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Foreword 

The paper deals with the description of the bundle of viable trajectories for a differential inclusion 
with phase constraints. The graph of the right-hand side of the differential inclusion is assumed to  
be star-shaped and characterizes the reachable set multifunction in terms of set-valued solutions 
t o  an evolution equation of special type. The author thus characterizes an important class of 
nonlinear systems. This paper was written under a cooperation with IIASA and finalized during 
the author's visit t o  the SDS Program. Dr. Filippova comes from the Institute of Mathematics 
and Mechanics in Yekatherinburg, Russia. 
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1 Introduction 

Consider a differential inclusion 

i.(t> E F(t,x(t)) ,  z(t0) E Xo, to I t I 6' 

with a state constraint 

z(t)  E Y(t), to j t 5 6' 

A solution x(t) to relations (1.1)-(1.2) is said to  be a viable trajectory to the differential 
inclusion. In recent years the viability properties of dynamic systems have become an object of 
strong interest [1,2]. We should mention however that these investigations are mainly concerned 
with problems of global viability (or weak invariance [6]) when the phase constraints (1.2) have 
to  be satisfied for all the future instants of time t 2 to. 

On the other hand there is a close relation between viability theory for differential inclusions 
and the "guaranteed" treatment of uncertain dynamic systems, adaptive control and differential 
games [7-101. A u l ~ ~ a l ' 7  viability setting is used for studying observation and estimation problems 
under incomplete data [ll-131. Results obtained in the latter papers allow to describe the 
reachable set X[t] to  the system of inclusions (1.1)-(1.2) a t  instant t ,  which in other words is the 
t-section of the trajectory bundle that combines all the solutions to  a differential inclusion (1.1) 
that are viable on the interval [to, t]. It was proven in [12] that the reachable set X[t] satisfies 
the following evolution equation 

then generalizes the so-called "integral funnel" equation [3,14,15] (here h denotes the Hausdorff 
distance function). The crucial assumption for the last result was the convexity of the graph of 
the multifunction F( t ,  .) for every fixed t. We relax this rather restrictive convexity assumption 
and consider instead a differential inclusion (1.1) with a star-shaped graph of the right-hand 
side F( t ,  .). This allows to  apply the proposed approach in Section 2 to  the following uncertain 
system [lo] 



that depends bilinearly upon the state vector z and the disturbances A(t) E A(t) and p(t) E P(t) .  
Here the multifunctions A(-) and P(.) reflect the uncertainties in the system (1.4) (Note that 
the values A(t) of A(.) are subsets of the space of all n x n-matrices). In Section 3 we formulate 
the main result of this paper (Theorem 3.1) which is the description of the evolution of reachable 
sets X[t] for a nonlinear differential inclusion (1.1) with a star-shaped graph of F( t ,  a ) .  

Finally, it should be pointed out that the proposed generalization seems to  be rather natural 
because a family of star-shaped sets is close in many respects to  the cone of all convex subsets 
of the space Rn. For example, under quite general assumptions it is possible to  introduce 
algebraic operations (of summation and multiplication by a scalar) within this class so that the 
duality relation between Minkowski-Gauge functions and star-shaped sets becomes an algebraic 
isomorphism somewhat similar to  the one known in convex analysis for support functions and 
closed convex sets [5]. 

2 Bilinear Uncertain Systems 

Let us introduce some notations. Denote Rn to  be the Euclidean n-dimensional space with the 
norm llzll = ( x , x ) ' / ~  for z E R n , S  = {z E Rn : llzll 5 1). Also denote comp Rn to be the space 
of all compact subsets of Rn. The Hausdorff distance between the sets A, B E comp Rn will be 
denoted by h(A, B)  while 

P(~IA)  = sup{(f, a)la E A) 

will stand for the support function of A E comp Rn. We use the symbol Rnxn for the space 
of all n x n-matrices. Let conv Rn( conv RnXn) be the set of convex and compact subsets of 
Rn (RnXn, respectively). The graph of a multifunction Z : Rm + comp Rn will be denoted by 
g r Z  = {{u,v) : v E Z(u)). If a multifunction Z(u, w) depends on two variables the symbol 
gr,Z is used for grZo where ZO(u) = Z(u, W) and w is fixed. 

Consider the uncertain system (1.4) where z E Rn, A(t), P(t) ,  Y(t), Xo E conv Rn for all 
t E [to, 81. We assume the set-valued functions A(-), P(.) to be measurable and the following 
hypotheses to  be fulfilled. 

Assumption A. For all t E [to, 8],0 E P(t); 0 E Xo. 
Assumption B. There exists an E > 0 such that ES Y(t) for every t E [to, 81. 
Assumption C. The multifunction Y(.) satisfies one of the following conditions: 

(i) grY E conv Rn+' ; 

(ii) for every t? E Rn the support function f(e,t)  = p(elY(t)) is differentiable in t and its 
derivative a f / a t  is continuous in (e, t). 

Every absolutely continuous function z(r)(to 5 T 5 8) satisfying inclusions 

and 
z(to) E Xo 

will be called a trajectory of the differential inclusion that starts a t  Xo. A trajectory X(T) is 
said to  be viable on [to, t] if X(T) E Y(T) for all T E [to, t]. Denote by X(t ,  to, XO) the reachable 
set of (1.4) a t  instant t that is emitted by Xo: 

X(t ,  to,Xo) = {z E Rn : there exists a trajectory X(T) such that 

[to, t] and z(to) E Xo, z(t)  = z). 



L e m m a  2.1 Let Assumptions A , B , C be true. Then for all p > 0 ,  T E [t0,8] and for every 
tmjectory z ( r )  such that z ( to )  E Xo and z ( t )  E Y ( t )  + pS, ( to  I t I T )  there ezists a solution 
z*( t )  to (1.4) that satisfies the inequality 

Ilz(t) - z*( t ) ( (  I C p ,  to I t I 
where constant C does not depend on p, z( . ) ,  T .  

Proof. Suppose that 

~ ( t )  = A( t ) z ( t )  + ~ ( t ) ,  

z ( t o )  = zo,  to I t e 
for some A(.) E A( . ) ,p ( - )  E P(.) and zo E Xo and 

~ ( t )  E Y ( t )  + ps ,  to 5 t 5 7. w2) 
Denote p*(t) = c(p + c)-'p(t), zz = c(p + 6)- '20.  Under Assumptions A-C we have 

2; E XO,  p*(t) E ~ ( t )  ( to  L t L 0).  

Let z*( t )  be 

Then 

Hence we can conclude that z*(.) is a solution to the uncertain bilinear system (1.4). 

The following inclusion follows from Assumption B: 

( + s ( + ) - Y ) ,  to I t L e. 
From (2.2)-(2.3) we obtain 

Then for every t E [to, T ]  

(We use here the convexity of the set Y ( t ) . )  Hence we have 

z*( t )  E Y ( t ) ,  to -< t I T .  

It means that z*(T)  E X ( T ;  to, XO).  NOW let us estimate the difference 

( t )  - ( t )  = I )  - ( p  + - ' ( t  = ( p  + ) - ( I  5 - to I t I 

(Here K > 0 does not depend on the choice of z( . ) ) .  From the last relations we obtain the 
inequality (2.1) (for C = Kc-'). The lemma is proved. 

Denote X,(-; 7,t0,  Xo)  to be the set of all viable trajectories to a bilinear system (1.4) (with 
respect to a perturbed constraint Y,(t) = Y ( t )  + pS)  and let 

X,'[T] = X,'(T; to, Xo) = Xp(T;  7,  to, Xo). 

The following result is a direct consequence of Lemma 2.1. 



L e m m a  2.2 Suppose that Assumptions A-Care fulfilled. Then the multivalued functions X,(.; T ,  to,  Xo )  
and X,[T] are Lipschitz-continuous in p > 0 at point p = +O ( in spaces Cn[ to ,  81 and Rn re- 
spectively). 

Denote M o X = { z  E Rn : z = M x ,  M E M , x  E X )  for M E conv RnXn, X E comp Rn. 

From Lemmas 2.1-2.2 one can prove the following theorem: 

Theorem 2.1 Let Assumptions A ,  B, C be true. Then the multivalued function X [ t ]  = X ( t ,  to, X o )  
is the solution to the following evolution equation 

lim a - ' h ( ~ [ t  + a ] ,  ( ( E  + a A ( t ) )  o X [ t ]  + a P ( t ) )  n Y ( t  + a ) )  = 0 for a.e. t E [to, t ]  (2.4) 
0 4 0  

with initial condition X[ to ]  = Xo. 

The following example demonstrates that under our assumptions the reachable sets X [ t ]  
need not be convex. 

Example  1. Consider a differential inclusion in R2 

Y ( t )  = { z  E R~ : 1211 5 1,)x21 5 1/21. 

Then X( l ,O ,Xo)  = X [ 1 ]  = X 1  U X 2  where X 1  = { z  E R2 : lzll 5 2 2  5 1/21, X 2  = { x  E R2 : 
lxl 1 5 -z2 5 1/21. Obviously the set X [ 1 ]  is not convex. 

Definition. A set Z C Rn will be called star-shaped (with a center a t  0 )  if 0 E Z and 
XZ Z for all X E (O,l].  

Proposi t ion.  Assume Xo  to be star-shaped. Then for every t E [to, 81 the reachable set 
X ( t , t o , X o )  of the system (1.4) is a compact star-shaped subset of Rn.  

3 The Main Result 

Now consider a nonlinear differential inclusion (1.1) where F ( t ,  x )  is a multifunction measurable 
in t and Lipschitz continuous in x ( F  : [to,8]xRn -r conv Rn.  Denote z [ t ]  = z ( t ;  to, zo )  to  be 
the Caratheodory-type solution to  (1.1) that starts a t  x[to] = xo E Xo. We further require all 
the solutions {x ( t ; t o , xo )  : xo E X o )  to  be extendable until the instant 8 [4]. As before, the 
symbol X [ t ]  = X ( t ;  to, X o )  stands for the reachable set (at instant t )  to a differential inclusion 
(1.1) with phase constraint (1.2). 

Assumpt ion  D. 

(i) For all t E [to, 81 we have 0 E F ( t ,  0 )  and grtF is a star-shaped subset of RZn; 

(ii) the set X C_ Rn is star-shaped. 

Theo rem 3.1 Under Assumptions B, C,  D the multifunction X [ t ]  = X ( t ,  to, Xo) as the solution 
to the following evolution equation 

for a.e. t E [to,8] that starts at Xo : X[to]  = Xo. 



Example 2. Let F( t ,  z )  be of the form 

where the n x n-matrix function G ( t ,  z )  is measurable in t ,  Lipschitz continuous and positively 
homogeneous in z ;  U E conv Rn. A function P : [to, B] -+ conv Rn is assumed to  be measurable. 
We suppose also that for all t E [to, B ] , O  E P(t ) .  One can easily verify that Assumption D holds 
in this case. 

The proof of Theorem 3.1 is based on the ideas of paper [12] and follows from the next two 
results. 

Lemma 3.1 Let the hypotheses of Theorem 3.1 be true. Then for every t E [to, B] the reachable 
set z ( t ;  to,  Xo )  is a compact star-shaped subset of Rn. 

Lemma 3.2 Under Assumptions B-D the multivalued map X,(-; T ,  to, Xo)  satisfies the Lipschitz 
condition with respect to p > 0 (from the right) at point p = +0, namely 

XP(.;   to, Xo) E X( . ;  T ,  to, Xo) + C p S ( - ) ,  

where S ( . )  = { z ( - )  E Cn[to,  B] : 11z(.)11 5 1 )  and C > 0 does not depend on { r , p ) .  

4 The Uniqueness of the Solution to the Funnel Equation 

Let us denote Z[to ,  B] to  be the set of all multivalued functions Z( . )  : [to, B] -+ comp Rn such 
that Z( to )  = Xo and 

uniformly with respect t o  T E [to, 81. 

Under Assumptions A-D we have 

XL.1 = X ( - ;  to, Xo) E Z[to, B] 

Let us begin however with the comon case when we don't require these assumptions to  be 
fulfded. 

Consider some properties of the maps Z(.)  E 2[to,  B ] .  

Lemma 4.1 Assume that the multivalued function Y ( - )  satisfies the Lipschitz condition (with 
constant k > 0): 

h ( Y ( t l ) ,  Y ( t 2 ) )  I k(t1 - t2), to I t l ,  t2 I 6. 

Then for every Z ( - )  E Z[to, B] the following inclusion is true 

Proof. Let T be an arbitrary instant, T E [to, B ] ,  and z E Z ( T ) .  Consider the subdivision 
{t i ;  i = 1,.  . . , N )  of the interval [to, T ]  with uniform step U N  = ( r  - t o ) /N:  

Let 
O ( U ;  Z )  = sup h(Z( t  + a ) ,  U ( z  + u F ( t ,  z)) n Y ( t  + a ) ) .  

to<t<e t ~ z ( t )  



From the definition of Z(.) we obtain 

It is clearly possible to  find a finite sequence of vectors {zi, fi)i=o,l,...,~. such that 

Consider the piecewise linear interpolation qN)(-): 

Then for every t E [ti, ti+l] ( i  = 0, 1, . . . , N - 1): 

Hence 

"(N)(t) E Y(t) + ( ~ U N  +  ON; Z))S, to < t < 7- (4.4) 

(as the set Y (t) is convex). I t  is not difficult to  prove that the sequence { z ( ~ ) ( - ) ) ( N  + w ) has a 
limit point x,(-) in the space Cn[to,r]  and that the function x,(-) is a solution t o  the differential 
inclusion. 

i, E F( t ,  G), to < t < 7, 

x*(to) E Xo, x*(r) = Z. 

From (4.4) we have 
x*(t) E Y(t), to 5 t 2 7. 

Therefore, z,(.) E X(- ;  T, to, Xo) and x,(T) = z E X[T]. The lemma is thus proved. 

Corol lary  4.1 Under assumptions of Lemma 4.1 the following relations are true 

( i )  ~ ( t )  C Y(t) for every t E [to, 81, 

(ii) z(t + a )  E z(t) + (US, to < T 5 T + a <_ 8 

where C > 0. 

E x a m p l e  4.1. Consider the following system in R2: 

with set 
xo = {x = (x1,x2): 2 2  = 1, (~1l  < 1) 

and the state restriction, 

For every T E (0,8] we have 



where 

Obviously, 2[ to ,  81 = u{Z;(-)li = 1,2,3), where Zl(-) = X(-;  to, Xo), 

It should be pointed out that in this example both viable trajectories z(')(t), d2) ( t )  lie on the 
boundary of set Y. The next result will show that for the "interior" trajectory z,(t) the above- 
mentioned situation z,(t) $! Z(t) will be impossible. 

Denote for every T E [to, 6'1 

Xint[T] = Xint(T; to, XO) = { Z  E Rn : 3 ~ ( . )  E X(.; 7, to, XO)z(T) = 2, 
z(t) E intY(t),Vt E [to, TI). 

Lemma 4.2 Let Assumption B be fulfilled. Then for every T E [to, 191 

where Z(.) is an arbitrary multifunction from the class 2[to, 81. 

The proof of this lemma is similar to that of Lemma 4.1. 

Corollary 4.2 Under the assumptions of Lemmas 4.1-4.2 the following inclusions are true: 

dXht[ t ]  C Z(t) C X[t], to 5 t 5 I9 for all Z(.) E 2[ to ,  191. 

We are now able to formulate the uniqueness theorem. 

Theorem 4.1 Let Assumptions B, C, D be true. Then the multivalued function X[T] = X(T; to, Xo) 
is the unique solution to the funnel equation (1.3) in the class 2[to,  191 of all multivalued mappings 
Z(-) that satisfy this equation uniformly in t. 

Proof. Under the conditions of Theorem 4.1 one can prove the equality 

d X h t  [t] = X[t]. 

Then from Corollary 4.2 we conclude that X[t] = Z(t) for any Z(-) E 2[to, I91 and Theorem 4.1 
is proved. 
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