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Abstract 

The problem of reducing SO2 emissions in Europe is considered. The costs 
of reduction are assumed to be uncertain and are modeled by a set of possible 
scenarios. A mean-variance model of the problem is formulated and a specialized 
computational procedure developed. The approach is applied to the transbound- 
ary air pollution model with real-world data. 

1 Introduction 

Reducing the pollution of the environment becomes one of the challenges of the present 
time in the industrial countries, and especially in Europe. It is commonly agreed that 
action should be undertaken to stop the growth of the emission and eventually achieve 
a substantial reduction of depositions. 

One of the issues that attracts attention of researchers and decision-makers is emis- 
sion of sulphur dioxide to the atmosphere, which has a damaging effect to the envi- 
ronment through acid rains. Clearly, this is an international problem, because the air 
pollution can move across the borders and damage the environment in other countries. 
Therefore it is necessary to look for a common European solution of this problem. 

There are many ways to approach such problems. One would be to reduce the 
emissions uniformly over the continent (e.g. by 30%). This, however, may prove 
prohibitively expensive. On the other hand, it might be possible to achieve the same 
reduction of depositions by a non-uniform reduction of emissions in a more cost-effective 
way. 

To investigate this possibility, a model has been developed at IIASA (see [AKS93] 
and references therein) to describe the relation between emissions and depositions 
a t  various regions. There is also a model of costs of reducing emissions a t  different 
locations. This allows to formulate an optimization problem of finding the cheapest 
way to meet environmental standards. 
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However, there are many uncertainties in the problem due to inaccurate or missing 
data, unknown future energy policies for the countries, etc. The purpose of this paper is 
to formalize the problem of reducing emissions in the presence of uncertainty, to  develop 
a specialized solution procedure and to apply it to the real-world data available so far. 

In Section 2 we recall the deterministic formulation of the problem following [AKS93]. 
In Section 3 we develop a mean-variance model for the problem under uncertainty. The 
uncertainty is modeled by a number of scenarios of future costs of emission reduction. 

Section 4 is devoted to the development of a specialized computational procedure 
for solving the problem under consideration. The algorithm is a version of a primal-dual 
logarithmic barrier met hod. 

In section 5 we report computational results obtained for six different scenarios 
proposed by the modelers. In the last section we present our conclusions and give 
propositions for the future work. 

2 The deterministic problem 
There are Ii' countries in our model. For each country k we denote by xk the level 
of emissions, which will be our decision variable. We assume that there are functions 
fk(xk) ,  that express the cost of reducing emissions to levels xk7  k = 1, . . . , Ii'. The 
functions are assumed to be convex and piecewise linear (CPL). Our objective is to 
minimize the total cost ~ f = ,  f k  (xk)  subject to some environmental constraints and 
additional policy restrictions. 

The environmental constraints are described by a vector b E Rm of maximal grid 
depositions, where m is the number of reception areas, and by an array T E Rm*K defin- 

h' ing dependence between emissions x = (x l , .  . . , x ) and depositions y = ( y l , .  . . , y,) 
by y = Tx. 

The whole problem can be formulated as 

min C fk(xk) 
k= 1 

subject to Tx  5 b, 

l < x I u .  

Vectors 1, u E Rm are policy constraints given by policy-makers. 
Every function fk(xk) is defined on an interval [x$ (~) ,  x$] which can be divided into 

subintervals [x:, x:-,], j = 1, . . . , J ( k ) ,  such that f k  (xk) is linear in each of them (note 
that the break points x:, j = 0,. . . , J ( k )  are numbered from the largest to  the smallest 
one). The unit cost ofkmission reduction in the j-th interval will be denoted by cj,k. 
Formally 

By the convexity of f k 7  
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Figure 1: Examples of cost curves 



This is illustrated in Fig. 1. 
It is convenient to rewrite (1) as a linear problem by introducing (for each k) new 

variables dk( j ) ,  j = 1 , .  . . , J ( k )  in such a way that 

where &(j) = xi-, - xi ,  and 

Then we can express emissions as 

We can interpret variables dk( j )  as successive reductions of the emission xk starting 
from the maximum level xb and moving down through the break points of the function 
fk(xk).  Under (3), the total cost can be expressed as 

and it is a linear function. 
Problem (1) can be reformulated as a linear programming problem 

k = l  j=l 

subject to T x  < b, 

It is interesting to observe that we need not include condition (3) explicitly to problem 
statement (5). Condition (2) with strict inequalities immediately implies that the 
solution of (5) must satisfy (3). 

We can solve (5) using any linear programming package. 

3 The mean-variance model 

Unfortunately, the costs of emission control are not deterministic quantities. There are 
many possible scenarios of energy production, consumption, fuel characteristics and 



installed emission control measures. Therefore our problem is a decision problem with 
uncertainty. 

There are many ways to formalize such decision problems. We can, e.g., use the 
worst-case approach and require the decision to be best for the worst possible condi- 
tions. This usually leads to very conservative and expensive solutions. 

An approach that found many successful applications is to model uncertain quanti- 
ties by random variables. Then we can use various concepts of the theory of probability 
to express our objectives and constraints. This leads to stochastic programming models. 

In our case only the costs are uncertain, and that can be modeled by assuming that 
the unit costs cj ,k  are random (but still satisfy (2)). To be even more specific we shall 
restrict our considerations to the case of finitely many scenarios s = 1, .  . . , S .  Each 
scenario s has some probability p(s), such that c:=, p(s) = 1, and is characterized by 
a collection of unit costs in subintervals 

Nevertheless, we still have many possibilities of expressing our objective. The sim- 
plest solution would be to minimize the expected cost 

This is equivalent to solving the problem with one average scenario with unit costs 

A significant drawback associated with the expected value approach is that it essentially 
ignores uncertainty of the cost. 

Another possibility would be to define a nonlinear utility function and to optimize 
its expected value. Unfortunately we do not have a clear idea of such a function in our 
case. 

Therefore we decide to use the mean-variance approach to  our decision problem. 
With such an approach the quality is measured by two outcomes: the mean value (6) 
and the (weighted) variance 

where 

denotes the expected value of the cost for the k-th country and W ~ ' S  are some weighting 
coefficients. 

The variance will be used to measure the risk associated with a decision. The 
weighting coefficients wk can be used to bring the variance components associated 



with different countries to some common measure. In particular we could make wk 
inversely proportional to the GDP of the k-th country, which would measure the risk 
relative to the economic strength of the country rather than in absolute terms. 

Both outcomes are used to form a composite objective 

where a > 0 is a user-defined parameter. 
The main idea of the mean-variance model is to replace the objective of (5) by the 

composite objective (8). The constraints remain unchanged. 
By varying a one can generate a family of solutions with different trade-offs between 

the expected cost and the variance of the cost. 
Let us formalize the mean-variance approach in our case. We introduce the variables 

Then we can rewrite (6) and (7) as 

The mean-variance problem can be now formulated as follows 

subject to 

k 
J(k) 

x = x: - C dk( j ) ,  for every k = 1,. . . , I C  
j=1 

J(k) 

qk,s = C ~ ~ , k , ~ d ~ ( j )  for every k = 1,. . . ,Ii' and s = 1 , .  . . , S,  
j=1 

0 5 dk( j )  5 dk( j )  for every k = 1 , .  . . , K and j = 1 , .  . . , J (k ) .  

To allow application of efficient computational techniques for solving quadratic prob- 
lems we shall transform (10) to a problem with non-negative variables and with a 
separable quadratic part of the objective. First, we split ~ k , ~  - ek into the positive and 
the negative parts, defining new variables q l S  and q t s  by 



The expected value and the variance have now the forms 

Unfortunately, the quadratic part of the objective is not separable now. But it can be 
proved (c.f. [Car92]) that the solution of our problem does not change if we replace 
(V) by a separable function: 

because at the solution only one of q l l ,  qLl will be different from 0. Finally we arrive 
to the following problem: 

+ 2 min C p(s) C ( q l s  - q~~ + er) + a C P(S) C w:[(qk,s) + (qLs121 (12) 

subject to Tx < b, 

The total number of constraints in this problem is equal to m + K + S * Iil. The total 
number of variables is equal to K + ~ f = ~  J(k) + 2 * S * K + A'. 

4 Solution techniques 

The problem (12), as we mentioned before, is a quadratic programming (QP) problem. 
We can rewrite it in the standard way. First, we define some constants and variables. 
The box constraints 

1 2 x 5 ~  
for the problem (1) will be shifted to obtain lower bounds equal to zero. We define 
new variables x' = x - I ,  for which we have 

The entire vector of unknowns [ is built from subvectors used before, i.e. 



There are only equality constraints in the standard form of QP problem. To satisfy 
this we introduce to the constraints Tx  5 b a vector of slacks t and we obtain 

Tx' + t = b', 

where t E Rm and b' = b - TI. 
For simplifying formulas we define a constant 

A vector d is constructed from variables dk( j )  defined in (3))  

Next vectors q+ and q- are constructed from variables qL, qGs defined in (11)) 

- K+S 
q- = (~1,1,...,Qh',l,...,~1,~,"',Qh',S) E R - 

A vector e is a vector of the expected values of costs, i.e. 

where ek are defined in (7). 
The dimension of the vector will be denoted by n, 

The entire vector of the linear part of the objective is defined as follows: 

We write 0 with a subscript for the vector of zeros and the subscript denotes dimension 
of the vector. In the same way we denote by 1 with a subscript the vector of ones and 
the subscript denotes the dimension. 

The quadratic part of the objective is nonzero for terms including qS and q- only. 
Formally we define the the quadratic matrix Q E Rn*" in such way: 

2 0  * p(s)wi if i = j and the i-th component of is a q+- or q-- 
variable and s and k denote the adequate number 

Qi, j  = of scenario and country; 
otherwise. 

Now we can write the full constraint matrix A, 



The submatrix T is the constraint matrixof the problem (1). The letter I with subscript 
denotes identity matrix, where subscript denotes its dimension. The matrix J is defined 

where submatrix IK is repeated S times. 
We can combine equations (9) and (11) and write dependencies between q+, q-, E 

and d in a matrix form, i.e. 
q+ - q- = Cd - J E ,  

The matrix E E R"*'~ is used to write in matrix form equations (4) ,  i.e. 

where 
( C l , l , l  . . . c J ( l ) , l , l  1 

and 
x' + Ed = xb, 

where xb = xo - 1. 
The right hand side vector r is defined as follows 

R(K*S)*SJ  C = 

Let us consider the vector p of upper bounds (all lower bounds are equal to  zero). 
Only upper bounds for x' and d parts are less than infinity, 

\ ~ I , K , S .  . . CJ(~-) ,K,S 1 

CI,K,I . . CJ(K),K,I 

c l , l , s  . . . C J ( I ) , ~ , S  

u; - 1; if the i-th component of is x' variable, 
dk(j) if the i-th component of E is d variable, 
+m otherwise, 

where 
i l  = i - (I( + m), 



k is such that 

We have not yet defined the number J(O), it will be equal to zero. 
Flnally, we can formulate the complete QP problem in the standard form: 

minimize gT[  + f t T Q t ,  

subject to A t  = r,  

t + a = p ,  

t ,  a  2 0. 

The dual of (13) is given by 
1 

maximize rTX - P T ~  - - tTQt ,  
2  (14) 

subject to A ~ X  + z  - w - Q t  = g ,  

t , z , w  2 0,  

where X E RM and t ,  z ,  w  E Rn; by M we shall denote the number of constraints equal 
t o 2 * K + m + S J + 2 * S * K .  

For solving (13) and (14) we shall use the logarithmic barrier method. In such a 
method we augment the objective by adding to it a logarithmic barrier term, which 
yields 

1 n 

minimize g T t  + Z ( T ~ t  - p  C ( l n  6 + In a,), 
j=1 

(15) 

subject to At  = r,  

and an analogue of (14): 

1 n 

maximize rTX - p T ~  - - tTQt  + p  C ( l n  Z j  + In w J ) ,  
2  j=1 

subject to A ~ X + Z - W - Q [ = ~ ,  

[ 2 o , z ,w  > 0. 

The first order optimality conditions for (15) and (16) are 

t + a = p ,  
T A  X + z - w - Q t = g ,  - 

cz  = pe, 

Cw = pe, 



where Z, C, Z and W are diagonal matrices with the diagonal elements tj, aj, zj and 
wj, respectively and e E Rn is the vector of ones. 

For solving (17) we use a quadratic analogue of Mehrotra's higher order method 
[Mehgl]. This method computes a Taylor approximation of the optimal trajectory that 
starts at a given point and leads to the optimum of (13) and (14). 

The Mehrotra method belongs to the class of continuation methods (c.f. [OrR70]). 
These methods are used for solving systems of nonlinear equations. In continuation 
methods the family of parametrized problems is considered. One element of the family 
is exactly our original problem (e.g. for parameter equal to 0). Other problems have a 
perturbated right hand side vector. For a t  least one value of the parameter we know 
the solution of the problem (e.g. for parameter equal to 1). Coming iteratively from 
the problem with known solution to the original one (i.e. changing the right hand side 
vector) we can find better approximation of the solution. 

Let to, a', zO, w0 > 0 and X0 be the current estimate of the solution of (13) and 
(14). Then 

T,  = At0 - r, 
0 

T p  = to + 0 - f ,  

and rg = ATXO + z0 - w0 - Q ~ O  - g, 

are the resulting residuals in the primal and dual constraints. Next, we consider the 
parametric system of equations 

where and 4 2  are nonnegative functions determined on interval [O,1] such that 
42(0) = 42(1) = 0, 41(0) = 0, 41(1) = 1 and $I(?) E ( 0 , l )  for y E (0 , l ) .  The system 
(18) for y = 1 differs from the system (17) by the right hand side. For y = 0 both 
system are identical. 

Let r ( y )  = ([(y), a(?), A(?), z(y), w(y)) be the solution of (18) for given parameter 
y. We let r ( 1 )  = ([(l), a(l), A(1), z ( l ) ,  w(1)) = (to, a', XO,  zO, wO), so (18) is satisfied 
for y = 1. Thus r ( 0 )  represents the solution of (18) for y = 0, and solution of (17), 
and therefore approximated solutions of (13) and (14). The key point of Mehrotra's 
approach is to use local higher order information available at point r (1 )  to construct a 
direction that well approximates the first point of trajectory r. In our implementation 
f(7) = y(1 - y)' and g(y) = y, which refers to Mehrotra's Algorithm 11. 

Since r ( y )  is a solution of (18) for a given y, the appropriate higher order terms 
of Taylor polynomial approximation of correction ( A t ,  Aa,  AX, Az, Aw) to  the current 
estimate (t, a, A, z, w) result from the recursive differentiation of (18). The i-th order 



term of the correction vector can be obtained from 

where 

and 

' 

For every i the matrix involved in all these linear systems is the same. The factorization 
of (20) is to be computed only once. For the linear case we can compute, c.f. [AlG93a], 
[AlG93b], the search directions in the primal and dual spaces as 

- (4 - 
771 

772 (4 
773 

(4 
774 

(4 - 775 - 

- A  0  0  0  0 -  
- Q A T O  I - I  
I 0  I 0  0  
z0 0  0  0  
0  0  W0 0  C0 

- - 

Ax(') 
~ o ( i )  

AZ(;) 

Aw(') 

= 



where I, and ld are orders of Taylor polynomials in the primal and dual spaces, respec- 
tively. The parameters y, and yd in (21) are the largest numbers in [O,1] for which 

t - d (  2 0 ,  
o - d ,  2 0 ,  

Z - d ,  2 0, 

W-d ,  2 0 .  

Unfortunately, for quadratic problems the use of (21) can cause the loss of feasibility 
in dual constraints. If we have a feasible solution (t, o, A ,  z, w) then the new point 
(t - d(, o - d,, X - dx, z - d,, w - d,) need not be dual feasible as in the linear case. In 
a quadratic problem the primal variable t appears also in dual constraints, and then 

A ~ ( X  - d x )  + ( Z  -d,) - ( W  - d,) - Q([ - d g )  = c +  Qdg. 

To overcome this disadvantage we can follow [VaC93] and use y, = yd and 1, = ld for 
primal and dual space. But it implies that y = min(y,, yd) and 1 = min(lp, ld). This 
approach slows the method down. 

In our computations we decided to use different y and 1 for the primal and the dual 
space, similarly to the linear case. Our experiments show that with formulas (21) the 
algorithm works much faster. 

After computing the search directions we define step factors f p  and fd as in [Mehgl] 
and we define new approximations of optimal point 

Elimination of A&), Az(j) and Aw(j) reduces (19) to 

where 

and 



( 1  ( 1 )  ( 1 )  ( 1 )  where ql , q2 , q3 , ql , qii) are defined by (20). 
Further, we reduce (22) to the normal equation form 

and we compute sparse Cholesky factorization of the positive definite matrix AOAT. 
Now it is clear why it is convenient to have a diagonal matrix Q. With a diagonal Q 

all terms in (23) are diagonal and computing O is very easy. Furthermore the sparsity 
pattern for AOATis the same for every O and we can use the same techniques of 
symbolic factorization as in the the linear case [DER86]. Hence the method used for 
solving (24) is the same as in linear case. We can also use the same techniques for 
finding starting points. 

5 Numerical results 
The methodology described in the paper has been applied to the transboundary air 
pollution (TAP) model developed by [AKS93]. 

There were 36 countries in the model (K = 36) and for each country we had 6 sce- 
narios of cost curves ( S  = 6). Environmental constraints were imposed in 169 reception 
areas (m = 169). Together the problem (12) had 36 XI-variables, 169 t-variables, 236 
d-variables, 216 both q+- and q--variables, and 36 e variables, the total number 
of variables was 909. There are 169 constraints connected with the vector b', 36 with 
vector xb and 216 others, together we had 421 equality constraints. 

The solution of the problem for various values of the parameter a in (8) is presented 
in Tables 1 and 2. We used rather large values of a to  account for the difference of 
orders of magnitude between the unscaled expected cost and the normalized variance. 

We see from the results that the solution does not significantly change, when more 
stress is put on the variance. Presumably, the scenarios (cost curves) have substantial 
similarities in their qualititative behaviour and differ mainly in the scale of costs rather 
than in the shape of the function. 

It is also interesting to  note that the numerical method suggested in the paper 
proved efficient for this class of problems. In Table 3 we summarize its performance for 
different values of the parameter a. The method never failed, although the required 
precision was very high Both the number of iterations and the execution time 
are rather low. All computations were done on a SUN Sparc 2 workstation. 

6 Conclusions 
The methodology used in this paper can be used not only for this specific transboundary 
air pollution problem, but also for a wide class of problems with uncertainty in the 
costs. Using a mean-variance model we can properly treat a non-deterministic problem 
with small data collections, when more sophisticated stochastic methods are not useful. 
The mean-variance model has a nice interpretation in terms of risk. Furthermore this 
method leads to quadratic programming problems, well described in the literature. 



Table 1: Emissions of SO2 (in kT of S) 

Albania 
Austria 
Belgium 
Bulgaria 
Czechoslov. 
Denmark 
Finland 
France 
Germany-W. 
Germany-E. 
Greece 
Hungary 
Ireland 
Italy 
Luxembourg 
Netherlands 
Norway 
Poland 
Portugal 
Romania 
Spain 
Sweden 
Switzerland 
Turkey 
United-King. 
Yugoslavia 
Baltic-Sea 
North-Sea 
At1an.-Ocean 
Kola-Karelia 
S.Petersburg 
Baltic-reg. 
Byelorussia 
Ukraine 
Moldavia 
Rem.Eur.CIS 

Table 2: The values of the objectives 

c r = o  
0.637043+02 
0.388883+02 
0.572763+02 
0.259813+03 
0.381333+03 
0.240883+02 
0.581533+02 
0.428003+03 
0.259633+03 
0.170003+03 
0.235453+03 
0.480453+03 
0.272683+02 
0.529733+03 
0.340233+01 
0.531303+02 
0.158233+02 
0.416343+03 
0.929943+02 
0.546393+03 
0.749773+03 
0.390993+02 
0.238923+02 
0.833483+03 
0.733343+03 
0.272313+03 
0.146523+02 
0.346523+02 
0.633203+02 
0.126643+03 
0.153343+03 
0.140823+03 
0.135003+03 
0.847783+03 
0.1 15633+03 
0.186423+04 

Expected Cost 
Weighted Variance 

a = lo6 
0.635853+02 
0.388883+02 
0.410853+02 
0.259813+03 
0.419953+03 
0.240883+02 
0.581533+02 
0.30177E+03 
0.259633+03 
0.170003+03 
0.148953+03 
0.464333+03 
0.479583+02 
0.525763+03 
0.494833+01 
0.531303+02 
0.158233+02 
0.609513+03 
0.666363+02 
0.525013+03 
0.751633+03 
0.390993+02 
0.212373+02 
0.830323+03 
0.746783+03 
0.427633+03 
0.146523+02 
0.346523+02 
0.633203+02 
0.126643+03 
0.102693+03 
0.140823+03 
0.1 11323+03 
0.755833+03 
0.1 15633+03 
0.874833+03 

cr = 104 
0.636083+02 
0.388883+02 
0.439023+02 
0.259813+03 
0.416953+03 
0.240883+02 
0.581533+02 
0.369863+03 
0.259633+03 
0.170003+03 
0.164823+03 
0.465553+03 
0.479923+02 
0.523393+03 
0.481743+01 
0.531303+02 
0.158233+02 
0.573923+03 
0.806593+02 
0.526213+03 
0.750603+03 
0.390993+02 
0.212373+02 
0.833483+03 
0.733103+03 
0.420903+03 
0.146523+02 
0.346523+02 
0.633203+02 
0.126643+03 
0.974853+02 
0.140823+03 
0.10800E+03 
0.755833+03 
0.1 15633+03 
0.128123+04 

c r = o  
0.38703+04 

5.4678 

a = lo5 
0.635873+02 
0.388883+02 
0.415833+02 
0.259813+03 
0.419573+03 
0.240883+02 
0.581533+02 
0.304133+03 
0.259633+03 
0.170003+03 
0.151233+03 
0.464453+03 
0.477573+02 
0.525703+03 
0.494303+01 
0.531303+02 
0.158233+02 
0.606543+03 
0.678323+02 
0.52510E+03 
0.751563+03 
0.390993+02 
0.212373+02 
0.833483+03 
0.746343+03 
0.427143+03 
0.146523+02 
0.346523+02 
0.633203+02 
0.126643+03 
0.102363+03 
0.140823+03 
0.110283+03 
0.755833+03 
0.1 15633+03 
0.914613+03 

= lo5 
0.45963+04 

5.2044 

= 104 
0.43343+04 

5.2158 

a = lo6 
0.46283+04 

5.2033 



Table 3: Performance of the interior point method 

The numerical method used here, the quadratic version of an interior point method 
HOPDM [AlG93a], is safe and works quite well. In this method the most recent 
computational techniques are implemented, such as symbolic Cholesky factorization of 
sparse matrices, splitting dense columns, minimum degree ordering and many others. 
The application problem described in the paper motivated the development of the 
general quadratic programming solver for sparse and large scale problems. 

Unfortunately, not all scenarios available so far are complete and their set does not 
seem to be variable enough. Having a richer collection of data we might obtain more 
interesting results with greater role played by risk. Still, it is also possible that very 
tight deposition constraints do not leave much room for stochastic optimization in this 
case. 

In the current model only costs are uncertain. But depositions depend on many 
uncertain factors, especially on weather. In a more sophisticated approach one might 
incorporate uncertainty into the constraints, which requires further research and coop- 
eration of experts in both the environmental problems and optimization. 

Iterations 
Time (s) 

a = lo2 
18 

32.66 

a = o 
20 

35.09 

a = lo4 
21 

36.58 

a = lo5 
24 

41.66 

a = lo6 
30 

48.37 

a = lo9 
32 

51.53 
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