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Foreword 

In this paper the authors study time dependent Lyapunov functions for 
nonatonomous systems described by differential inclusions. In particular i t  
is shown that  Lyapunov functions are viscosity supersolutions of a Hamilton- 
Jacobi equation. For this aim a new viability theorem for differential inclu- 
sions with time dependent state constraints is proved: 

where t ?.t P ( t )  is absolutely continuous and (t, z )  ?.t F( t ,  z )  is a Lebesgue- 
Bore1 measurable set-valued map which is upper semicontinuous with respect 
to  z and has closed convex images. The viability conditions are formulated 
both using contingent cones and in a dual way, using subnormal cones (neg- 
ative polar of contingent cone). 



1 Introduction 

Consider two functions V : R+ x Rd I+ R U {+oo), W : R+ x Rd H R and 
a set-valued map F : R+ x Rd -u Rd. Our aim is to study necessary and 
sufficient conditions for the existence of a solution z ( - )  to the differential 
inclusion 

zl(t) E F( t ,  z(t)) for a.e. t 2 to 
z(t0) = zo (1) 

such that for every t > to 

for every choice of to > 0, zo E Rd. This problem is important for the 
investigation of stability in the sense of Lyapunov and the asymptotic sta- 
bility. We refer to  [4, Chapter 61 and [3, Chapter 91 for several applications 
and the bibliography concerning this problem. In the difference with these 
earlier works we allow F to  be only measurable with respect to  the time. 

In particular we show that a continuous function V : R+ x Rd H R such 
that t -u Ip(V(t,  -)) is absolutely continuous enjoys the following monotonic- 
ity property: for every (to, zo) € R+ x Rd there exists a solution z of the 
differential inclusion (1) such that t I+ V(t, z(t)) is nondecreasing if and 
only if it is a (generalized) supersolution of the Hamilton-Jacobi-Bellman 
equation 

Furthermore, V is a viscosity supersolution whenever either F is upper semi- 
continuous in both variables or when V is locally Lipschitz. 

Our results are based on a new viability theorem for differential inclusions 
with dynamics measurable with respect to time and the state constraints, 
given by an absolutely continuous set-valued map P : [O,T] -u Rd called 
tube. 

We investigate the existence of solutions to the constrained problem 

zl(t) E F(t,z(t))  a.e. in [to, TI 
z(t0) = zo (2) 
z(t)  E P( t )  for all t E [to, TI 

for every zo E P(to) and all to E [O,T[. 



The  tube P is called viable if for every to E [0, T[, zo E P( to )  there exists 
a solution t o  the  above Cauchy problem. We refer t o  [3] for many results on 
the viability problem, applications of the viability theory and the historical 
comments. We prove here the following sufficient condition for viability: 

3 A c [0, TI of full measure such that  

v t  E A, V z  E P(t) ((1) x F(t ,  z))  n i3 ( ~ ~ ~ ~ ~ h ( p ) ( t ,  z)) # 0 

where Z stands for the closed convex hull and F has convex compact images, 
F ( t ,  .) is upper semicontinuous, F(- ,  .) is Lebesgue-Bore1 measurable and 
has a linear growth. For upper semicontinuous in both variables F similar 
conditions can be found in [3], [4] (without the convex hull FiS)  and in [l:L] (see 
also [3, Theorems 3.2.4, 3.3.41) (with the convex hull i3) .  In the context of 
tubes and measurable in time dynamics the above condition was first proved 
in [9,10] under the additional hypothesis that  F( t ,  .) is locally Zipschitt. In 
this way our result is a generalization of [lo]. 

The  outline of the paper is as follows. In section 2 we recall some basic 
definitions. The viability theorem is given in section 3. Section 4 is devoted 
t o  an application t o  the Lyapunov second method. 

2 Preliminaries 

Let K C Rd be a nonempty subset and zo E K. The contingent cone t o  K 
a t  zo is defined by 

v E TK(zO) c=. lim inf dist (v, ?) = 0 
h+O+ 

where dist(a,A) denotes the distance from a point a to  a set A. See [5, 
Chapter 41 for many properties of tangent cones. 

The subnormal cone Ng(zo)  t o  K a t  zo is the negative polar of the 
contingent cone: 

Consider an  extended function y : Rd H R U {tm) .  The domain of 
9, Dom(cp), is the set of all zo such that cp(zo) # +m. The subdiflerential 
of cp a t  zo E Dom(cp) is given by 

8-9(z0) = { p  E Rd I lim inf y (z )  - cp(z0) - (P, z - zo) 
Z + Z O  112 - zoll 

2 o} 



The contingent epiden'vative of cp a t  zo E Dom(9)  in the direction 21 E ~d 

is defined by 

DTcp(zO)(u) = lim inf cpbo + hu') - cp(z0) 
h-r~+,  ul+u h 

Let 7 be a metric space and {A,),ET be a family of subsets of a metric 
space X. The upper limit Limsup of AT a t  TO E T is the closed set 

Limsup ,,, AT = { v  E X I liminf dist ( v ,  A,) = 0 )  
,+TO 

For a set-valued map F : [0, TI x Rd ?.r Rd the graph Graph(F) is given by 

We associate t o  it the differential inclusion 

Recall that  an  absolutely continuous function z : [ to ,T]  I+ Rd is a solution 
of ( 3 )  if z ' ( t )  E F ( t ,  z ( t ) )  almost everywhere in [to, TI.  

Propos i t ion  2.1 ( [ l o ] )  Assume that Graph(F(t ,  a ) )  are closed for almost 
all t E [0,  TI and 

F ( t ,  z )  is closed and convex for almost all t E [0,  TI and all z E Rd ( 4 )  

3 p E ~ ' ( 0 ,  T ) ,  JIF(t ,  z)11 5 p ( t )  for a.e. t E [0, TI and all z E Rd, ( 5 )  

where lIF(t,z>Il = sup{ll~ll I Y E F ( t ,  4 ) .  
Then there ezists a set A c [O,T] of full measure such that for every 

T E A and for every solution z to (3) defined on [0,  TI we have 

R e m a r k  - The conclusion of Proposition 2.1 remains true if we replace 
( 5 )  by the following linear growth assumption 

3 p E L', IIF(t,z)11 5 p( t ) ( l  + 1 1 ~ 1 1 )  for a.e. t E [O,T] and all z E Rd ( 6 )  



Indeed, if F satisfies (6) and z(- )  is a solution t o  (3) on [0, TI, then there 
exists an  integer k such that  Jlz(t)JI < k for t E [O,T]. Let Ak C [O,T] be a 
set of full measure given by Proposition 2.1 for the right hand side 

defined by 

for 1 1 ~ 1 1  < k 
Fk(t ,z)  = { ~ [ ~ ~ ~ ) + k ) B  for l \ z / l > k  

where B is the closed unit ball in Rd. It is enough t o  take A = nE1 Ak. 

Let P : [0, T] - Rd be a set-valued map with closed values. In this paper 
we call it a tube (of constraints). We say that  P is absolutely continuous on 
[0, T]  if the  following property holds true: 

1 V E  > 0 ,  VcompactK C R d ,  3 6 > 0 ,  V O < t l  < T I  5 ...< tm < r m  S T ,  

where e(U, V) = inf{& > 0 I U C V + EB). 
We get the definition of left absolute continuity by replacing 

by e(P(t;) n K ,  P(r;)). For a tube P : [0, oo[- Rd with closed images 
we say that  it is locally absolutely continuous (respectively locally left abso- 
lutely continuous) if the restriction of P t o  any finite time interval [O,T] is 
absolutely continuous (respectively left absolutely continuous). 

The  Hamiltonian H : [0, TI x Rd x Rd r-t R associated to  F is given by 



3 Viability Theorem 

In this section we obtain a new viability theorem for unbounded set-valued 
maps. Consider the viability problem (2) .  

Theorem 3.1 Let p E L1(O,T) be a nonnegative function. Assume that 
a closed valued map P : [O,T] - Rd is absolutely continuous, that F : 
[O,T] x R~ - R~ has nonempty closed convez values and 

z F ( t , z )  is upper semicontinuous for almost all t ; ( 7 )  

F ( - ,  -) is L x B (Lebesgue-Borel) measurable ; 

Then the following statements am equivalent: 

i)  There ezists C C [0, TI of full measure such that for all t E C ,  z E P ( t )  

ii) For all to E [O,T[ and zo E P(to)  there ezists a solution z ( . )  of (2) 
satisfying I(z'(t)lJ 5 p( t ) ( l  + 1(z(t)1)) almost everywhere in [ to ,T].  

Corollary 3.2 Let P, F be as in Theorem 3.1 and assume that (6) holds 
true. Then the following statements are equivalent: 

i)  There ezists C C [0, T ]  of full measure such that for all t E C ,  z E P ( t )  

ii) For all to E [0, T [  and zo E P(to)  there ezists a solution z ( - )  of (2). 
iii) There ezists D c [O,T] of full measure such that for all t E D, z E 

P ( t )  
v ( P ~ , P Z )  E ~6 raph(p)(t ,  2)' -Pt f H ( t ,  2 ,  -PZ) 2 0 

Proof of Theorem 3.1 - By Proposition 2.1 applied to  the map 

and the Remark following i t ,  i i )  3 i ) .  To  prove the converse, without 
any loss of generality, we may restrict our attention to  the case to = 0 
and zo E P(0).  By the Gronwall inequality, there exists r > 0 such that 
i f  an absolutely continuous function z : [O,tl] + Rd satisfies IIzf(t)ll 5 



p(t ) ( l  + (Iz(t)lJ) a.e. in [O,tl] and z(0) = zo, then 1 1 ~ 1 1 ~  < r .  Hence i t  is 
sufficient t o  prove the existence of a solution t o  the problem 

~ ' ( 2 )  E F ( t ,  z(t))  a.e. in [0, TI 
z(0) = zo 
z( t )  E p ( t )  for every t E [0, TI 

where p ( t )  = P ( t )  U {z E Rd : llzll > r )  and 

In the same time, z(.) is a solution t o  the differential inclusion (2). Further- 
more, F is integrably bounded, because for almost all t > 0 

and the viability condition holds true for almost all t > 0 and all z E Rd: 

To simplify the presentation of the proof we shall rather use the initial 
notations, i.e. F for F and P for P, and p for jl. 

Step 1. - Using [12, Theorem 2.41, we construct an increasing sequence 
{Kk} of closed subsets of [0, T] such that  Uy K k  is of full measure, for every 
k, the restriction F I K k x ~ d  is upper semicontinuous and the function 

is integrable, where X ( K )  denotes the characteristic function of K C [0, TI. 

Step 2. - Fix k. By [4, Theorem 1.13.11 there exists a sequence { F ~ } E = ~  
of convex compact valued maps from K k  x Rd into Rd such that 

a ) V t E  Kk, v z ~ R ~ , V m ,  F A + , ( t , z ) c F ~ ( t , z ) ,  

b) v t  E K ~ ,  v z  E R ~ ,  ~ ( t ,  2)  = fig=, FA+), 

c) V m ,  FA is locally Lipschitz, 



d) V t  E K k ,  V z  E Rd, V m ,  ~ : ( t ,  z )  c z F(Kk  x Rd) C suptEKkp(t)  B 

We define the set-valued map Fk : [0, TI x Rd w Rd by: 

v ( t ) B  if t 4 K k  

F r ( t ,  z )  if t E K,,, \ K,-l and m E {1 ,2 ,  ..., k )  

and denote by S k  the set of all solutions to the following viability problem 

z t ( t )  E Fk(t ,  z ( t ) )  a.e. in [0,  TI 
z ( 0 )  = 20 

~ ( t )  E P ( t )  for all t E [0,  TI 

It is easy to check that Fk satisfies all the assumptions of Theorem 4.7 from 
[lo] .  Thus the set S k  is nonempty and compact. 

It follows directly from the construction that 

1 F ( t ,  2 )  = (-,El Fk(t, z ) ,  V t  E "El Kk ,  V z  E Rd 

Thus Sk+1 c S k ,  for every k ,  which in turn implies that S = Sk  is 
nonempty, where S denote the set of solutions to ( 2 )  with to = 0 defined on 
[O,Tl. 

Using the same construction as in the above proof we obtain the following 
generalization of [ lo ,  Theorem 4.21: 

Theorem 3.3 Assume that a closed valued map P : [O,T] .u Rd is left 
absolutely continuous, that F : [0, TI x Rd .u Rd has nonempty closed convez 
values and satisfies (7), (8). Let p E L1(O,T) be a nonnegative function. 

Then the following statements are equivalent: 
i )  There ezists C c [0, TI of full measure such that for all t E C ,  z E P ( t )  

ii) For all to E [O,T[ and zo E P( to)  there ezists a solution z ( - )  to (2) 
satisfying IIzt(t)ll L p ( t ) ( l  + IIz(t)ll) almost everywhere in [to, T I .  

When P does not satisfy the viability condition i )  of Theorem 3.3, then 
we may look for the largest subtube of P ,  which is viable under F.  In the 
stationary case such subset was introduced and studied by Aubin in (21. 



Definition 3.4 Consider a tube P : [O,T] ?A Rd, tl 5 0 and a left abso- 
lutely continuous set-valued map P : [ t l ,  TI ?A Rd with closed images such 
that for every t E [ t l ,T ] ,  P ( t )  c P( t ) .  P is called a viability subtube of P 
with respect to F if there ezists A c [ t l ,T ]  with m ( [ t l , T ]  \ A) = 0 such that 

The largest viability subtube of P with respect to F is called the viability 
kernel of P with respect to F .  

Theorem 3.5 Let P : [O,T] Rd be closed valued and F : [0, TI x Rd ?A 

Rd satisfy (4), (6), (7) and (8). Then the set of all initial conditions 
( t o , zo )  E Graph(P) such that the constrained Cauchy problem (2) has a 
solution is the closed viability kernel of P with respect to F .  

Proof - For every to E [O,T], consider the set K ( t o )  o f  all initial con- 
ditions zo € P(to)  such that the constrained Cauchy problem ( 2 )  has a 
solution. From our assumptions, using the same arguments as in the con- 
vergence theorem [5,  p.2711, we deduce that the set { ( t , z )  I z € K ( t ) )  is 
closed. From ( 6 )  we deduce that K is left absolutely continuous. Theorem 
3.3 implies that every viability subtube P o f  P is smaller than K .  



4 Lyapunov Functions 

Consider a lower semicontinuous function V : R+ x Rd I-+ R U { + m ) ,  
an L x B measurable function W : R+ x Rd I-+ R and a set-valued map 
F : R+ x R~ cu R ~ .  Let to 2 0,  zo E Rd. A function z : [to, W [ H  R~ 
is called locally absolutely continuous if its restriction t o  any finite time 
interval is absolutely continuous. A locally absolutely continuous function 
z : [to, m[~-+ Rd is a solution t o  ( 1 )  if z t ( t )  E F( t ,  z ( t ) )  almost everywhere 
in [to, m[ and z ( to )  = zo. 

Throughout the whole section we impose the following assumptions: 

For almost all t 2 0, W ( t , - )  is lower semicontinuous and for some 
k E L:,,(R+, R+) we have 

(W( t , z )1  5 k ( t ) ( l  + 11x11) for a.e. t 2 0 and all z E R~ 

F has nonempty convex compact values, satisfies (7), (8), (6), where 
p 2 0 is a locally integrable function. 

Definition 4.1 V : R+ x R~ I-+ R U {+m) is called a Lyapunov 
function for F with respect to W if there exists a set D c R+ of full 
measure such that 

V ( t , z ) E D o m ( V ) n D x ~ ~ ,  inf D t V ( t , z ) ( 1 , v ) 5 - W ( t , z )  
vEF(t ,x)  

Theorem 4.2 If the set-valued map t cu &p(V( t ,  .)) is locally abso- 
lutely continuous, then the following three statements are equivalent: 

i )  V ( to ,  xo) E R+ x Rd there exists a solution z ( . )  to (1) such that 

ii) V is a Lyapunov function for F with respect to W 

iii) 3 C C R+ offull measure such that for all ( t ,  z )  E ~ o m ( v ) n C x R ~  

v ( P t ,  P X ,  9 )  E N&(,(t, 2 ,  ~ ( 1 ,  z ) ) ,  -Pt + H ( t ,  2 ,  -px) t 9 W ( t ,  2 )  

If in addition V is locally Lipschitz, then i i i )  is equivalent to 

iii)' 3 C C R+ of full measure such that for all ( t ,  z )  E C x R~ 



Theorem 4.3 Assume that F is upper semicontinuous i n  both vari- 
ables and that at least one of the following two assumptions holds true: 

H I )  k G const and W is lower semicontinuous i n  both variables 

H 2 )  W is continuous. 

Then the following three statements a w  equivalent: 

i )  V ( to ,  z o )  E R+ x Rd thew ezists a solution z ( . )  t o  (1) such that 

v t 2 to, v ( t ,  ~ ( t ) )  + J t  ~ ( r ,  z ( r ) ) d r  2 V ( t 0 ,  X O )  
to 

ii) v ( t ,  z )  E D o m ( V ) ,  inf,E~ct,,) D t V ( t ,  ~ ) ( 1 ,  U )  l - W ( t ,  X )  

iii) V ( t , z )  E D o m ( V ) ,  V(pt,p,) E 8 - V ( t , z ) ,  -pt + H ( t , ~ , - p , )  > - 
- W ( t ,  z ) ,  i.e. V is a viscosity supersolution to the Hamilton-Jacobi 

av equation -= + H ( t , z ,  -%) + W ( t , z )  = 0.  

Proof of Theorem 4.2 - We first show that  ii) * iii). Let D 
be as in the Definition 4.1. By [5, p.226,228] for every ( t ,  z ,  z )  E & p ( V )  
such that  t E D 

Applying the separation theorem we deduce i i i ) .  

To prove that  iii) * i )  i t  is enough t o  consider ( to ,  z o )  E Dom(V). 
Using the time translation, we may restrict our attention t o  the case 
to = 0. Consider the set-valued map F : R+ x Rd x R -., Rd+' with 
nonempty convex compact images defined by 

Then 

a )  for almost every t > 0, F ( t ,  .) is upper semicontinuous 

b) F is L x B measurable ; 

c) For a.e. t and all ( 2 ,  y )  E Rn+', ~ l F ( t ,  z ,  y)ll I (p(t)+2k(t))(1+1\~11) 

By iii), (93 holds true for all ( t ,  z ,  z )  E f p ( v ) n ( C x R d x R ) .  According 
t o  Theorem 3.1 there exist (z , ,  y,) : [0, n ]  H Rd solving the problem 



such that yn(t) 2 V(t, zn(t))  for all t E [0, n]. Hence for every t E [0, n], 

We extend zn on R+ by setting V t 2 n, zn( t )  = zn(n).  We can find 
a subsequence z,, : [0, nk] o Rd and a locally absolutely continuous 
z : R+ o Rd such that  z,, + z uniformly on compact sets and for 
every r > 0, zh, restricted t o  [0, r] converge weakly in L1(O, r ;  R d )  
t o  2'. Exactly in the same way as in [5, p.2711 we check that  z is a 
solution t o  (1) with to = 0. Finally i)  yields ii) in view of Proposition 
2.1 applied t o  F. When in addition V is locally Lipschitz, we deduce 
the equivalence of iii) and iii)' using [7]. 

Proof of Theorem 4.3 - By the Mean Value Theorem [4, p.211, 
if F is upper semicontinuous and W is lower semicontinuous, then 
i)  yields ii). By [7], ii) iii). Conversely, if iii) is satisfied, then, 
exactly as in [8], the upper semicontinuity of the Hamiltonian H imply 

for all (t, z )  E Dom(V). From the separation theorem we deduce (9) 
a t  every ( t , z ,  z )  E &p(V). If the assumption H I )  is verified, then 
consider the upper semicontinuous set-valued map as in the proof 
of Theorem 4.2. By [3, Theorem 3.3.61 the viability problem 

has a solution defined on [0, oo[. This yields i) and completes the proof 
in this case. If H z )  is verified then the viability problem 

has a solution defined on [0, oo[, which again implies i). 

Theorem 4.2 allows, using an approximation procedure, to  prove 



Theorem 4.4 In Theomm 4.2 assume in addition that V is continu- 
ous. Then the equivalent statements i )  - i i i )  am equivalent to 

i v )  For all ( t o , zo )  E R+ x R~ them ezists a solution z( . )  to (1) such 
that for all t > s 2 to, 

In particular, if W > 0,  then V ( t ,  z ( t ) )  < V ( s ,  z ( s ) )  for all t > s > to,  
i.e., V is strictly decmasing along the trajectory z .  

Corollary 4.5 In Theorem 4.2 assume that V is nonnegative, locally 
Lipschitz and that for some a > 0,  W > a V .  Then for every (to, zo) E 
R+ x R~ them ezists a solution z of (1) such that 

V t2 >_ t1 2 to, V ( t 2 ,  z ( t 2 ) )  2 e-"( t2- t1)~(t1,  z( t1))  

If in addition V does not depend on time, i.e., V ( t , z )  = V ( z ) ,  

and for some T > 0 the connected component 0, of the level set 
{ z  ( V ( z )  < r )  containing Zen, is compact, then z ( t )  + 0 whenever 
zo E 0,. 

We next prove an existence theorem for the lower semicontinuous Lya- 
punov functions. 

Theorem 4.6 Consider a lower semicontinuous eztended function 
Vl : R+ x Rd H R U {+oo) and assume that for a.e. t > 0,  W ( t ,  -) is 
continuous and the set-valued map z - F(t ,  z )  is continuous. 

Then them ezists the smallest lower semicontinuous Lyapunov func- 
tion V of F with respect to W satisfying t - &p(V(t ,  .)) is locally left 
absolutely continuous such that V 2 Vl . 
In particular there ezists the smallest nonnegative lower semicontin- 
uous Lyapunov function V of F with mspect to W satisfying t - 
&p(V(t ,  -)) is locally left absolutely continuous. 



Remark - If there is no lower semicontinuous Lyapunov function 
V of F with respect to W larger than Vl satisfying t - &p(V( t ,  -)) is 
left absolutely continuous, then V z t o o .  

Proof - We consider the set-valued map t - P ( t )  := &p(Vl(t, -)). 
For every to 2 0,  let K ( t o )  be the set of all zo E P(to)  such that the 
constrained Cauchy problem 

~ ' ( t )  E F( t ,  z ( t ) )  for a.e. t 2 to 
z( t0)  = zo 
z ( t )  E P ( t )  for all t > to 

has a solution (defined on [to, w[). The graph of the set-valued map 
K is closed and K is locally left absolutely continuous. Define V by 

Then V is lower semicontinuous and t - &p(V(t ,  -)) is left absolutely 
continuous. From Theorem 4.2 we deduce that V is the smallest 
Lyapunov function of F with respect to W such that V > Vl and: 
t - &p(V(t ,  -)) is locally left absolutely continuous. 

5 Stabilizing Selections 

We extend here the sufficiency part of [ I ,  Theorem 3.11 to the time 
dependent case. 

Consider a continuously differentiable V : R+ x R~ I-+ R+ such that 

Theorem 5.1 Assume that F measurable with respect to t and sat- 
isfies (4), (6) with T = t o o  and p € L1(O, t o o ) ,  that for almost all 
t > 0 the set-valued mup x - F ( t ,  z )  is continuous, 0 E F( t ,  0 )  and 

For every r > 0 set y,(t) := infllzll>, - a ( t ,  2) .  If for all r > 0 ,  



then thew ezists a selection f (t, z )  E F(t,  z )  which is Camthe'odory on 
R+ x R~\{o)  such that t/ t 2 0, f(t ,  0) = 0 and every solution z(.) to 

z'(t) = f (t, z(t)) for a.e. t (11) 

converges to zero as t + +m. 

Proof - Define a new set-valued map 

av av 1 
G(t, 4 = {Y E F(f 9 4 l 8i(t," + (z(t,z), Y) 5 -I"(t, x)) 

Then G has convex compact images and is measurable with respect to 
t. Furthermore, it is not difficult to realize (see for instance [I, Lemma 
2.11) that for almost all t 2 0, G(t, -) is continuous on R~\{o). By [5, 
p.3741 there exists a Carathbdory selection 

We set f (t, 0) = 0, a( t ,  0) = 0. Clearly the growth of f is at  most lin- 
ear. Consider any solution z(.) of (11) on [0, m[. Then, differentiating 
V(t, z(t)), we prove that for all t >_ s >_ 0 

From assumptions of theorem we deduce that for some t, + +w 
z(t,) + 0. Since p E L1 and 11 f(t,z)ll 5 p(t)(l  + 11z11), using the 
Gronwall inequality, we end the proof. 
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