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Foreword 

In this paper the authors study the Bolza problem arising in nonlinear op- 
timal control and investigate under what circumstances the necessary con- 
ditions for optimality of Pontryagin's type are also sufficient. This leads t o  
the question when shocks do not occur in the method of characteristics ap- 
plied t o  the associated Hamilton-Jacobi-Bellman equation. In this case the 
value function is its (unique) continuously differentiable solution and can be 
obtained from the canonical equations. In optimal control this corresponds 
t o  the case when the optimal trajectory of the Bolza problem is unique 
for every initial s tate and the optimal feedback is an  upper semicontinuous 
set-valued map with convex, compact images. 



1 Introduction 

This paper is concerned with the Hamilton-Jacobi equation 

associated t o  the Bolza type problem in optimal control: 

minimize loT L(z(t), u(t))dt + cp(z(T)) 

over solution-control pairs (2, U)  of control system 

where U is a finite dimensional space and 

In general H is not differentiable, but here we shall restrict our attention 
only to  problems with smooth Hamiltonians. 

The characteristics of the Hamilton-Jacobi-Bellman equation (1) are so- 
lutions t o  the Hamiltonian system 

Such system is also called "canonical equations" or "equations of the ex- 
tremals" in optimal control theory, since the Pontryagin maximum principle 
claims that  if z : [to,T] -, Rn is optimal for problem (2), (3), then there 
exists p : [to, TI -, Rn such that  (z ,  p) solves (4) with z~ = z(T) .  This is 
not however a sufficient condition for optimality because i t  may happen that  
t o  a given zo E Rn corresponds a solution (z ,p)  of (4) with z(tO) = zo and 
z is not optimal. If such is the case and the optimal solution t o  (2), (3) does 
exist, then by the maximum principle, we can find another solution ( z l , p l )  
of (4) with zl( to)  = zo and pl(to) # p(to). The situation when there are two 
solutions (zi ,pi) ,  i = 1 , 2  of (4) satisfying zi(t0) = zo and pl(to) # pz(to) is 
called shock arising in the method of characteristics. 



If shocks never occur on the time interval [0, TI, then the solution of (1) 
can be constructed by considering all trajectories ( z ,p )  of (4)  and setting 

where u(t) E U is such that  

Then, by [3], V is continuously differentiable, 

Furthermore V is the so called value function of our optimal control problem. 
In summary if we can guarantee that on some time interval [to,T] there is 
no shocks, then the value function would be the continuously differentiable 
on [to,T] x Rn solution to  (1). 

I t  is well known that  (unfortunately) shocks do happen. This is the very 
reason why the value function is nonsmooth and why one should not expect 
to  have smooth solutions. Also it was shown in [5] and [3] that  the value 
function is not regularly differentiable a t  some point (to, zo) if and only if 
the optimal trajectory of the control problem (2), (3) is not unique. 

Thus if we provide conditions that  guarantee the absence of shocks in 
the same time we get the useful information about uniqueness of optimal 
solutions. Furthermore, under the same assumptions as in [3] we get the 
optimal feedback low on [to, T] x Rn: 

with the set-valued map U(-) being upper semicontinuous with convex com- 
pact images. In this case there exists also exactly one solution of 

and i t  is optimal for problem (2), (3). 
It  was proved in [3] that  the shocks would not occur till time to if for 



every (z,p) solving (4) on [to, T] the matrix Riccati equation 

has a solution on [to, TI. 
In this paper we provide some sufficient conditions for global solvability 

of the above Riccati equation for all (z,p) verifying (4). 
In Section 2 we recall some results from [3]. Section 3 is devoted to  few 

useful informations about the matrix Riccati equations. In particular (5) is 
reduced t o  the equation 

where D(t), ST are defined from the coefficients of (5) and which is much 
simpler t o  investigate. In Section 4 we provide some applications t o  the 
optimal control problem mentioned above. 

2 Matrix Riccati Equations and Shocks 

In this section we recall some results concerning differentiability of the value 
function and shocks of the Hamilton-Jacobi-Bellman equation (1). 

Consider the Bolza problem in the nonlinear optimal control setting: 

(P) min loT ~ ( z ( f ) ,  u(f))dt + cp(z(T)) 

over solution-control pairs (z, u) of control system 

where to E [O,T], zo E Rn, f : Rn I+ Rn, g : Rn I+ L(Rm,Rn), L : 
Rn x Rm I+ R, cp : Rn I+ R. 

We associate t o  these data  the Hamiltonian H defined on Rn x Rn by 



If H is differentiable, then the Hamiltonian system 

is calledrcomplete if for all to E [O,T], zo, po E Rn it  has a solution (z ,p )  
defined on [0, TI and satisfying z(to) = zo, p(to) = po. 

We impose the following assumptions: 

H I )  f and g are differentiable, locally Lipschitz and have linear growth: 

Hz) 9 E C1, lim infll,ll+m ~ ( z )  = too,  
H3) L(z,  -) is continuous, convex, 3 c > 0 , V (2, u) E Rn x Rm, L(z,  u) > 

c 1 1 ~ 1 1 ~ .  
Furthermore for all T > 0, there exists k, > 0 such that  

V u E Rm, L(., u )  is differentiable and k, - Lipschitz on B,(O) 

H4) The Hamiltonian H is differentiable, its gradient VH(- ,  a )  is locally 
Lipschi tz 

and the Hamiltonian system (7) is complete. 

We denote by z(-;  to,zo, u) the solution to  (6) starting a t  time to from 
the initial s tate zo and corresponding to  the control u(.). 

The value function associated to  this problem is given by 

where (to, zo) range over [0, TI x Rn. I t  is well known that  whenever V is 
differentiable, i t  satisfies the Hamilton-Jacobi-Bellman equation (1). The 
following result was proved in [3]: 

Theorem 2.1 Assume that H I )  - H4) hold true. Then the following three 
statements are equivalent: 

i) The value function V is continuously differentiable 
ii) V (to, s o )  E [0, TI x Rn the optimal trajectory to problem (P) is unique 



iii) The system (4) does not ezhibit shocks on [O,T]. 

Furthermore, if one of the above (equivalent) statements holds true, then 
any solution (z ,  p) to (4) satisfies: 
for all t E [0, TI, p(t) = - g ( t ,  z ( t ) )  and z restricted to [to, T]  is optimal 
for problem (P) with zo = z(to). 

The  above implies that  whenever shocks do not occur on [to, TI, then the 
Pontryagin's necessary conditions for optimality of a solution Z(.) t o  (6): 
there exists p : [to, TI -r Rn such that  (Z, p) solves (4) on [to, TI with 
ZT = z(T) are also sufficient. 

It  was observed in [3] that  if cp, H are twice continuously differentiable 
and H" is locally Lipschitz, then V( t , - )  E C2 for all t E [O,T] if and only 
if for every (z ,p )  solving (4) on [O,T] the equation (5) has a solution on 
[0, TI. Since (5) describes the evolution of the tangent space t o  the set 
~ r a ~ h ( - g ( t ,  -)) a t  (z( t ) ,p( t ) )  in the sense that  Graph(P(t))  is tangent to  
this set a t  (z(t) ,  p(t)),  - g ( t ,  z ( t ) )  solves the Riccati differential equation 
(5) on [O, TI. 

3 Properties of Solutions to Riccati Equations 

We investigate here the matrix differential equations of the following type 

By the classical theory of Riccati equations if for all ( z ,p )  E Rn x R n ,  
g ( z ,  p) < 0 and p" 2 0 (i.e. cp is convex), then the solution P( . )  to  (8) 
exists on [0, TI for every choice of continuous (z(.), p(-)). 

3.1 Comparison Theorems 

The aim of this section is t o  provide two comparison properties for solutions 
of Riccati equations. Results of a similar nature can be found in [2], [8], [6]. 

Theorem 3.1 Let A, E;, D; : [O,T] L ( R n , R n ) ,  i = 1, 2 be integrable. 
We assume that E l ( t )  and Dl( t )  are self-adjoint for almost every t E [O,T] 
and 

Dl( t )  F D2(t), E l ( t )  F E2(t) a-e. in [O,Tl (9) 



Consider self-adjoint operators PiT E L ( R n , R n )  such that PIT I P2T and 
solutions Pi(-)  : [ to ,  TI H L(Rn ,  Rn) to the matriz equations 

for i = 1,2. If P2 is self-adjoint, then PI I P2 on [tO,T].  

Proof - From uniqueness of solution to ( l o ) ,  using that El ( t )  and Dl( t )  
are self-adjoint, it is not difficult to deduce that PI is self-adjoint. For all 
t E [to, TI ,  set 

1 
Z = P2 - Pi, A(f) = A( t )  + 5Ei( f ) (Pi ( t )  + P2(t)) 

Then 

A(t )*Z( t )+Z( t )A( t )  = ~ ( t ) * Z ( t ) + ~ ( t ) A ( t ) - P i ( t ) E 1 ( t ) P i ( t ) + P 2 ( 2 ) ( t )  

Therefore Z solves the Riccati equation 

2' + A(t)*Z + Z A ( t )  + P2(t)(E2(t) - Ei(t))P2(t) + D2(t) - Di( t )  = 0 

Denote by X ( - ,  t )  the solution to 

A direct verification yields 

Z ( t )  = X ( t ,  T ) ( P ~ T  - p i ~ ) X ( t ,  TI* + 

+iT ~ ( f ,  S ) ( D ~ ( J )  - D l ( 4  + P2(s)(E2(4 - E I ( s ) ) P ~ ( J ) ) X ( ~ ,  4.d~ 

This and assumptions (9) imply Z 2 0 on [to, TI. 

Theorem 3.2 Let A, E;, D; : [0, TI I+ L(Rn ,  Rn), i = 1,2 be integrable. 
We assume that E1(t) ,  D1(t)  are self-adjoint for almost all t E [O,T] and 

D l ( t )  I D2(t), 0 I El ( t )  5 Ez(t)  a.e. in [0, TI 

Consider self-adjoint operators PiT E L ( R n ,  Rn) such that PIT I P2T and 
solutions Pi(.) : [ti ,  TI H L(Rn ,  Rn), i = 1,2 to the matriz equations 

If P2 is self-adjoint, then the solution PI is defined at least on [ t2 ,T]  and 
Pl I p2. 



Proof - Consider the square root B(t)  of El(t) ,  i.e. for almost every 
t E [O,T], El( t )  = B(t)B(t)* and set 

to = inf {PI is defined on [t, TI) 
t€[O,Tl 

Thus either the solution PI exists on [O,T] or JIPl(t)lJ 4 oo when t 4 to+. 
I t  is enough t o  check that  if t2 5 to, then PI is bounded on ]to, TI. So let us 
assume that  t2 I to. By Theorem 3.1 for every to < t I T, Pl(t)  I P2(t). 
Since PI = Plf for every z E Rn of norm one and all to < t 5 T 

for some c independent from t, because P2 is bounded on [t2, TI. 
On the other hand for any y E Rn of norm one 

Integrating on [t, T ]  and using the latter inequality and the Holder inequality, 
we obtain 

(Pl(t)x* Y) 5 llPl~II + llB*(')pl(.)x11L2(t,r, IIB*(')pl(')~ll~2(t,Tl + 

for some cl independent from t. Since this holds true for all x, y E Rn of 
norm one, 



Applying the Gronwall lemma we deduce that IIPl(t)ll is bounded on ]to,T] 
by a constant independent from t. 

3.2 Reduction to a Simpler Form 

Our next aim is t o  associate t o  the Riccati equation ( 8 )  a new equation 

where d ( t ) *  = - d ( t ) ,  in such way that  the existence of solution t o  ( 1 1 )  on 
[to, TI implies that  of (8) .  

Theorem 3.3 Consider E : [O,T] I+ L ( R n , R n )  such that for some w > 0 
and a.e. t E [O,T], E ( t )  2 w I  and is self-adjoint. We assume that the 
square root of E ( t ) ,  denoted by B ( t ) ,  is twice differentiable. Let A : [O,T] I+ 

L ( R n ,  Rn) be absolutely continuous, D : [0,  T ]  H L ( R n ,  Rn) be integrable, 
PT E L ( R n ,  Rn). 

Then the solution to (8) exists on [to, T ]  if and only if so does the solution 
to 

St  - d ( t ) S  + S d ( t )  + S 2  + D(t)  = 0 
( 12) 

S ( T )  = ; ( A l ( T )  + Al(T)*)  + B(T)*PTB(T)  

where 

Proof - Let P solves ( 8 )  on [to,T].  Set R ( t )  = B(t )*P( t )B( t ) .  Differen- 
tiating this relation we obtain 



and conclude that R is the solution t o  the Riccati equation 

Conversely, if R solves (13),  then P ( t )  := B ( t ) * - ' ~ ( t ) ~ ( t ) - '  is the solution 
to  (8). We rewrite the equation (13) in the following form 

and define S ( t )  = A ( t )  + R(t ) .  Then, 

Under some additional assumptions Theorem 3.3 can be improved in the 
following way. 

Theorem 3.4 Let us consider an integrable D : [O,T] I+ L ( R n ,  Rn), an 
absolutely continuous A : [O,T] w L ( R n , R n ) ,  E ,  PT E L ( R n , R n )  and 
to E [O,T]. We assume that for for almost every t E [0, TI ,  A ( t )E  is self- 
adjoint. Then the solution to the matriz equation 

P' + A(t)*P + P A ( t )  + P E P  + D( t )  = 0,  P ( T )  = PT (14) 

ezists on [to, TI if and only if so does the solution to 

Furthermore, solutions of (14) and (15) are related by S ( - )  = A ( - )  + EP( . ) .  
If in addition E is invertible, then the solution to (14) ezists on [to, T ]  if 
and only if so does the solution to 

Qf  + QE-'Q + E D ( t ) E  - A1(t)E - A ( ~ ) ~ E  = 0,  S ( T )  = A ( T ) E  + EPTE 

( 16) 
and Q is self-adjoint whenever E ,  PT and D( t )  are self-adjoint for all t E 
[ O ,  TI.  



Proof - Let P solve (14) on [to,T].  Set S ( t )  = A( t )  + EP( t ) .  Differen- 
tiating this expression we obtain 

Thus S solves (15). Conversely let 

tl = inf { The solution P t o  (14) is defined on [t,  TI } 
t € [ O , T I  

and S solves (15) on [to,T]. It is enough to  prove that  if to < t l ,  then P is 
bounded on ] t l , T ] ,  that  is it can happen only if to = tl = 0. So let to < t l .  
From the first part of the proof and uniqueness of solution we know that  
for every t E ] t l , T ] ,  S ( t )  = A(t )  + EP(t ) .  Hence IJEP(t)ll < oo. 
Integrating (14) we deduce that  for all z E Rn with llzll < 1 and tl < t < T 

Since z is an  arbitrary element of the unit ball we proved that  for some c > 0 
independent from t E]t1,T],  IIP(t)ll < c + ~ ~ ~ c I I P ( t ) l l d t .  This and the 
Gronwall lemma yield  up,^]^,,^] IIP(t)ll < oo. TO prove the last statement 
i t  is enough t o  multiply (15) by E from the right and to  set Q = S E .  

Our next result is similar t o  Theorem 3.3. 

Theorem 3.5 Under all the assumptions of Theorem 3.3, the solution to 
(8) ezists on [to,T] if and only if so does the solution to 

1 
S' + s2 + D(t)  = 0,  S ( T )  = - (A1(T)  + Al(T)*)  + B(T)*PTB(T)  

2 

where A1 is defined as in Theorem 3.3, 

and X ( . )  denotes the matn'z solution to 



Proof - Let P solve (8) on [to, TI. By the proof of Theorem 3.3, R ( - )  := 
B(.)*P(.)B(.) solves (13). Define A, 2, Dl as in Theorem 3.3 and observe 
that  A(t)* = -A( t ) .  Therefore 

Set S ( t )  = X ( t ) * ( x ( t )  + R ( t ) ) X ( t ) .  Then, differentiating this equality, using 
(17) and the proof of Theorem 3.3, we obtain 

3.3 Existence of Solutions 

We deduce from the previous section sufficient conditions for existence of 
solutions t o  the matrix Riccati equations. 

Theorem 3.6 Let A, E ,  D : [0, TI t+ L(Rn ,  Rn) be integrable. We assume 
that E ( t ) ,  D ( t )  are self-adjoint and E ( t )  2 0 for almost every t E [O,T]. 
Consider a self-adjoint operator PT E L ( R n , R n )  and assume that there 
ezists an absolutely continuous P : [to,T] H L(Rn ,  Rn) such that for every 
t E [ to ,T] ,  P ( t )  is self-adjoint, PT I P ( T )  and 

Then the solution P to (8) is defined at least on [to, TI and P < P. 

Proof - Set 

Then r ( t )  < 0 is self-adjoint and P solves the Riccati equation 

where D( t )  - r ( t )  2 D(t) .  By Theorem 3.2, P is defined at least on [to,  TI 
and P 5 P. 



Corollary 3.7 Under all assumptions on A, E ,  D of Theorem 9.6 con- 
sider a self-adjoint nonpositive PT € L ( R n ,  Rn). If for almost all t E 
[O,T], D ( t )  5 0, then the solution 7 to the matn'z Riccati equation (8) 
is well defined on [0, TI and 7 5 0. 

Theorem 3.8 Under all the assumptions of Theorem 9.9, let V ,  S ( T )  be 
defined as in Theorem 9.9. Assume that for some X > 0 and all t E 
[O,T], V ( t )  5 - X 2 1  and S ( T )  < XI. Then the solution to (8) is defined 
on [O,T]. 

Proof - By Theorem 3.3 we have to check that (12) has a solution on 
[0, TI.  Set 3(.) = XI. Then for every t E [0, TI ,  

S 1 ( t )  - A ( t ) S ( t )  + S ( t ) A ( t )  + s ( t ) 2  + V ( t )  < 0 

Theorem 3.6 ends the proof. 

Theorem 3.9 Under all the assumptions of Theorem 9.4, suppose that 
E ,  D( t ) ,  PT and A ( T )  + EPT are self-adjoint, E > 0 and 

A1(t ) + ~ ( t ) ~  - E D( t )  is self-adjoint for almost every t E [0, TI 

If there exists a E R such that 

A f ( t )  + ~ ( t ) ~  - E D ( t )  > a 2 ~  for a.e. t E [0, TI & A ( T )  + EPT < a1 

then the solution to the Riccati equation (14) is defined on [O,T]. 

Proof - By Theorem 3.4 it is enough to  show that the problem (15) has 
a solution on [0, TI.  For all t E [0, TI ,  set S ( t )  = aI.  Then 

By Theorem 3.6 the solution to 

is defined on [0, TI. 

Theorem 3.10 Under the assumptions of Theorem 9.4, suppose that E ,  D( t ) ,  PT 
are self-adjoint and E > 0. If there exists a E R such that 

A ' ( ~ ) E + A ( ~ ) ~ E - E D ( ~ ) E  2 a 2 ~  for a.e. t E [0, TI & A(T)E+EPTE < aE 

then the solution to the Riccati equation (14) is defined on [0, TI .  

Proof - By Theorem 3.4 we have to verify that the problem (16) has a 
solution on [O,T]. For all t E [O,T], set Q ( t )  = aE.  The proof ends by the 
same arguments as the one of Theorem 3.9. 



4 Applications to the Bolza Problem 

We apply the previous results to the problem treated in Section 2. 

4.1 Linear with Respect to Controls System 

Consider the problem 

over solution-control pairs (2, u) of the control system 

where to E [0, TI, zo E R n ,  

f = ( f l y  ..a, fn) : R n  H R n ,  l : R n  H R ,  p : R n  H R 

B E L(Rm, Rn) and R E L(Rm, Rm) is a self-adjoint operator such that for 
some w > 0 and all u E Rm,  ( R u , ~ )  2 w 1 1 ~ 1 1 ~ .  

The associated Hamiltonian system is 

We impose the following assumptions: 

hl) 3 M 2 0, V z E Rn,  llf(2)Il 5 M(Ilz11 + 1) 
h2) lim i n f l l Z ~ ~ - + O O  cp(z) = + 00 
h3) The functions f,  I, cp E C2 
h4) The Hamiltonian system (20) is complete 
h5) f'(z)BR-I B* is self-adjoint 

Observe that h5) yields that 

Linear convex problems in general do not satisfy h5), but we treat this 
case separately, in the next subsection. 



T h e o r e m  4.1 Assume h l )  - hg) and that at least one of the following two 
assumptions is verified 

i )  B is surjective and there ezists a E R such that for every z E Rn 

fl(z)BR-'  B* - BR-' B * c ~ ~ ~ ( z ) B R - '  B* 5 ~ B R - '  B* 

i i )  For every z E Rn, ll1(z)BR-'B*, f l ( z )  - BR-I  B*~pIl(z) are self- 
adjoint and there ezists a E R such that for every z € Rn 

Then 
a) V is continuously digerentiable and V ( t ,  .) E C 2  
b) the optimal control problem (18), (19) has the unique optimal control 
for any initial condition ( to ,  z o )  E [0, TI x Rn 
c) for every solution ( z , p )  to the system (20) and every to E [0, TI ,  z ( . )  
restricted to [to, TI is optimal for the problem (18)) (19) with zo = z ( t o )  
and p(t)  = - g ( t ,  z ( t ) )  
d) The map t I+ f l ( z ( t ) )  - BR-I B * S ( t ,  z ( t ) )  solves the equation 

Furthermore the optimal feedback low u : [0, TI x Rn I+ Rn is given b y  

av 
V ( t ,  Z )  E [O,T] x Rn, ~ ( t ,  Z )  = -R-'B*-(t, Z )  az 

Corollary 4.2 Assume that U = Rn, R = B = Id,  that the map z I+ 

l ( z )  + f (1 f (z)l12 is convez and 

If h l )  - h 4 )  hold true and f l ( z )  is self-adjoint for all z ,  then all the conclu- 
sions of Theorem 4.1 are valid. 



We observe first that  the Hamiltonian corresponding to  the problem ( la) ,  
(19) is given by 

Thus, 

and 

P r o o f  o f  T h e o r e m  4.1 - It is not difficult to  check, using h l )  - h4), 
that  for all (to, zo) there exists an optimal solution of our problem and the 
value function is locally Lipschitz (see [3]). From our assumptions we know 
that if for every solution (z ,p)  to  (20) the matrix Riccati equation 

k=l 

(21) 
has a solution on [0, TI, then the conclusion a) of our theorem is valid. On 
the other hand, if (z, E) is optimal and p(-) is the corresponding co-state, 
then 

Thus 
- av u(t) = R - ~  ~ * p ( t )  = - R-I B*- az ( 4  W )  

which yields b) and c). Set 

Differentiating A we get 



Let e,, denote the elements of the (symmetric) matrix BR-' B*. By hs), 

and therefore 
a2fr 

eis - axjax, 

Thus 

Consequently, 

BR-'B*D(~) - ~ y t )  - ~ ( t ) ~  

Theorems 3.9 and 3.10 imply that the solution to the matrix Riccati equation 
(21) is defined on [O,T]. Finally, the conclusion d) follows from Theorem 
3.4. 

4.2 Linear Convex Bolza Problem 

We consider the problem 

minimize jT (1(t, x(t)) + ;(R(t)u, u)) dt + P(x(T)) 
to  

over solution-control pairs (x, u) of the linear control system 

x' = A(t)x + B(t)u(t), x(to) = s o ,  u(t) E Rm 



where to E [0, TI, xo E Rn, 

A(t) E L ( R n , R n ) ,  B(t) E L ( R m , R n )  and R(t) E L ( R m , R m )  is a self- 
adjoint operator such that for some w > 0 and all t E [O,T], 

aZ1 We assume that  cp E C2, limllZll,, cp(x) = t o o ,  that A(.), R(.), I(-, -), = ( a ,  .) 
and B(.) are continuous, 

and that l(t, .) and cp are convex. Then 

Since 

a21 x)  > 0 k pff(x) t 0 V X E R " ,  @(t, - 

by Corollary 3.7, the solution P ( - )  t o  the corresponding matrix Riccati equa- 
tion is defined on [0, TI for every choice of continuous (x(-), p(.)). Hence the 
conclusions a )  - c) of Theorem 4.1 are valid. Furthermore, by Corollary 3.7, 
g ( t , x ( t ) )  = -P( t )  > 0. Thus V(t ,-)  is convex. 

4.3 Local Regularity of the Value Function 

In the general case we do not have existence of solutions t o  the matrix 
Riccati equations for all the extremals (x,p). However from a priori bounds 
on the data, it is possible t o  estimate the interval of time [to, TI during which 
there is no shocks and so the value function is continuously differentiable on 
[to,T] x Rn. 

Consider the problem 

( P )  minimizeloT (I(x(t)) + ~ ( R u ,  u)) dt + p(z(T))  



over solution-control pairs ( z ,  u )  of the control system 

z l ( t )  = f ( z ( t ) )  + g(z( t ) )u( t ) ,  z(t0) = zo, u( t )  E Rm (24 

where to E [0, TI,  zo E Rn, 

f:RnwRn,g:RnwL(Rm,Rn),l:RnwR, cp:RnwR 

are twice continuously differentiable and R E L(Rm,  Rm) is a self-adjoint 
operator such that  for some w > 0 and all u E Rm, (Ru,  u )  2 w 1(u1l2. 

We assume that  

f ,  g ,  f l ,  g l ,  11, c p l ,  f " ,  g", I", cp" are bounded (25) 

The Hamiltonian H of this problem is given by 

and for C E L(Rm,  Rm) such that  CC* = R-' 

So the Hamiltonian system is 

z l ( t )  = f ( ~ ( t ) )  + g(z(t))R-lg(z(t))*p(t) 

-pl(t) = f'(z(t))*p(t) + $ (~*g* ( . ) p ) ( z ( t ) )  - V l ( z ( t ) )  (26) 

P ( T )  = -Vcp(z(T)) 

By (25) the norms of the co-states p(.) are bounded by a constant indepen- 
dent of z (T ) .  Thus there exists c > 0 such that  every solution ( z ,  p )  of (26) 
satisfies 

l l ~ l ( . > l l ,  + II~(->llw + l l ~ ' ( . ) I l ,  5 c 

Fix E > 0 and set 



Then D(t)  2 & I .  By Theorem 3.5 and our assumptions we may reduce the 
matrix Riccati equation 

(27) 
t o  the new Riccati equation 

with Q(,(.),,(.))(t) and S(T)  = S(,(.),,(.)) self-adjoint and such that  

where X is independent from the solution (z ,p)  of (26), because of the bound- 
edness assumption (25). Setting 

and choosing 7 large enough we prove that  for some to E [0, T[  and 

for all ( z ,p )  solving (26). By Theorem 3.6 the solution t o  (28) is defined a t  
least on [to,T]. By the comparison Theorem 3.2, also the solution of (27) 
with E = 0 is defined on [to, TI for all (z ,p)  solving (26). Thus V E C1 on 
[to,T] x Rn. 
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