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Preface 

One of the basic goals of dynamic models in systems theory is to reflect both the uncer- 
tainty in the model and the ability to describe the models' behavior through appropriate 
decisions (controls). These are generally figured out through the feedback principle on the 
basis of the on-line position of the system. The aim of such synthesizing control strategies 
is usually to ensure viability properties and also to achieve some terminal goals despite of 
the incomplete information about the process. 

In this paper a mathematical scheme for solving such problems with the techniques of 
set-valued calculus is given. The results were mostly achieved within the activity plan of 
the Dynamic Systems Project at IIASA. 
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Introduction 

This paper deals with the description of synthesized trajectories in the target problem 

for viable systems with input uncertainty. It is shown that the tubes of such trajecto- 

ries could be described without calculating the synthesizing decision strategies but only 

through the solution of a system of coupled "funnel equations" with set-valued state space 

variables. The variety of all possible synthesizing decisions (the set-valued feedback con- 

trols) could be then derived from these solutions. It turns out that each of these feedback 

controls generates one and the same synthesized solution tube - the viable trajectory of 

the synthesized system [I.]. 

The paper is based on the techniques of set-valued calculus [2]. 

1 The Problem of Nonlinear Control Synthesis 

Let us start with a linear system 

with restrictions on the control 

u E P( t )  

the uncertain input 

f ( t )  E Q ( t )  



and the state space vector 

x(t) E Y(t). 

Here P ( t  ), Q(t), Y(t ) are convex compact-valued multifunctions, continuous in t. Given 

a convex compact terminal set M, the objective is to find a (set-valued) synthesizing con- 

trol strategy u = U(t, x), such that all the solutions to the differential inclusion 

that start at a given point x, = x[T], 7 < tl ,  x, E W[T], would satisfy both the state 

constraint (1.4) and the terminal inclusion 

Here W[T] = W(r , t l ,  hl) is the solvability set for the latter problem, which is the 

"largest" of sets with respect to inclusion from which the solution does exist at all. 

In general, the map u = U(t, x) is nonlinear. The respective class of feasible strategies 

U (t , x) will be specified below. 

As it was indicated in [4] the multivalued function W[t] satisfies an evolution equation 

with set-valued solutions, which is 

lim a-'h+ = (W(t - a )  + aQ(t), W(t) n y ( t )  - aP( t ) )  = 0, 
0--0 (1.7) 

where h+(X1, XI1) is the Hausdorflsemidistance for XI, XI1 E comp IRn, namely h+(X1, XI1) = 

inf {c : XI1 + cS(0) _> XI}, where S(x*) = {x : (x - x*, x - x*) 5 1). 

This is true however, under the assumptions that there exists a tube &S(x*(t)), such 

that 

eS(x*(t)) c Y(t) , 

for some continuous function x*(t) and some E > 0. Then the solution to (1.7), namely 

a solution tube W[t], does exist, but may not be unique. It was proved that W[t] is the 

maximal solution to equation (1.7) or namely that 

for any solution W [t] to equation (1.7). 

Clearly, W[t] y ( t )  for all t E [to, tl]. 



Definition 1.1 A feasible control strategy is a set-valued map U(t ,x) # 0 such that 

U(t,x) E P ( t )  for all {t, x : t E [to, tl], x E Rn}  and such that for any X[T] = x, E Rn the 

solution x[t] to (1.5) does exist and is extendable throughout the interval [T, tl]. The class 

of such strategies will be denoted as U. 

Amid the class U of feasible control strategies U(t, x) we will single out the subclass 

U* of synthesizing strategies for the target problem (1.6) with state constraints (1.4). 

Definition 1.2 A strategy U(t, x) will be a synthesizing strategy for the target problem 

(1.6) with state constraint (1.4), if for any vector x, E W[T] the solution tube X[t] = 

X(t,  T, x,, U) for the diferential 'inclusion (1.5) will satisfy the finite inclusion X[t] C 

W[t], T 5 t 5 tl ,  and therefore, the target condition X[tl] 2 M. 

The problem of Control Synthesis is to specify the synthesizing strategy U(t, x) [3]. 

The synthesizing strategy thus leads to a nonlinear differential inclusion. The tube of 

its solutions (the synthesized trajectories) could be therefore also described by evolution 

equations of the funnel type. Hence the arising question studied in this paper is as follows: 

would it be possible to present the tube of synthesized trajectories for (1.5) through some 

kind of solution tubes for the original uncertain linear system (1 . l )  with constraints (1.2)- 

(1.4)? Could, for example, the funnel equtions of type (1.7) be used for this purpose? 

The other notations used in the sequel are as follows: 2Rn stands for the set of all sub- 

sets of Rn, conv Rn for the set of all nonempty convex compact subsets of Rn, h+(X, Y) - 

for the Hausdorff semidistance, as indicated above, provided X, Y E conv Rn ,  h(X, Y) = 

max{h+(X, Y), h+(Y, X)} for the Hausdorff distance between X, Y E conv Rn. 

We further assume that system (1.1) - (1.4) has undergone a coordinate transforma- 

tion, so that without loss of generality, we may assume A(t) 0. 

Let us begin with the simplest case, when Q(.) = {O} and Y(t) r Rn. 

2 The Simplest Version 

Denote X[t] = X(t, T; x,, U) to be the cross-section at time t of the tube of all trajectories 

to system (1.5), Q(.) = {0}, that start at time T, from position X[T] = x, and are 

governed by a feasible control U E U. This indicates particularly that with initial set 

X0 = {so}, so = s(to), given and with the problem of control synthesis being solvable 



for any xO E X O ,  we have 

~ ( t l , t o ; ~ O , ~ )  G M .  

Consider the evolution equation 

lim a - ' h ( W ( t  - a ) ,  W ( t )  - aP( t ) )  = 0 u+o (2.2) 

with boundary condition 

W ( t 1 )  = M .  (2.3) 

This equation always has a solution W ( t )  with values in comp Rn, presented by the 

set-valued Lebesgue (Aumann) integral, so that 

and its support function 

is continuous differentiable in t .  Due to [5] this allows to consider the funnel equation 

lim a - ' h ( r ( t )  + a P ( t ) )  n W(t  + a ) )  = 0 
u+O (2.4) 

with initial condition 

r(to) = xO. (2.5) 

The solution to (2.4),  (2.5) exists and is extendable to the interval [to, t l ] ,  particularly 

if W[t]  is the solution to (2.2), (2.3). (see [2,5]). The solution to (2.2)-(2.5) is then 

specified as a pair { W ( t ) ,  r ( t ) )  of functions defined on [to, t l ] ,  with values in comp Rn, 

that satisfy the equations (2.2), (2.4) for all t and also the boundary conditions (2.3), 

(2.5). 

The support function p( l l r ( t ) )  for r(t) is absolutely continuous in t .  

It is not difficult to prove the following 

Lemma 2.1 The solution { W ( t ) , I ' ( t ) )  to  the set-valued boundary problem (2.2) - (2.5) 

does ezist if there ezists a function x [ t ]  that satisfies both the differential inclusion 

and the finite inclusions 



A stronger requirement is given by 

Assumption A. There exists a trajectory x*[t] of system (2.6) such that x*[to] E X0  

and 

x*[t] E int W ( t ) ,  to 5 t 5 t l .  

Theorem 2.1 Let Assumption A be fulfilled. Then the following assertions are true: 

(i) In order that there would ezist a feasible strategy U E U that ensures (2.1), it is neces- 

sary and suficient that the system (2.2) - (2.5) would have a solution {W( . ) , I ' ( . ) } .  

(ii) A strategy U E U ensures the relation (2.1) if and only if the inclusion 

X ( t ,  to; XO,U) E I'(t) 

is true for all t E [ to , t l] .  

(iii) The variety of set-valued maps { X ( . )  = X( . ,  to; XO,U)IU E U ,  X [ t l ]  C M }  has a 

unique mazimal element X * ( - )  with respect to the inclusion and 

Theorem 2.1 indicates that the tube X * ( t )  of solutions to  a synthesized system (1.5), 

(Q  = (0)) may be calculated without the knowledge of the control strategy U itself, but 

just through calculating the tube I'(t).  It is therefore natural to  pose the question: how 

to find the strategy u = U ( t ,  x )  that generates I'(t) provided I'(t) is known? 

Let l l rx  denote the metric projection of x E Rn on set I' E conv Rn, namely l lrx = 

{x* : Ilx - x*II = d(x, I ' )}  where d(x,I') = min{((x - rlllr E I'} and 

Tr ( t ,  x )  = { u  : lim a-' h+(llr(t)x + au,  I'(t + a ) )  = 0). 
0 4 0  

It is obvious that IIr(t ,x)  = x if x E I'(t) and that Tr ( t , x )  is the tangent cone to  I'(t) at  

point x if x E I'(t). 

Denote 

Lemma 2.2 The set-valued map U*( t ,  x )  is a feasible synthesizing control strategy for 

system (1.5), Q. = (0). 



The proof of Lemma 2.2 follows the standard techniques of set-valued calculus. 

Calculating the full derivative in time t 

due to the system 

define 

It is not difficult to observe the following assertion 

Lemma 2.3 The set-valued map U * * ( t , x )  is a feasible synthesizing control strategy for 

system (1.5), Q = ( 0 ) .  

A particular version of U**(t ,  x )  is the "extremal aiming" map 

where al f (1,t) is the subdifferential of f ( t ,  I )  in the variable I ,  andl0 = 1°(t, x )  is the unique 

maximizer for 

d[t ,  X I  = max{(l, x )  - ~(~ lW[t l ) l l l l l l  L 1 )  

(1' = ( 0 )  if d[t ,  x]  = 0).  

Theorem 2.2 Assume system (2.2)-(2.5) to have a solution {W(.),r'(.)). Then, what- 

ever is the set X 0  E W ( t o ) ,  each of the strategies U ( t ,  x )  = U * ( t ,  x ) ,  U ( t ,  x )  = U * ( t ,  x ) ,  U ( t ,  x )  = 

U e ( t ,  x )  generates one and the same solution tube XO[t]  to the inclusion 

5 E U ( t ,  x ) ,  X[ to]  = xO, (2.11) 

and 

Therefore, from the point of view of the trajectory tube r'(t) G X O [ t ]  for the syn- 

thesized system (2.1 I), the strategies U * ( t ,  x ) ,  U * ( t ,  x ) ,  U 1 ( t ,  x )  cannot be distinguished. 

What follows from Theorem 2.2 is that there exists a variety V0 = { U ( t , x ) )  C U* of 

strategies, each of which generates one and the same tube r '( t )  X O [ t ] .  



Theorem 2.3 Suppose that U = U O ( t ,  x )  G V0 and that x [ t ]  is a solution to the system 

Then the function i [ t ]  u [ t ]  satisfies the relation 

~ [ t ]  E U O ( t ,  x ) .  

The given theorem asserts that the tube of all the solutions to the differential inclusion 

(2.11) with U = U ( t ,  x )  C V 0  consists only of those trajectories that satisfy (2.11) with 

U = U O ( t ,  x ) .  

Theorem 2.4 Let X [ t ]  be the solution to the "forward" funnel equation 

lim a - ' h ( ~ [ t  + a ] ,  ~ [ t ]  + o p ( t ) )  = 0. o+o 

Then 

r ( t )  = x [ t ]  n w[t]. 

Remark 2.1. Since r(t) is also the attainability domain for system (2.6) with state 

constraints (2.7), the relation (2.12) indicates that in the particular problem considered 

here the state constraint for (2.6) is given precisely by W ( t ) ,  the set r ( t )  turns to be the 

intersection of the attainability domain X [t]  for the system (2.6) without state constraints 

and the state constraint W[t]  itself. This property is not true in general (see for example 

[ G I ) .  

3 The Synthesized Tube of Viable Trajectories 

Assume now that the state constraint (1.6) holds and that the condition Q = (0) is 

still true. Here the synthesizing strategy U = U ( t ,  x )  should ensure both (2.1) and the 

inclusion 

X ( t ,  to;  X O , U )  C_ Y ( t ) ,  to < t 5 t ,  

(provided X 0  W[to]).  

Equation (2.2) will now be substituted by 

l i m o - ' h ( ~ ( t  - a ) ,  (W( t )  - a P ( t ) )  n Y ( t  - a ) )  = 0 
o +o (3.2) 



while equation (2.4) remains formally unchanged. 

We further introduce 

Assumption B. The support function p( l lY( t ) )  is Lipschitz in t. 

Assumption C. The Assumption A is fulfilled for equation (3.1), (3.2). 

Theorem 3.1 Suppose Assumptions B and C are fulfilled. Then a control strategy U 

U* ensures the inclusions (2.1)) (3.1) if and only i f  there ezists a solution { W ( t ) ,  r ( t ) )  to 

the system (3.1)) (3.2)) (2.4)) (2.5). In the latter case r(.) = X O ( - )  is the unique mazimal 

solution (with respect to inclusion) among the solution tubes X ( . )  = X( . ,  to, XO,U)  that 

satisfy the relations (2.3)) (3.1). 

The synthesizing control strategies for the target problem (1.4), (1.6) may be again 

described as in the previous section and the analogies of theorems 2.2 - 2.1 are still true 

with the solution { W ( . ) ,  I?(.)) now taken from (3.2), (3.3), (2.4), (2.5). The class V* is 

defined accordingly. 

A relatively simple way of calculating r ( t )  is with the aid of a solution X [ t ]  to the 

funnel equation 

lim a-'h(X ( t  + a ) ,  ( X ( t )  + a P ( t ) )  n Y ( t ) )  = 0 
0 4 0  (3.4) 

X ( t o )  = xO. (3.5) 

Theorem 3.2 Let {W( . ) , r ( - ) )  be the solution to system (3.2)) (3.3)) (2.4)) (2.5). Then 

the strategies u*,u**,u' generate one and the same tube r(.) = XO[.] the tube r ( - )  may 

be represented as 

r ( t )  = x [ t ]  n ~ ( t ) ,  

where W ( t )  and X [ t ]  are the solutions to (3.2)) (3.3) and (3.4)) (3.5) respectively. 

4 Synthesizing Viable Tubes Under Counteract ion 

The general case that incorporates both the state constraints (1.6) and the input uncer- 

tainty (Q(.) f 0) does not allow a direct propagation of the results of Sections 2 and 

3. To treat the problem we will use the notion of Hausdorff semidistance introduced in 

Section 1. 



Definition 4.1 A multivalued map Z ( . )  : [to, t l]  -+ conv Rn is h+ - absolutely continu- 

ous from the left (the right) if for any E > 0 there ezists a 6 > 0 such that 

implies 

Let us now introduce the following pair of evolution equations 

lim a- 'h+(W(t  - a )  + a Q ( t ) ,  W ( t )  n Y ( t )  - a P ( t ) )  = 0 
u+O (4.1) 

W ( t 1 )  c M (4.2) 

lim a-'h+(I'(t + a ) ,  r ( t )  n W ( t )  + a P ( t )  + a & ( t ) )  = 0 
u+o (4.3) 

Definition 4.2 The solution { W ( - ) , r ( . ) )  to the system (4.1) - (4.4) will be defined as 

a pair of h+ - absolutely continuous set-valued functions W ( t ) ,  I '( t) ,  t E [to, t l ] ,  (with the 

first of these possessing this property from the right and the second from the left), that 

satisfy equations (4.1)) (4.3) almost everywhere and also the boundary conditions (4.2)) 

(4.4). 

Let X Q ( t ,  t o ,XO,U)  denote the tube of all solutions to (1.5)) xO E X O .  

Theorem 4.1 In order that there would ezist a synthesizing strategy for the target prob- 

lem 

X q ( t ,  to. X O , U )  G Y ( t ) ,  t E [ to ,  tll, (4.5) 

X Q ( t ,  to, X O , U )  c M (4.6) 

due to the system (1.5), it is necessary and suficient that there would ezist a solution 

{ W ( - ) ,  r ( . ) )  to system (4.1) - (4.4). 

The introduction of funnel equations involving semidistances h+ rather than distances 

h does not require to impose any additional regularity assumptions. 



We could have also done this in the previous sections. However in this case the unicity 

of the solution {W(.), r ( - ) )  would be lost. The absence of unicity could be compensated 

through the notion of maximal solution. 

Once the variety of solutions to (4.1) - (4.4) is nonvoid, there exists a unique maximal 

solution {WO(.), rO(-))  to this system (with respect to inclusion) 

Theorem 4.2 Let the system (4.1) - (4.4) be resolvable by a strategy U(t ,x) and let 

{WO(.),l?O(-)) be the mazimal solution to this system. Then the multivalued map rO(.) 

coincides with the mazimal tube X$(.) of the variety of all tubes XQ(.) = XQ(*, to, XO, U) 

that satisfy (4.5) , (4.6). 

Presuming rO( t )  to be known, let us now use this knowledge to specify a strategy 

U(t, x) that resolves the problem (1.5), (4.5), (4.6). 

Consider the distance d(x, ro(t))  = h+ (x, ro(t)) ,  and further, the set 

Here d d(t, x)/dt is the derivative in time t + 0 of the distance d(x, rO(t) )  due to the 

system 

x = u + j .  (4.7) 

Denote 

U+ (t, X )  = n v ~ ~ ( t ) U ( t ,  X, v). 

(We further assume U+ (t , x) # 0.) 
Also define the strategy <(t, x) as U1(t, x) in Section 2, where r ( t )  is now substituted 

by ro(t).  

Lemma 4.1 Each of the strategies U+ (t, x), $ (t,  x) is a feasible synthesizing strategy for 

the problem (1.5), (4.5), (4.6) 

Theorem 4.3 I f ro( t )  is the mazimal solution to (4.1)-(4.4)) then 



Conclusion 

We have demonstrated here that the tubes of viable trajectories to an uncertain system 

that also satisfy a target inclusion could be specified through the knowledge of only the 

system itself and the constraints on the uncertainty, as the solution tubes to a certain 

system of coupled ufunnel equationsn. The respective synthesizing decision strategies 

(the feedback controls) could be then determined from these tubes through techniques of 

set-valued calculus. 
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