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FOREWORD 

We study convergence of value-functions associated to control systems 
with a singular perturbation. In the nonlinear case, we prove new convergence 
results: the limit of optimal costs of the perturbed system is an optimal cost 
for the reduced system. We furthermore provide an estimation of the rate of 
convergence when the reduced system has solutions regular enough. 
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SINGULAR PERTURBATIONS IN NON 
LINEAR 

OPTIMAL CONTROL SYSTEMS 

Marc Quincampoix & Huilong Zhang 

Introduction 

We shall study the following singularly perturbed control system for almost 
all t  E [O,T]  and T fixed 

The state-variable x  and y  belong to some finite dimensional vector-space 
X and Y. The control v ( t )  belongs to some compact convex subset U in- 
cluded in some finite dimensional space 2. 

These equations are used to model a system with a slow variable x ( - )  and 
a fast variable y ( . ) .  It is possible to refer to [7]  for numerous examples and 
applications. Since the works of Tychonoff [ 9 ] ,  the convergence of solution of 
( 1 )  ( when E + 0 )  has been studied by many authors (cf [ 4 ] ,  [ l o ] ,  [8 ] , .  . . ). 

Our main goal is to study the convergence of an optimal cost associ- 
ated with ( 1 ) .  With any solution ( x , ( t ) ,  y , ( t ) , v ( t ) )  to (1) we associate the 
following cost 

We define V,  the value-function which is the infimum of Jc  over all solu- 
tion to ( 1 ) .  



We wish to underline that the results of this paper are still available for 
the following cost 

We can reduce the problem with the integral cost j into a new one 
with only final state cost. Actually, let us transforme 1nfj(zc,ye,v) into 
InfI (x,, ye, z,, v) where 

and 

So, by adding the dimension of x(-), we get a new equivalent system with no 
integral part in the cost. In all this paper we can assume that 1 = 0 and 

In the same way to a solution to 

we associate the following cost 

and the corresponding value-function Vo. 
Our goal is to prove the following results under suitable assumptions (the 

notations are defined successively in the paper). 
1st main result 

Convergence of value-functions: 



Rate of convergence. If for any trajectory of the limit system, we have 

then 

2nd main result 
If V ,  + and 

x:, yf optimal trajectory of E, 

x*, y* optimal trajectory of Eo 

then 

dY Burthermore,if l H  <+m then 
L2 

The purpose of the paper is to generalize well-known results in linear case 
(cf [ll] for instance) to nonlinear case. In the nonlinear case, there exists 
some work of Binding [4] but with no estimation of the rate of convergence. 
We also want to refer to the book of Bensoussan [3], because our goal is to 
obtain similar results without assumptions concerning adjoint variables. 



1 Perturbed and reduced control system 

1.1 Problems and assumptions 

It's almost classical that ( I )  and ( 2 )  can be translated into the equivalent 
differential inclusion problems (see [2]). 

and 

(4) 

where 

We denote S ( t ,  xo, yo) as the set of (x,(.), ye(.)) absolutely continous solutions 
on [O,T] to ( I ) ,  et S ( x o ,  yo) as the set of ( x ( - ) ,  y( . ) )  absolutely continous 
solutions to ( 2 )  on [0, TI. We define 

in this way, we transform ( 2 )  into 

( 5 )  x l ( t )  f ( x ( t ) ,  R ( x ( t ) ) )  

We need the following assumptions concerning ( I ) ,  ( 2 ) ,  (3) and ( 4 ) .  

Assumption 1.1 

( i )  f, g are k-Lipschitz with respect to ( x ,  y,  v )  

(ii) h is 1-Lipschitz 

(iii) H ( x ,  y )  is a set valued map k-Lipschitz with compact convex nonempty 
values and with k linear growth. 

(iv) 3 c E R+ 

(iv) x H f (5 ,  R ( x ) )  is  convez valued. 



1.2 Existence of optimal solutions 

We shall state an easy proposition furnishing existence of optimal solutions 
which is classical in the linear case and also in the case (cf [3]): 

Proposition 1.2 If 

and with assumptions 1.1, then there exists at least an optimal solution to 
(2). Furthermore, for any control u ( . )  there exists an unique solution to (2). 

PROOF. 
Let us notice that, thanks to (6), for each fixed (x, v )  there exists an 

unique y such that 0 = g(x, y, v). Furthermore thanks to the compactness 
of U, for any x, y is bounded by some constant which does not depends on v. 
On the other hand, because the dynamics is continuous, R is closed compact 
valued. Thanks to [2], chapter 5.4.3 we deduce that R is Lipschitzl. Since h 
is continuous, and the set of solutions to xf(t) E F(x(t ) ,  R(x(t)) is compact 
there exists an optimal solution '. The uniqueness of solution to (2), when 
v(.) is given, follows from standard argument of differential equation theory 
(cf [2] for instance). 

This completes the proof. 

2 Convergence 

2.1 Convergence of optimal cost 

We denote by Vc (resp. VO) the optimal cost of the system ( I )  (resp. (2)). 
Let us state the following 

'It is easy to notice that a pseude Lipschitz map with compact values is Lipschitz 
2Let's recall (cf (21) that when O is Lipschitz with convex compact values, the set of 

solution of 

is compact in W1sl. 



Proposition 2.1 Under Assumptions (1 .I), consider an optimal control u( . )  
for the reduced problem (2). If furthermore 

. . 
( with Y > 0, for V x ,  yl, y2 and t < T 

then 

(8) e-rO lim sup Vc  5 V0 

Before proving this proposition, following the idea of [3], we have 

Lemma 2.2 Consider an optimal control u( .)  for the reduced problem (2). 
Under assumptions of Proposition 2.1, if % , ( a ) ,  y e ( . )  is a solution of 

then 

(10) lim Jc (u )  = V O  
c-40 

PROOF. According to (1.1), we have by multiplying the first equation of ( 9 )  
by z e  

(11) 
1 d 
-- li..(t)12 5 ciz . ( t ) l ( l+ Iz.(t)l+ l a ( t ) l )  
2 dt 

for the same reason 

5 -v l%(t)12 + c ( l  + Ite(t)l) Ik( t ) l  

Integrating it from 0 to t we obtain 



by inequality of Cauchy-Schwarz 

By standard arguments concerning zeroes of second order equations. 

( 1 2 )  Il&llL2[0.tl 5 K ( 1  + l l f C ~ l L ~ [ o . t ] )  

where K is bounded constant. With ( 1 1 )  we get 

< c t + 2 c l l ~ c l l Z 2 [ o . t l + ~ l l ~ c l l L 2 [ o . t ] I I ~ l l ~ 2 [ o . t ]  

because I?,(t)( 5 1 + 1%c(t)12. By ( 1 2 )  

We can then apply the inequality of GrGnwall to get 

Consequently, we verify because of ( 1 2 )  that IgC(t)  1 and 11% 1 1  L2[o,tl are bounded. 
The first equation of (9) implies also 

so there exists %,g such that 

2, --t % weakly in H1[O, TI and, thus, strongly in L2[0, TI 
( 1 5 )  

i j ,  -+ ij weakly in L2 [0, TI 

We claim that 



Lemma 2.3 Under assumptions of Lemma 2.2) we have 

+ strongly in L~ 

and (5, g, u) is a solution of (2)) thus an optimal solution. 

According to  Lemma 2.3, we have 

lim Jc (u) = VO 
c-*O 

This is precisely the assertion of Lemma 2.2 
PROOF. of Lemma 2.3. Here we follow the method of MINTY explicited in 
BENSOUSSAN [3] Chapter V Section 1.3. 

We first notice that thanks to  (7), the maps A, : z(.) H -g(xc(.), z(.), u ( . ) )  
and A : z(.) H -g(~( . ) ,  z(.), u(.)) are monotone maps from L2 into itself (be- 
cause these maps are also lipschitzean thanks to  similar property concerning 
g). Furthermore ejj: = A,(&) 

Thanks to  the monotonicity property, we have 

In one hand, for any q E Coo such that its support is contained in ]O,T[, 
we obtain, by integrating by parts < Ac(yc), q > ~ 2 =  e < ye, q' > ~ 2  which 
converges to 0. Hence cy: = Ac(yc) converge weakly to  0. 

In the other hand < Ac(yc), fi > ~ 2  = - i(pc(T) - yo). Hence, we can have 
passing to  the limit in (17) (it is possible because 5, converges strongly, for 
any z in L2, AC(z) converges to  A(z) in L2). 

In this inequality, we replace z by y + Xq, where X < 0 and q E L2. Dividing 
by A, we obtain for every q, 0 I< -A(y),q > ~ 2 .  Thus A(y) = 0, this is t o  
say that (5, y, u) is a solution of (2). 

Let us prove now that ye converges strongly. Replacing z by y in (17), 
and thanks to  (7) we have 

We know that < Ac(yc), y, > ~ 2  converges to  0. So it is for < Ac(ijc), >Lz 
because Ac(yc converges weakly to  0. Hence, passing to  the limit in (IS), we 
obtain that PC converges strongly to  y. The proof is complete. 



Remark 2.4 Comparing with the result in Section 1.9 of chapter V in [3], 
we do not need the assumptions (1.9), (1.10) and (1.11) which guarantees the 
uniqueness of the optimal solution of the limit problem (2). The assumption 
1.14 of [3/ is also weakened b y  (7). 

The Proposition 2.1 is an immediate consequence of Lemma 2.2. 
PROOF OF PROPOSITION 2.1. We take u,  such that 

We note that such uc exists for any e > 0 ,  because if for certain e > 0 ,  we 
have J c ( v )  > J c ( u )  for any v  E U ,  then we can chose u ,  = u  to get (19) .  We 
then have for such u ,  

(20)  C+O limsup J' (u,)  < J ( u )  

in view of the Lemma 2.2. It is sufficient to remark that 

V c  5 J c  (u,)  

to obtain (8). 
To obtain the convergence of optimal cost, we should prove the following 

Proposition 2.5 Under the same assumption as Proposition 2.1 we have 

lim inf V' 2 V0 
6'0 

We use the same idea as in the proof of Proposition 2.1. For any e > 0 ,  
there exists u ,  such that for any measurable control v  E U 

We recall that u  is an optimal solution of (2) .  We need the following lemma, 
it will be proved later. 

Lemma 2.6 Assume that assumptions (1.1), (7) hold true and that u ,  is 
constructed by (21). Then there ezists ( ~ , y , i i )  a solution to (2) such that 

z, + z weakly in H' [0, TI and, thus,strongly in L ~ [ o ,  TI 

y, + g strongly in L2[0 ,T]  



PROOF OF PROPOSITION 2.5. By definition 

JC (uc) = h ( x c  (T)) 

According to (ii) of Assumption ( 1  . l )  and Lemma 2.6 

lim h (x , (T ) )  = h ( z ( T ) )  = J(ii) 
E+O 

This means that ii is also an optimal solution of (2) .  The second inequality 
of (21) gives us 

J' (u,)  < inf J C ( v )  + e = V' + a 

passing to limit, we get 

lim inf J' (u,)  < lim inf V c  
e+O c-0 

Consequently 

V0 = J(ii) < liminf V c  
c --0 

PROOF OF LEMMA 2.6. Let us set 

where (x, ,  y,)  (resp. ( x ,  y ) )  is the pair of trajectories with respect to u, (resp. 
u) .  We get the differential system 

From the second equation 



Multiplying this equation by y c ( t )  we get 

1  d  
E - -  2 dt I ~ r ( t )  l 2  I k ( I x c ( t )  - x ( t ) I  + I uc ( t )  - ~ ( t )  1 )  lyc( t ) l  - v l y r ( t )  l 2  

+ y ( t ) g  ( x ( t ) ,  YC(t) ,  u ( t ) )  

by integrating and thanks to the linear growth condition 

I I Y ~ I  li2[o,tl 

So, we have, as in the proof of lemma 2.2 

I I ~ l l ~ [ o . t ]  ( 1  + 11"11L210.t1) 

by the first equation of ( 2 2 )  

1  d  
-- I x r ( t l 11~  5 k I x c ( t ) l ( l  + I x r ( t )  1 + l y r ( t ) l )  
2  dt 

Integrating it to get 

L M ,  1 1 ~ ~ 1 1 ~ ~ ~ o . t ~  V t  E [0, TI 

11 



Finally we observe that 

are bounded, and there exists a subsequence such that 

x, + 5 weakly in H1 [0, TI and strongly in L ~ [ o ,  TI 

y, + y weakly in L2 [0, TI 

we can prove also that ye converge strongly in L2 to  y by using the same 
method as in Lemma 2.2. Hence limits solutions satisfies (5'(t), 0) E H(x(t) ,  y(t)), 
so there exists ii such that 0 = g(Z(t), y(t), ii(t)). 

From Proposition 2.1 and 2.5, one get the first result 

Theorem 2.7 Under Asssumptions 1.1 and (7), we have the cost conver- 
gence 

2.2 Rate of the convergence 

The result can be improved if the limit problem (2) satisfies extra regularity 
condition. Let's state at first 

Lemma 2.8 Under the assumptions of Proposition 2.1, we suppose further- 
more that there ezists an optimal trajectory (x(.), y(.)) E S (0, s o ,  yo) such 
that 

(23) 

Then 

Ila - yllL2 cJ; 

PROOF. Let us set 



It follows from (9) and ( 2 )  that 

Rewrite the second differential equation by 

Taking the scalar product of this equation with y;, we obtain 

Doing the same calculation for the first equation in (24 )  to get at once 

and then 

(27 )  
1 d 
-- 2 dt I 4 ( t ) l 2  5 k (1x;(t)l2 + lx;(t)l  I Y ~ I )  

Integrating this inequality and (25 )  from 0 to t  



By inequality of Schwarz 

lx;(tl12 5 k ( l l~ ; l l~z [o , t ]  + ll~;llLz[o,tl l l~: l lb[o,t]) 

from the second equation 

we obtain 

(28) 

by the first equation 

Applying inequality of Gr6nwall 

2 k2 
Where A, = - + 2k + e- 

l l , obviously A, and BE = -- + -eAcT 
u A, Ac -. , . 

are bounded by a constant which is independent from e. Finally, we have 



It result from (28)  that 1 1  y;I (hlo,tl < c&. Using ( 26 ) ,  we get 

Where 

a C ( t )  = f (Zc( t ) ,  gc(t) ,  u ( t ) )  - f gc(t) ,  u ( t ) )  

bC(t)  = f ( z ( t ) , g c ( t ) , u ( t ) )  - f ( z ( t ) , y ( t ) , u ( t ) )  

with ( 1 . 1 )  we see 

and the proof is complete. 
The following proposition is an immediate consequence of this result. 

Proposit ion 2.9 Assume (1.1)) (7) and (23)) we have inequality 

vc 5 v O + c &  

PROOF. Thanks to Assumption (23) ,  we can improve the (10)  in Lemma 2.2 
into 

(29)  

Indeed, since h is Lipschitz, we have 

So we get 

To get Iv' - vOI 5 c&, we have to prove V O  < V c  + c&. We state 



Proposition 2.10 Under assumptiond (1.1), (7) and if for any ( x ( - ) ,  y ( . ) ,  v ( - ) )  
solution of (2), we have 

then 
(31 

PROOF. For any E > 0,  we note that there exists w, E U such that 

Where ur( . )  is an optimal control of ( 1 ) .  Let's denote by ( Z c ( . ) ,  & ( . ) ,  w e ( . ) )  
the solution of ( 2 )  with respect to  we and (2,(.), & ( a ) ,  u : ( - ) )  be the solution 
of (2) with respect to  t i :( .) .  To get the convergence of (5,(.), &(.)), we set 

Multiplying the first equation by xf( t ) ,  we have 

since f is Lipschitz and U is bounded. By the second equation we have 

- 

3 ~ e t  us notice that here we do not need existence of optimal control, consequently 
assumption ( 1 . 1 )  is not useful to  prove the Proposition. 



So by integrating we get 

d 
Therefore 1 1 ~ ! l l ~ ~ ~ , ~ ~ ~  I x ! ( t ) 1 2  and l l ~ ! l l ~ [ ~ , , ~  are bounded, so there exists 

(z(-), ij(.), ii(-)) solution of ( 2 )  such that 

5  + 3 weakly in H1 [O, T] and strongly in L' [o,  TI 

gc + y strongly in LZIO, TI 

and G(.) is optimal control of (2) by the construction of w e ( . ) .  Indeed as we 
know 

To obtain inequality ( 3 1 ) .  it is sufficient to prove that under the condition 
( 3 0 )  we have 

Where ( x : ( . ) ,  y:(-), u:( - ) )  is an optimal solution of ( 1 ) .  
We use the same method as Lemma 2.8. Set 

( t )  = x  - C ) ,  y j ( t )  = y : ( t )  - & ( t ) ,  

They are solution of differential equation system 



Rewrite the second differential equation by 

Taking the scalar products of this equation with y;(t), we obtain 

Doing the same calculation for the first equation in (33) to get at once 

and then 

(36) 
1 d 
2 dt 

Integrating this inequality and (34) from 0 to t 

By inequality of Schwarz 



from the second equation 

we obtain 

(37) 

by first equation 

Applying the inequality of Griinwall 

2 k2 1 1 
Where A, = - + 2k + E- , obviously A, and Be = - - + - ,ACT 

V Ae Ae 
are bounded by a constant which is indkpendent to E .  Finally, we have 

It result from (37) that ( I I J ~ ~  lL2[o,tl 5 c&. Using (35), we get 



Where 

aC(t) = f (x:(t), y:(t), u:(t)) - f (ZC(t), y,'(t), u:(t)) 

with (1.1) we see 

I laCl l L,[O.t] 

to  get 

this gives us 

The inequality (31) is then proved by noting 

v0 = J (ii) 5 J (uz) 

By Proposition 2.9 and Proposition 2.10, we conclude this section by 
stating the following result 

Theorem 2.11 Under assumptions ( l . l ) ,  (7) and (30) we obtain the con- 
vergence rate 
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