q x TE)  , SO as 

The latter means that  for any solution u(.,.) of the system (1.1) on the time interval Tc 

there exists a number j*, such that  

Consequently, we obtain 

Let us consider now a series (over k = 1,. . . ) of optimization problems as follows: 



Since the function Z(t) might, in general, be piecewise continuous, the solution of the 

problem in the above not always exists. 

However, for any positive value p we may designate by t;, t;, . . . , t;, . . . some sequence 

of instants of time such that 

Furthermore, in the case of measurements (1.4), we may select the values of T;, k = 1, .  . . 
in such a way that 

We note that some of the instants {t;}p=O=, may coincide, but this can only reduce the 

number of measurements. 

Set in the measurement equations (1.3) and (1.4) 

Now our aim is to  evaluate the value of continuous output of the system (1.1), (2.1) on the 

basis of an associated (due to  (2.11), (2.11')) discrete output of the system (1.1), (1.3) or (1.4). 

Consider first the case of pointwise observations of type (1.3). 

Let us take an arbitrary solution u*(., .) of the system (1.1) and assume that the following 

condition is fulfilled: 

Denote 

Let j, be an index of an element of the net U,6,(.) that corresponds to u*(-, .). Then, via 

(2.7), we come to 

I u*(Z(t), t)  - vuj,(Z(t), t)  I 5 u6, Vt E T,. (2.13) 

Due to  (2.8)-(2.11), we obtain next 



Combining (2.14) and (2.12) yields 

sup ( ut(3(t), t )  [I 1 + u(26 + P). (2.15) 
t€Te 

On the other hand, assuming that the system (1.1), (2.1) is continuously observable, we 

obtain 
1 

=I1 ~ * ( . , e )  I/~z(n) I - 'SUP 1 u*(Z(t),t) I - (2.16) 
r c  tETe 

Finally, if the parameters 6 and P are sufficiently s m d ,  so as 

we obtain the estimate 
1 

sup I ut(2(t),t;l 15 
6 + P ) '  t€Te 1 - 7; (2 

Thus, we have proved 

Theorem 2.1. Let the system (1.1), (2.1) be continuously observable a t  find time in the 

sense (2.2) and let the discrete observations of type (1.3) be constructed along the relations 

(2.11), (2.17) on the basis of the measurement trajectory Z(t) from (2.1). Then, if the discrete 

output (1.3) of some solution u(., -) to  the system (1.1) satisfies the estimate (2.12), the latter 

has due to  (2.1) a continuous-in-time output that satisfies the estimate (2.18). 

In the case of observations of type (1.4) we come to  the same estimate after slight modification 

of the formula (2.14) on the basis of the relation (2.10) instead of (2.9) and the condition 

substituted for (2.12). 

Theorem 2.2. Let the system (1.1), (2.1) be continuously observable a t  find time in the 

sense (2.2) and let the discrete observations of type (1.4) be constructed along the relations 

(2.11), (2.11*), (2.17) on the basis of the measurement trajectory Z(t) from (2.1). Then, if the 

discrete output (1.4) of some solution u(-, -) t o  the system (1.1) satisfies the estimate (2.19), 

the latter has due t o  (2.1) a continuous-in-time output that satisfies the estimate (2.18). 

Theorems 2.1, 2.2 provide us with the estimate 

under condition of continuous observability of the system (1.1), (2.1). 



Consequently, combining (2.20), (2.2) and (2.17) yields the following estimate 

for any solution u(-, .) of the system (1.1). 

Theorem 2.3. Let the discrete observations of type (1.3) or (1.4) be constructed along 

the relations (2.11)-(2.11'), (2.17) on the basis of the measurement trajectory 5 ( t )  from (2.1). 

Then the transition from the continuous-in-time observations of type (2.1) to the observations 

of discrete type (1.3) or (1.4) preserves the property of continuous observability at  final time 

with the constant 

- S + P ) ) .  7 d  = 7d(P, 6) = 7, (1 - yc (2 (2.22) 

Remark 2.1. For given constant 72 the procedure (2.8)-(2.11') of constructing the observa- 

tions of discrete type on the basis of continuous-in-time ones may be considered in some sense 

as optimal. Indeed, the omitting even one of the measurement instants might increase the value 

of 7: . However, we remark that the selection of the measurement points (2.1 I) ,  (2.11') is 

non-unique. 

Remark 2.2. The sequence {t;);P=l in (2.11) admits, in general, the instant t = E as a 

limit point. In the case when the value of y, does not depend upon the length of the interval 

of observations (see 151) the procedure (2.8)-(2.11) can be modified for constructing a sequence 

of measurements of discrete type on the time interval T, that ensures (2.22) and contains the 

minimal in time (the first) measurement instant. 

3. Continuous Observability under the Stationary Discrete- 

Time Observations. 

Theorem 2.3 allows us to  construct the measurements of discrete type (1.3), (1.4) in finite time 

horizon that make the system (1.1), (1.2) be continuously observable at  final time. 

In this section we apply the latter for the case of stationary pointwise observations. 

Let us consider the one-dimensional heat equation 



under stationary continuous-in-time observations 

y(t) = u(5, t), t E T,. 

In the above 

z(t)  = 5, t E T,. 

The system (3.1)) (3.2) was studied by various authors (see [14, 1, 21) and the sufficient 

and necessary conditions for both observability and continuous observability a t  final time were 

established. Below we assume that the latter are fulfilled, so as 3 is an irrational number of 

special type. 

Our aim here to construct a discrete pointwise observations of type (1.3)) namely, 

that make the system (3.1)) (3.3) be continuously observable at t = 9.  

Hence, we have to specify the sequence of measurement instants {tk)p=l. 

It is well-known that the eigenvalues and the (orthonormalized) eigenfunctions for problem 

(3.1) are as follows 

Expanding the solution of system (3.1)) (3.2) in a series of exponentials, we obtain the 

following description for the set Ul,(.) : 

where 

uok = &J1 u(z, O) Sin lrkz dz. 

For any given 6 > 0 we shall select in the latter a 6-net Ufe(-) as follows. 

Denote by 

k = l  k = l  

a sequence of finite dimensional subsets in L2(R), m = 1,. . . . 
It is clear that 



and 

Ul,(.) = cl(  Ulc(m, -)), 
m=l ,  ... 

where "cl" stands for the closure in the norm of ~ ( n  x T,). 

Therefore, to find a &net in Ul,(-), it is sufficient to  find such a net in each of the sets 

Ule(m, -). To do the latter we recall now for the maximum principle [3, 91 for solutions of the 

system (1.1), namely, 

M max ( u(z,t l)  12 max I u(z,tN) 1, tl1 2 t' 2 E > 0, M = const. 
ZEQ ~ € 0  

(3.7) 

We remark that M = 1 for the system (3.1). 

The estimate (3.7) allows us to reduce the problem of constructing a net for each of the sets 

(3.5) to the same problem for the cross-sections of the latters at the only instant t = E .  

Applying the procedure (2.8)-(2.11) for each of the sets Ule(m, .) yields a finite number of 

measurements instants for each m = 1,. . . : 

E < t ; l  < . . .< t ; :  < . . . < t F m < O .  

Finally, we can defined the observations of discrete type as 

The following assertion immediately follows from Theorem 2.3. 

Theorem 3.1. Let the system (3.1), (3.2) be continuously observable a t  final time in the 

sense of (2.2). Then the system (3.1), (3.9) is also continuously observable in the sense of relation 

(1.6) and the estimate (2.22) holds. 

Denote by U(m, .) the set of all solutions to the system (3.1) that are generated by initial 

conditions from the subspace of L2(R) spanned by the first m eigenfunctions. Then we come to 

Corollary 3.1. Let the system (3.1), (3.2) be continuously observable at final time in the 

sense of (2.2). Then, for any m = 1,. . . a finite number of discrete measurements, namely, 

is able to  ensure the estimate (1.6), (2.22) (or the continuous observability at final time) for the 

set U(m, .) of solutions to the system (3.1). 



4. Continuous Observability under Discrete Measurements: 

The General Case. 

We note first that  the problem of existence and constructing the measurement trajectories 

(both continuous and piecewise continuous) that are able to  make the system (1.1), (2.1) be 

continuously observable a t  final time have been discussed in [8, 51. 

The scheme described in the previous section for constructing the discrete type observations 

can also be applied for the general case. We note only that  the constructing the &net, that  is a 

crucial point in Theorem 2.3, can be achieved, for example, by applying the Galerkin's method. 

Theorem 4.1. Let the conditions of Theorem 2.1(2.2) be fulfilled. Then the system (1.1), 

(1.3)((1.4)) be continuously observable a t  final time and the estimate (2.22) holds. 

Corollary 4.1. Let the conditions of Theorem 2.1(2.2) be fulfilled. Then the system (1.1), 

(1.3)((1.4)) be observable. 
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