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Foreword 

A limit theorem for the Robbins-Monro stochastic approximation procedure is proved in the case 
of a non-smooth regression function. Using this result a conditional limit theorem is given for 
the case when the regression function has several stable roots. The first result shows that the 
rate of convergence for the stochastic approximation-type procedures (including Monte-Carlo 
optimization algorithms and adaptive processes of growth being modelled by the generalized 
urn scheme) decreases as the smoothness increases. The second result demonstrates that in the 
case of several stable roots, there is no convergence rate for the procedure as whole, but for each 
of stable roots there exists its specific rate of convergence. The latter allows to  derive several 
conceptual results for applied problems in biology, physical chemistry and economics which can 
be described by the generalized urn scheme. 
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G. PfEug** 

1 Introduction 

Consider the Robbins-Monro procedure [I] for finding the root of a (Borel measurable) regression 

function g(z), z E R, R - the set of real numbers. Supose we have 

independent (in s )  observations of g(.) with a random noise zs(.). Here, zs(z) stands for a 

random field (on N x R, N - the set of natural numbers and on some fixed probability space 

(Q, 3, P)) with zero mean, i.e. Ezs(z) = 0; finite variances, i.e. EZ, (Z)~  = a?(z); independent in 

the first argument values, i.e. zs(z) and zn(y) are independent for s # n for any (deterministic) 

z ,  y E R. Also, zn(.) is a measurable mapping with respect to B x 3 (by B we designate the a- 

algebra of Borel sets in R).  Then the Robbins-Monro procedure gives successive approximations 

Xn, n 2 1, to  the root O in the following form: 

where 7, stands for the step-sizes, i.e. deterministic positive numbers such that 
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For the case when 7, = an-' asymptotic normality of f i (Xn - 0 )  was proved [2,4, 11, 151 

for locally linear g(-) a t  O, i.e. g(z) = gt(0)(z - O) + o(( z - O I) as z + 0, and 2 agt(0)  > 1. 

Also &(x, - O) is asymptotically normal if 2 ag t (0)  = 1 [lo]. But for the simplest case, 

when g(.) is not locally linear a t  O, i.e., as z + O 

a l ( z  - O) + ol(z - 0 ) ,  z 2 0, 
= 

a2 (O-z )  + o2(O-z),  < O ,  

fi(X, - O) converges weakly for 2a min(al, a 2 )  > 1 to a non-Gaussian limit distribution [7,9]. 

In this paper we study the limit behaviour of properly normalized deviations of X, from O 

for the case, when as z + O 

for some a1 > 0, a 2  > 0 and 7 E (i, 1). Also, we consider the cases where random processes of 

the form (1.2) and in the generalized urn scheme demonstrate complex limit behaviour caused 

by both the nonlinearity of the form (1.3) of functions involved and the multiplicity of their 

roots. Under the generalized urn scheme we mean the following: 

Think of an urn of infinite capacity with balls of two colors, say, black and white. Starting 

from wl 2 0 white balls and bl 2 0 black ones (7' = wl + bl 2 I), a ball is added into the urn 

at  time instants t = 1,2, . . . . It will be black with probability f (Xt) and white with probability 

1 - f(Xt).  Here f (-) stands for a function which maps [0,1.] into itself. The function f(.) is 

called urn function for this generalized urn scheme (see, for example, [5]). Designate by Xt  the 

proportion of black balls into the urn a t  time t. Let for t 2 1 and zrR [0, 11 

1 with probability f (z), 

0 with probability 1 - f (z), 

be independent in t. Here R[0,1] stands for the set of rational numbers from [0, 11. Then {Xt) 

follows the dynamics 



where qt(z) = &(z) - f (2). Taking into account (1.1), one can see that (1.4) represents a 

recurrent relation of the form (1.2) with g(z) = f ( z )  - z and zt(z) = qt(z). Consequently, both 

(1.2) and (1.4) can be studied with the same machinery. 

The generalized urn scheme proves to  be a convenient tool for modelling of complex phe- 

nomena in economics and biology [I, 31. 

Now we proceed to  limit theorems for random variables generated by (1.2). 

2 Limit Theorems for the Robbins-Monro Procedure in 

Non-standard Situations 

We start with an auxiliary Lemma (see [9], Lemma 2.1). 

Lemma 2.1. If {y,) is a sequence of real numbers such that 

where Cnll b, = w, C, 2 0, bn > 0. Then I yn I =  o(1) or I y, I =  O(1) depending upon 

whether c, = o(b,) or c, = O(b,). 

We study the algorithm (1.2) with O = 0 and 7, = an-', a > 0. For a real valued function 

h(.) we set 11 h I I =  sup, I h(z)l. 

Theorem 2.1. Assume that 

1. zg(z) 2 aoz2 for an a0 > 0; 

2. lg(z)J < Alzl + B for some constants A, B > 0; 



3. g(.) has the  form (1.3) and lo;(y)l = O ( y Y )  for v > z; 
4. E Iz.(z) - z.(0)12 < k l z J Y ,  where v > w; 
5. for some u > 0 and c > f one has Lim.,, IEz.(O)~ - u21sK = 0 ) ;  

6. sup8:Elz.(0)l' < m for some p > 2 + *. 

Then for 3 < y 5 1 

where X has the density 

Here C stands for a normalizing constant. 

P m J  Set /3 = &, i.e. y/3 = 1 - 8, and let Un = nPxn .  Then 

where 

a, = 
1 

an-'(n + I ) ~  = anB-'(1 + E ~ ) ,  E ,  = O(--), 

1 
L ( u )  = - a i 2 [ ( l  + --) - 1]u + a;'g(n-Pu) 

1 
= -a-2/3n'-2B(l+ qn)u + a-'n'-B(l + &,)-'g(n-bu), qn = 0(,). 

We will replace the functions h,(.) by simpler functions h:(.) and show that  this has no effect 

on the  asymptotic distribution. 

Set kn = nP-++', n 2 1, with 0 < 6 < f t o  be fixed later. Then k ,  -r m since /3 > f. 

Our assumptions imply that  ~;-'X,*O for every 6 > 0 (c.f. [4],  Lemma 2.3), consequently 

k i l  Una20. 

We shall construct functions h:(u) with the following properties 



SUP I ~ ~ ( u ) J  = O (  n e ( 2 - ~ )  ) , SUP ~ h r ( ~ )  1 = ~ ( n " ( ~ - ~ ) ) ,  
Iullkn I~ lSkn 

where E will be fixed later. To this end, let h i ( . )  be a smoothed modification of 

-?(u/y,  -nP-e 5 u < -n-e ,  

(4) u < - n P - e .  -Cn 
\ 

Here c:) are chosen in order t o  make &,(.) continuous and the smoothing is done t o  make h i ( . )  

three times differentiable. Relations (2 .2)  and (2.4)  are obvious. Also (2.3)  follows by 

and (2 .5)  follows from the fact that  there is a constant cl with 

In order t o  show (2.6)  notice that  for 0 5 u 5 kn 



Since, by assumption, Y > 2P- 1 we may choose 6 such small that -( = 1+P-(?+Y)(- 1/2+6) < 

2 - 2P - 1/2P, i.e. 

-€ 2 = o(n-1/2P). n an 

The same true is for -kn 5 u 5 0. Consider now the recursion 

with WN - arbitrary (but it does not depend on zn(z), n 2 1, for any (deterministic) z). 

Let T be the stopping time 

Since kilUn -+ 0 and ki lWn -+ 0 as. ,  P{T = w) can be made arbitrarily clouse t o  1 by 

choosing N large. On the event {T = oo), using the bound (2.5), we get 

By C n > l  n-'l2P = oo and the auxiliary Lemma we get lUn - WnJ + 0 on {T = w). It is - 

therefore sufficient to  consider the asymptotic behavior of Wn . 

In the next step we show that without affecting the asymptotic distribution, the recursion 

(2.7) can be replaced by the following 

Vn+l = Vn - a;h;(vn) + anin,  n 2 N, VN - arbitrary, (2.8) 

where zk = zn(0) and VN does not depend on z;,n 2 N. Introduce T' = infin 2 N : 

max(IvnI, IWnl) > kn). 

Using condition 4, one has 



Here X A  stands for the indicator function of the event A. Also there are constants c2 and cs such 

that 

Ihi(u) - hi(v)l I c2 + ~ 3 1 ~  - 2)). (2.10) 

If 6 is so small that (i - 6)1) > f ( 1  - T ) ~ ,  then from (2.5), (2.9) and (2.10) we have 

Hence due to Lemma 2.1 

which implies that Wn and Vn have the same limit distribution. 

Due to condition 5, the arguments identical to the ones given above show that the recursion 

of the form (2.8) with tl substituted by u [ E z ~ ( o ) ~ ] - ' / ~ z ~ ( o )  has the same limit distribution. 

Consequently, we can suppose that ~ ( 2 : ) ~  = u2, n 2 N. 

We will now replace zk by truncated vectors z r  , n >_ N .  Consider 

zk if IzlI < n b ,  

0 otherwise. 

Here b satisfies the inequality 

By Markov's inequality 



1Ez;l2 5 nb(2-p)~lzilp. 

Ill 
Consequently for 2:' = z: - E;; one has Ezn = 0 and E(Z: - z;)~ = ~ ( n ~ ( ~ - " ) ) .  

Due to (2.11), 

0(~6(2-~))  )= o(n-'/2P) 
n 

Ill 
and we can replace 2: by zn without changing the asymptotic distribution (the arguments are 

the same as above). 

Ill 
Also we can substitute zn by 2: = u ( E ( z ~ ) ~ ) - ' / ~ z ~  without affecting the limit behavior. 

This can be done by the same reasoning since by Markov's inequality 

and 

111 2 Var t, = Var 2; = E(z;)~ - (EZ,) 

which, together with (2.12) implies that I Var z r  - u2J = ~ ( n ~ ( ~ - " ) ) .  

F'rom now on we consider the recursion 

where VN -arbitrary (but it does not depend on z:, n 2 N). Notice that for large enough n 

b 1zi1 5 2n as . ,  Ezi = 0, Var 2; = a2. 

Consider the function Hn(z) = z - a:h:(z). Since sup, I H:(z) - 1 I < 3 for sufficiently large 

n, we have by (2.3) 

If Fn(.) stands for the distribution function of Vn, then Vn+l is distributed according to  



where G n ( . )  is the distribution function of 2:. Let F,'(.) be the distribution with density 

where Cn is a normalizing constant. We show that Tn(F,')(.) is close to  F,'(.), i.e. F,'(.) is nearly 

a stationary distribution. We know from (2.13) that 

By a Taylor expansion up to  the order three, we get ( 5  is some interpolation point) 

2 - 2  
T n ( F l ) ( z )  = J ~ , ' ( z  + a : h ; ( z ) ) d ~ n ( - )  + ~ ( a : )  

an 

= F,'(z + a:h,(z) )  + J( z  - z)&[F,'(z + a : h , ( x ) ) ] d G n ( y )  

+ f J ( z  - Z ) ~ & [ F , ' ( Z  + a : h : ( ~ ) ) ] d G n ( y )  

+ 1 J ( x  - z)~&[F,'(z  + a:h,(5))]dGn(-)  an + 0 ( a ; )  

1 2aZ = F,'(z + a: hE(z))  + 20 s[F,'(z + a: hi ( z ) ) ]  

+ ~ ( a ; n ~ n ' ( ~ - ' ) )  + O(a2)  = F,'(z) + a: f,'(z)h',(z) 

+ a; f f i l (z)  + 0(a;n'+'(3-~)). 

Due to condition 6 we can choose b satisfying (2.11) such that 

Then for small enough E 

Since f , t l (z )  = -5 f,'(z)h:(z) one sees from (2.14) and (2.15) that 

It is easy to  see that 11 F,' - J J  = O(a:n-l ) and, therefore 

Since for any distribution function Fn(.)  



we may take F$(.) as the distribution of VN and sum over N 5 k 5 n - 1 to get 

Due to  (2.16) and (2.17), this is arbitrary small for N large enough. Hence denoting by F(.) 

the distribution function pertaining to the density f(.), we see that 

is arbitrary small. Thus the theorem is proved. 

In the above theorem, the noise is given as a random field with certain statistical structure. 

Another approach in the literature on stochastic approximation characterizes the noise by means 

of its conditional distributions. In this case, one considers a recurrent sequence 

Xn+l = Xn - myn, n 2 1, X1 = const, 

and requires that the conditional distribution of Yn for given XI ,  Xp, . . . , Xn depends only on 

xn and E(Yn JXn) = g (Xn) 

Set G(zlx) = P{Zn < zlXn = x), where Zn = Yn - g(Xn). We will show now that sufficient 

smoothness of G(.lx) on x implies condition 4 of theorem 2.1. 

Corollary 2.1. Suppose that for some p > 0 

where dist (.,.) is the Levy-Prohorov distance. If p > q and 

for some p > 2 + $$, then condition 4 holds. 

10 



Proof. Let Z, be distributed according to  G(.(z) and 2: be distributed according to  G(.ly). 

By Strassen's well known theorem [16], there is a joint distribution for Z, and 2: such that 

where 2 = 1z - ~ 1 .  Set a = y. Consider 

Corollary is proved. 

Remark 2.1 If X, converges to  0 with probability 1, then conditions 1, 2, 4 can be replaced 

by their local (on z )  variants. 

Theorem 2.1 shows that the rate of asymptotic convergence increases as smoothness of the 

regression function (at the solution) decreases. More interesting observation can be done for 

the case when the regression function has several roots in which the function has different 

smoothness. To this end we ommit the basic for stochastic approximation assumption that g(.) 

has the unique root. Instead of this we assume that, among the roots, there are a finite number 

Oil i = 1,2, . . . , n/, of stable ones. We call here a root O stable if (1.3) holds. 

Consider the following conditions: 

A. for each Oi (1.3) holds with its own a:), yie(1/2, 11, oy)(.), j = 1,2; 

B. if y; < 1, then 

(a) o!~)(z) = 0(zY*)  for vi > 2, 
(b) in a neighbourhood of O; 

EJz,(z) - z , ( O ~ ) ~ ~  < kilz - Oilqi 

l l - ~ i ) ~  . where Vi > 9 

11 



(c) for some a; > 0 and ki > $2 one has lim,, IEZ.(@;)~ - ails"' = 0; 

(d) sup.tl Elza(@i)l" < 00 for some P > 2 + qiq$&pg; 

C. if 7; = 1, then 

(a) lirn,,, limx,ei 1 EZ,(X)~ - a:1 = 0 for some a: > 0; 

- 
(b) l i m ~ + w  = 0; 

(c) either a?) = af) = 112 and oy)(x) = o(x'+~),  j = 1,2, for some 6 > 0, 

(4 ( i )  or 2 min ( a l  , a2 ) > 1 

Theorem 2.2. Suppose that the sequence {X,) given by (1.2) converges with probability 1 

and conditions A, B, C hold. Then 

lim P{T~)(x, - 0;)  < x, lim X8 = 0;) = Fi(x)P{ lim X8 = 0;).  
ndoo  8'00 8 4 0 0  

Here 

I n1I1+7i if 7; < 1, 

= f i  if 7; = 1 and 2 min (a?), a!)) > 1, 

if 7i = 1 and a?) = a(') 2 = 3.  ' 
Also F;(.) stands for a distribution function such that: 

a) for 7; < 1 

c) for 7; = 1 and a?) = at) = 112 

where c; stands for a normalizing constant. 



Proof. set  

1 a,@ - 0 )  for lz - @;I > E ; ;  

z,(z) for ) z  - Oil 5 E;, 
Z,(z) = 

z,(@;) for ( z  - Oil > E;; 

Here a; > 0 and E; is so small that the condition b) from B holds. Also y does not depend on 

~ ( z ) ,  s 2 N ,  for any (deterministic) z .  By theorem 2.1 or corresponding results from [4, 7, 9, 

10, 11, 151 

lim P{T?)(X,N'Y - 0;) < z )  = 3;(z). (2.18) 
n--rgO 

Introduce the events An,& = {(X, - Oil < 6) and B,,s = {IX, - Oil < 6,s  2 n), where 

n 2 1,6 E (0,l) .  By hypothesis X, converges with probability 1. Therefore, for any a > 0 we 

find 6 and n(6) such that for n 2 n(6) 

P{{ lim X, = O,)AB,,s) < a 

and 

P{An,sABn,6) < 0. 

Here the sign A denotes the symmetric difference. 

Using (2.18), the Markovian property and the Lebesgue Dominated Convergence Theorem, 

we have for n 2 n(6) 

- 
lim P { T ~ ) ( x ~  - 0;) < x, lirn X, = 0;) 

m-rca a+gO 

- 
5 lim P{T:)(X, - 0;) < X, Bn,6) + a 

m+ca 

- - lim P{T$)(~;~" - 0;) < 2, Bn,6) + Q 
m+gO 

5 Z P { T ~ ) ( X ~ ~ ~  - 0;)  < 2, An,6) + 0 
n--rm 

= ~ E P { T $ ) ( X ; ~ "  - 0;) < ~ l x n ) ~ ~ , , ~  + 0 
n+oo 

= ~ ; ( z ) P { A , , ~ )  + a 5 3;(z)P{ lim X, = 0;) 4- 30. 
a--rgO 



Similarly, 

lim P { r i ) ( ~ ,  - 0,) < z, lim X8 = 0; - 
n4oo  a d o 0  

2 F , ( z )P  { lim X8 = 0,) - 30. 
8 4 0 0  

Since u is arbitrary small, these inequalities yield the required result. 

The theorem is proved. 

Remark 2.2. Conditions which ensure positiveness of P{limn,, Xn = 0;) are known [8]. 

Suppose now that the process (1.2) converges with positive probability to  each of stable roots 

and to  all other roots with zero probability (see for particular cases of this (touchpoints and 

unstable points) [ l l ]  and [13] correspondingly). Then 

and the asymptotic behavior of our process can be imagined in the following way. By chance 

one selects a stable point ( to  which the process will converge) and a "convergence mechanism" 

(depending upon the local properties of the process a t  the point) switches on to  drive the process 

to  the point. 

Theorem 2.2 covers only the cases when limit distributions are "plausable" (note that, ex- 

cept Gaussian, the distributions are not infinitely divisible). Other cases known in stochastic 

approximation [lo, 111 can be treated in the same way. 

More interesting conceptual examples come from applications of the generalized urn scheme. 

3 Limit Distributions for the Generalized Urn Scheme in 

Non-standard Cases 

Some practically important problems in the diffusion of innovations studies [I, 31, in the autocat- 

alytic chemical reactions [I, 121 and in the analysis of dynamics of biological populations [6] can 

be treated within the framework of the generalized urn scheme. In these conceptual problems 



the limit theorems given before serve as a means for the analysis of the rates of convergence to  

attainable components of the terminal set (which resemble the rates of formation of the final 

market shares in the diffusion of innovation studies or the rates of convertion of initial ingredi- 

ents into the final products in the autocatalitic chemical reactions or the rates of origination of 

new species in the biological studies). The results show that in the case with multiple singleton 

limit states , the rates are different and depend upon the smoothness of the urn function f (.) in 

neighbourhoods of the states. It has occured that the rate of development of the predominant 

trend, in general, does not exist for a process with multiple limit states - some of the tendencies 

develop quicker, other slower. 

A11 phenomena mentioned above demonstrate the essential nonlinearity of the stochastic 

processes generated by the generalized urn scheme in the case of multiple equilibria. Also one 

can see that the theorems given in the previous chapter represent a powerful and convenient 

tool for studying and demonstrating the nonlinear effects pertinent to  the processes. 

We give now a lemma which ensures reformulation of the above theorems for the generalized 

urn scheme. 

Consider T;, i 2 1, independent uniformly on [0, 11 distributed random variables. Set 

Elementary manipulations ensure the following result. 

Lemma 3.1 One has E[C(z) - ('i(y)12 = z + y - 2 min(z - y) I lz - yl. Also 

1 with probability z ,  
t;(z) = 

0 with probability 1 - z. 

Now designate (';( f (2)) by &(z) and using the recursion (1.4) we can derive analogs of the 

above theorems for the generalized urn scheme. 
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