
Working Paper
Regularized decomposition of

stochastic programs: algorithmic
techniques and numerical results

Andrzej Ruszczy Aski

WP-93-21
April 1993

EIIIASA International Institute for Applied Systems Analysis o A-2361 Laxenburg Austria

Telephone: +43 2236 715210 Telex: 079 137 iiasa a o Telefax: +43 2236 71313

Regularized decomposition of
stochastic programs: algorithmic
techniques and numerical results

Andrzej Ruszczyriski

WP-93-21
April 1993

Working Papers are interim reports on work of the International Institute for Applied
Systems Analysis and have received only limited review. Views or opinions expressed
herein do not necessarily represent those of the Institute or of its National Member
Organizations.

BIIASA International Institute for Applied Systems Analysis o 14-2361 Laxenburg Austria

Telephone: +43 2236 715210 o Telex: 079 137 iiasa a o Telefax: +43 2236 71313

Regularized decomposition of stochastic programs:
algorithmic techniques and numerical results

Andrzej Ruszczyiiski

Abstract

A finitely convergent non-simplex method for large scale structured linear
programming problems arising in stochastic programming is presented. The
method combines the ideas of the Dantzig-Wolfe decomposition principle and
modern nonsmooth optimization methods. Algorithmic techniques taking ad-
vantage of properties of stochastic programs are described and numerical results
for large real world problems reported.

Keywords: Stochastic Programming, Decomposition.

1 Introduction

A large class of operations research problems lead to linear programming models of the
form

min cTx

In certain applications, however, some coefficients of the resource/demand vector
r or some entries of the matrix M are uncertain. They can be modeled as random
variables r(w) and M(w) with w f R, where (0 , 23, P) is a probability space, but then
the constraints in (1.1),

M(w)x = r(w), w f a,
become prohibitively restrictive and usually impossible to satisfy for all realizations of
the random entries.

One of modeling approaches t o such a situation is the extension of (1.1) to a stochas-
tic programming problem with recourse. We introduce recourse decisions (corrective ac-
tivities) y, which can be taken after the realizations of the random entries are known,
so as t o fulfill the problem constraints.

To be more specific, let us split the constraints into the deterministic and the
random parts:

where A is an ml x nl matrix and b f Rml, T, is an m2 x nl random matrix and d,
is an m2 -dimensional random vector over a probability space (0,23, P). Finally, let
y, f RnZ be the correction vector, q f Rn2 be the correction costs, and let W be an

m2 x n2 matrix describing our capabilities of corrections. The problem c a be now
reformulated as follows:

min [CTx + J qTy, P(&)]

subject to
Ax = b

T,x + Wy, = d,, w E R,

In other words, we have to choose x so as to minimize the first stage cost cTx and the
expected correction cost J' qTy,P(&), under the condition that the correction Wy,
compensates the shortage/surplus d, - Tux.

It should be stressed that the above reformulation is not just a formal trick to pose
the problem correctly, but it reflects many real-life situations where shortage/surplus
may occur, but they are connected with additional costs.

While there seems to be no doubt as to theoretical advantages of using models
of form (1.2), their solution is much more difficult than for underlying deterministic
models (1.1). For simplicity we shall focus our attention here on problems with discrete
distributions; approximation of general distributions by discrete ones in stochastic
programming is discussed in [2] and [8].

Let R be finite, R = {1,2,. . . , L), and let the realizations (T,, d,), w E R, be
attained with probabilities p, > 0, (CwEnp, = 1). Then (1.2) can be rewritten as a
large linear programming problem

min cTx + plqTyl + p2qTy2 + . + pLqTyL

Ax = b,
T1x + Wy1 = dl,
T2 x + Wy2 = d2, (1.3)

There are several reasons for studying (1.3) thoroughly.
First of all, it is the remarkable size that makes this problem difficult from the

practical point of view. Stochastic programs are usually extensions of deterministic
linear models, so we should think of T having size of a constraint matrix in a typical
linear program, and this size is multiplied in (1.3) by the number L of realizations of
(T,, d,). For nontrivial problems with many independent random factors causing the
stochasticity of the entries of T, and d,, L must be sufficiently large to reflect this
randomness in our model. As a result, the dimension of (1.3) may go in hundreds of
thousands.

Another difficulty is the possibility of ill-conditioning of (1.3). If the number of
first stage activities x in the optimal basis exceeds ml + mz , then similarity of the
realizations Tw, w E $2, implies that the columns corresponding to these activities are
close to being linearly dependent (for Tw = T singularity would occur).

A very rich literature is devoted to solution methods for problems of form (1.3)
or their duals. The first group of methods are variants of the simplex method which
take advantage of the structure of the constraint matrix of (1.3) to construct compact
representations of the basis inverse and to improve pivotal strategies (cf, e.g., [25]).
The second group are linear decomposition methods coming down from the famous
decomposition principle of Dantzig and Wolfe (51 (see [4, 231). Finally, there is a
possibility of reformulating (1.3) as a nonsmooth optimization problem and applying
to it general non-differentiable optimization algorithms.

In the regularized decomposition (RD) method proposed for general large scale
structured linear programming problems in [15] we combine the last two approaches:
the problem is stated as a nonsmooth optimization problem, but for the purpose of
solving it we modify the general bundle method of [9] by taking full advantage of
problem's structure. As a result, a finitely convergent non-simplex method for large
structured linear programs can be obtained.

The main purpose of our paper is to specialize the regularized decomposition
method to stochastic problems with recourse. We present various techniques developed
for exploiting specific structural properties of stochastic programs and for mitigating
the computational effort and the effects of ill-conditioning. We also describe results
of some computational tests showing that the method is capable of solving stochastic
programs of considerable size.

2. The outline of the RD method
It can be readily seen that if x is fixed in (1.3) then minimization with respect to
yl, yz, .., y~ can be carried out separately. This leads to the following two-stage formu-
lation

min [~ (x) = cTx + pw fW(
wER

(2.1)

subject to
x E X o = { x : A x = b, z m i n < x <xmax}, (2.2)

x E Xw for w E $2, (2.3)

with fw(x) defined as the optimal value of the second stage problem:

fw(x) = min iqTy I ~y = dw - T,X, y'" < y < ymaX} , (2.4)

and with
x w = {x : fw(x) < 00).

We introduce condition (2.3) explicitly to the problem formulation, because we are
going to use separate approximations of fw and of their domains Xw. The functions

f, are convex and polyhedral and the sets X, are convex closed polyhedra [24]. Thus
(2.1)-(2.3) can in principle be solved by a method for piecewise linear problems or
by a general algorithm for constrained nonsmooth optimization. Although the pieces
of f, and the facets of X, are not given explicitly, it is possible to extract from the
subproblems (2.4) at any xk information about the piece (a:, g:) of f, active at xk (an
objective cut) or information about a constraint (iii,ij;) defining X, and violated at
xk (a feasibility cut). The pieces (cuts) collected so far can be used to construct lower
approximations of the functions f,,

and outer approximations of the sets X,

J, and I, are some selected sets of cuts.
Crucial questions that arise in this respect are the following:

r how the successive points xk are generated?

r how the cuts at xk are constructed?

how the approximations f, and X, are updated?

The most natural method for generating successive points xk is to solve the linear
approximation of (2.1)-(2.3) constructed on the basis of currently available information:

where

After solving (2.5) we obtain cuts at the current solution, add them to the sets of cuts
used previously, solve (2.5) again, etc..

Instead of constructing separate approximations for all f, in (2.5), we can also work
with a piecewise linear approximation of their weighed sum f (x) = s ~ r n , ~ ~ p , fw(x), as
it was originally suggested in the L-shaped method of Van Slyke and Wets [23]. This
would mean constructing objective cuts for f by averaging (with the weights p,) the
objective cuts for f,.

The cutting-plane approach, however, has well-known drawbacks. Initial iterations
are inefficient. The number of cuts increases after each iteration and there is no reliable
rule for deleting them. The master problem (2.5) is sensitive with respect to changes
in the set of cuts and its conditioning is getting worse when approaching the solution.

For these reasons in the RD method the linear master (2.5) is modified by adding
to its objective a quadratic regularizing term:

Here tk is a certain regularizing point, and a is a positive parameter. It turns out
that this modification stabilizes the master and makes it possible to delete inactive
cuts so that the size of (2.6) is limited. On the other hand, although we replace the
linear master by a quadratic one, it is possible to arrange the algorithm for changing
the regularizing points tk in such a way that the whole method retains the finite
convergence property of the linear approach. We shall present this algorithm in section
3.

Again, we could work here with a convex piecewise linear approximation of the
expected second stage cost f (x) = ~ u r n , ~ ~ p , f,(x), as in general algorithms of [9]. We
use here more complicated separate approximations, because aggregation of cuts may
slow down convergence of the method, as it was observed in [15] (this idea was also
analyzed in [I]). We shall show n section 4 that it is possible to efficiently process
separate approximations for each f, by exploiting the structural properties of (2.6).

Let us now pass to the question of obtaining objective and feasibility cuts. To
discuss this matter in more detail we shall fix our attention on a specific method for
solving the subproblems (2.4). Since for a given x = xk we have to solve (2.4) for all
w E 0 and only the right hand side in (2.4) varies, a reasonable choice is the dual
simplex method. Upon termination, two cases may occur: optimality or infeasibility
(dual unboundedness).

Objective cu ts

Suppose that at x = xk problem (2.4) is solvable with an optimal basis B and
simplex multipliers nT = qgB-l . Then for any x = xk + Ax, since B remains dual
feasible, we get f,(x) 2 f,(xk) - nTT,Ax. Hence, in the objective cut

a; + (gi)Tx I f,(x) for all x (2.7)

we have
k T k g, = -T, n, a, = f,(xk) - (gi)Txk.

Feasibility cu ts

In case of dual unboundedness (for some x = xk) we stop at a certain dual feasible
basis B for which there is a basic variable y ~ , whose value GBr is out of its bounds (e.g.
GBr > yz,"") and which cannot be moved towards the feasibility interval by feasible
changes of nonbasic variables. Clearly, xk ji! X, in this case. On the other hand, for
any x E Xu the value of y ~ , with the basis B must not exceed YE,"" , because we shall
not be able to decrease it by feasible changes of nonbasics. Denoting by nT the r-th
row of B we obtain the following estimate

If GBr < y* we define n to be the negative of the r-th row of B and obtain

Consequently, at any x = xk for every w E R for which (2.4) is not solvable we get a
feasibility cut

-k T
(Y: + (g,) x 5 O for all x E X, (2.9)

where
T - k 9: = -T,a, a, = a - (9:)Txk,

and p, is the distance to the violated bound.
It is not difficult to observe that there can be only finitely many objective and

feasibility cuts, because the number of possible bases in (2.4) is finite.

3. The logic of the RD method

The method generates two sequences: a sequence tk of regularizing points and a se-
quence xk of trial points. Each iteration of the method consists in updating and solving
the regularized master problem (2.6), which can be equivalently stated as follows. We
introduce variables v, , w E R, to represent f,(x) by inequalities involving objective
cuts:

(gi)Tx + a! I v,, j E J,k, w E R.

Using explicit formulations of feasibility cuts (2.9) and putting all the cuts together we
can rewrite the master (2.6) in a more compact form

subject to
(G ~) ~ x + ak 5 (E ~) ~ v .

The constraints (3.2) (so called committee) comprise in general three groups of cuts:

(a) selected direct constraints from (2.2);

(b) selected feasibility cuts (2.9)-(2.10) collected at some previously generated trial
points xi, j E 1; c {O,1, .., k}, w E R;

(c) selected objective cuts (2.7)- (2.8) collected at some previously generated trial
points xj, j E J; C {O,1, .., k}, w E R.

Thus each column of the matrix Ek in (3.2) is either a null vector, if the cut is of class
(a) or (b), or the 1-th unit vector if the cut belongs to class (c) and approximates fi(x).
There are never more than n + 2L cuts in the committee.

There are two phases of the method. At Phase 1 we seek a point which satisfies
(2.2)-(2.3). It serves then as a starting point for Phase 2, where we aim at solving
(2.1)-(2.3). Since the Phase 1 algorithm is in fact a special case of the main Phase 2
method, we shall now describe in detail the latter.

Let to be a starting point satisfying (2.2)-(2.3) and let the initial committee be
given by

0 Q' = [g,IwEn, a = [a,],en, EO = I,

with (g,, cr,) describing objective cuts at to for w E 0. The committee may (but need
not) contain also some constraints from (2.2) and some feasibility cuts of form (2.9)
inherited from Phase 1.

ALGORITHM 1 (the top algorithm of the RD method; 0 < y < 1)

Step 1. Solve the master a t tk getting a trial point xk and objective estimates vk and
calculate Pk = cTxk + pTvk. If Pk = F(tk) , then STOP (optimal solution found);
otherwise continue.

Step 2. Delete from the committee some members inactive at (xk, vk) so that no more
than nl + L members remain.

Step 3. If xk satisfies (2.2) then go to 4. Otherwise add to the committee no more
than L violated constraints, set tk+' = tk, increase k by 1 and go to Step 1.

Step 4. For w E 0 solve (2.4) at xk and :

(a) if the constraints of (2.4) are inconsistent then append to the committee
feasibility cut (2.9)-(2.10);

(b) else if fw(xk) > v: then append to the committee objective cut (2.7)-(2.8).

Step 5. If all subproblems were solvable then go to Step 6, else set tk+' = tk and got
to Step 7.

Step 6. If F(xk) = ak or F (z k) 5 yF(tk) + (1 - y)Pk and exactly n + L members
k k were active at (x , v) then set tk+' = xk ; otherwise set tk+' = tk .

Step 7. Increase k by 1 and go to Step 1.

If the starting point is not feasible we can put into the starting committee artificial
cuts vw 2 -C, where C is a very large constant, for all the functions fw(x) for which
objective cuts are not yet available, and' set F (t) = +oo.

It follows from the theory developed in [15] that after finitely many steps the method
either discovers inconsistency in (2.1)-(2.3) or finds an optimal solution. Our proof for
the case p = [1 1 . . . 1 1, o = 1 can be trivially extended to arbitrary p > 0, o > 0.

It is worth mentioning that the finite convergence property does not require any
additional non-degeneracy assumptions typical for general cutting plane methods and
bundle methods (see [21, 91).

Few comments concerning implementation of Algorithm 1 are in order. The number
of committee members may vary between L and n1 +2L, but in fact only cuts generated
at Step 4 need be stored (see section 4). If the number of linear constraints in (2.2) is
large, various strategies can be used at Step 3, similarly to pricing strategies in linear
programming. Finally, one can control the penalty coefficient o on line, increasing it
whenever whenever steps are too short, and decreasing o when F (x ~) > F(tk) (see
section 7).

For the purpose of solving the regularized master problem we suggested in [15] a
special active set strategy, which we shortly remind below. At each iteration we select

a subset of constraints (3.2), defined by some submatrices G, a and E of Gk, a k and

Ek, such that E is of full row rank (at least one cut for each f,,,) and [z] is of

full column rank. We treat these cuts as equalities and solve the resulting equality
constrained subproblem by solving the system of its necessary and sufficient conditions
of optimality

EX = p, (3.3)

E ~ V + U G ~ G X = G ~ (E - UC) + a (3.4)

(for simplicity we drop the superscript k). The solution is given by

In the method we alter the active set by adding or deleting cuts until the solution is
optimal for (3.1)-(3.2).

ALGORITHM 2 (solving the RD master)

Step 0. Determine the initial active set by choosing one constraint from each block
w E R, so that E = I (L x L identity). Set X = p.

Step 1. Recover x and v from (3.4)-(3.5). If (3.2) holds, then stop (solution found).
Otherwise choose from (3.2) any violated constraint such that gTx + a - eTv > 0,
and continue.

Step2. ReplaceG, E a n d a w i t h [G g] , [E e] and [" I . I f t henew [z]
a

has full column rank, replace X with [] and go to Step 4; otherwise continue.

Step 3. Find multipliers z such that [] [zl] = 0 (i.e. the new cut [:] i s a

linear combination of the previous active constraints with coefficients z). Replace
X - 8.2

X with 1 finding the largest 8 2 0 for which X remains nonnegative, and
L J

an index i such that 8 = Xi/zi. If such a finite 8 does not exist, then stop
(inconsistent constraints). Otherwise delete the i-th active constraint.

Step 4. Solve (3.3)-(3.4) getting multipliers J . If X 2 0, replace X by and go to Step
1. Otherwise continue.

Step 5. Replace X with X + B(X - A) , finding the largest 0 5 8 < 1 for which X remains
nonnegative, and an index i such that 0 = Xi/(Xi - ii). Delete the i-th active
constraint and go to Step 4.

Step 0 (cold start) need be carried out only at the first iteration of Algorithm 1.
At subsequent iterations we start from the active set that was optimal at the previous
iteration (i.e. from Step 1 of Algorithm 2).

4. Critical scenarios and reduced cuts

The system of necessary conditions of optimality (3.3)-(3.4) must be solved any time
the active set is altered or (is changed by Algorithm 1. The number of equations in
(3.3) is equal to the number of blocks L, whereas the size of (3.4) is equal to the number
of active cuts, which is m + L with some 0 < m 5 nl. Thus the total size is 2L + m:
quite a large number when many realizations (scenarios) are taken into account. We
need a special approach to this problem if we want to make our method competitive
with standard techniques.

The key observation is that there must be at least one cut for each f, in the active
set (E has full row rank). With the number of active cuts bounded by L + nl , there
may be at most m (m 5 nl) scenarios that are represented in the active set by more
than one cut. We shall call them critical scenarios. The scenarios that are not critical
have purely linear approximations. We shall exploit it in the numerical procedure to
achieve substantial simplifications.

Formally, we select for each scenario one active cut and call it a basic cut. The
basic cuts form the system

G ~ X + a g = v (4.1)

of dimension L. Other active cuts, which occur only for critical scenarios will be called
nonbasic. Rearranging the order of cuts so that the basic cuts appear first we shall
have E = [I N 1 . The nonbasic cuts form the system

of dimension m. Subtracting (4.1) multiplied by N T from (4.2) yields reduced cuts:

where
G = GN - G g N ,

T 6 = a~ - N a g .

In other words, each critical scenario is represented by the differences between its
nonbasic cuts and its basic cut.

Next, partitioning X into [i: 1, we can use (4.1) to eliminate v and As from

(3.3)-(3.4), which yields
O G T G X N = d T x B + i, (4.6)

where Xg is the solution implied by basic cuts alone,

The other unknowns in (3.3)-(3.4) are defined by

In this way the large system of necessary and sufficient conditions of optimality has been
reduced to a relatively small system (4.6) whose order m never exceeds the number of
first stage variables nl , independently of the number of realizations taken into account.
This is a substantial improvement over the LP formulation (1.3).

However, the other difficulty typical for stochastic programs, ill-conditioning, still
remains. Its effect on our approach is that the reduced cuts (4.3) can be almost linearly
dependent. Indeed, from (2.8) we see that a reduced objective cut is of the form

where ? r ~ , and ?rw are the vectors of simplex multipliers in block w that generated the
two cuts forming 6, . The sets of possible multiplier vectors (basic solutions of duals
to (2.4) are the same for each w , so T B , - ?rw may be identical for many reduced cuts.
Then, by (4.9), the similarity of Tw will cause similarity of the corrsponding reduced
cuts.

An established approach to such difficulties is the use of orthogonal factorization
(cf. e.g. [3])

6 = QR,

where QTQ = I and R is upper triangular. Then, defining an auxiliary vector w by

we can reduce (4.6) to a triangular system

We can also use (4.10)-(4.12) to update the solution of (4.6) each time the active set
is revised or [is changed by Algorithm 1. This can be carried out by appropriate
modifications of R, w, X B and x, without storing Q explicitly. Since the set of critical
scenarios may change, we need to develop a number of special transformations to take
full advantage of our reduced formulation. We shall describe all these operations in
detail in the next section.

5. Elementary transformat ions

Efficient solution of the master problem is the key to the good performance of the
whole method. In this section we show how we can quickly update the solution of
(4.12) when the active set changes.

Let us at first observe that we can decrease the dimension of (4.12) by treating in
a special way simple bounds on variables appearing in the active set. Assuming for
simplicity that bounds on variables X I , 2 2 , .., xr: are active and putting them in front of
G and 6 we see that

where p is the vector of active bounds and J is a diagonal matrix with jii = 1 if
pi = x y and j;; = -1 if p; = x F n . Other factorization elements can be split in a
similar fashion:

J el
Q = [' Q 2] ' " = [R ,] '

with

G2 = Q2R2,

and

~ : ~ 2 = (GT.282 + 82 + GTP).
By splitting

we can reduce (4.12) to the system

other components of AN follow from the form of R and w in (5.2) and (5.3):

It is sufficient to store and transform 382, R2 and w2, which by many active bounds
leads to substantial savings in both storage and computational expenses.

Adding a cut

Suppose that a new cut gTx + a 5 eTv has to enter the active set. We compute
the reduced cut

and we split it into

Next, we orthogonalize 6 2 with respect to Q2 (which is not stored) by calculating

Then

which corresponds to Q;Cw = [Q2 f q] (which is, of course, not stored).
By straightforward calculation of w2 by (5.5) we get

with
1 T

u = -(ij;xsz +&+i j :~ - r w).
B

By (5.11), (5.12) and (5.8) we can also update the solution of (5.6):

Finally, the primal solution can also be updated; from (4.8), (5.4), (4.12) and (5.12)
we get

ew new - u
xYW = 2 8 2 - BG AN2 - x ~ 2 - QYwwYw = X2 - -9.

P
Consequently, the only time-consuming operation is the orthogonalization by (5.7)-
(5.10).

Adding a bound

Suppose that a bound x j = xyaX has to be added to the active set. The first
operations are essentially the same as in the case of adding a cut, but (5.7) simplifies
a little because j is a unit vector:

where sT is the j-th row of G. The other operations are identical.
After carrying out the whole augmentation procedure, we have now to re-arrange

the order of active constraints so that the new bound will appear before the cuts, as in
(5.1). We can do it by moving the last column of the new R2 to the front (the bound
before the cuts) and the last row of the new R2 to the first position (the column f q to
the front of Q), which yields the matrix

The upper triangular form of R~ can be now restored by a sequence of Givens operations
P = Pl,,Pl,,+l that act on rows 1 and i of R2, for i = m + 1 ,m, . . . , 2 to
annulate r:

(That sT in (5.14) is the j- th row of 6 can be seen from (5.2)). It follows from (5.5)
and the orthogonality of P that the new w can be calculated in parallel:

because

As a result, a t a little extra cost of one sweep of Givens operations we avoided
increasing the size of RZ.

Deleting a nonbasic cut

Let the dimension of R2 be m. Deleting the j-th (say) cut of GN is equivalent to
deleting the j- th column of 6 2 , the j - th element of P2 and the j-th column of Rz, which
yields G;ew, Piew and an m x (m - 1) matrix d2. The upper triangular form of R can
now be restored by a sequence of Givens operations P = Pm-l,, . Pj+l,j+2Pj,j+l that
act on rows i and i + 1, for i = j, . . . , m , to annulate the subdiagonal entries r';+,,; of
R. Analogously to (5.16) we can update in parallel w, getting:

Deleting a basic cut

Suppose that a basic cut gi is to be deleted from GB, 1 5 1 5 L. TO restore
the form of E we have to replace it by an nonbasic cut g; corrsponding to the 1-th
function. Assume that we can find such gi in GN. Then we have to delete 41 from &'
and update the columns of G that correspond to the 1-th block, so that (4.4)-(4.5) will
hold for with Pgw and Nnew . This is equivalent to subtracting ijj from these columns,
which yields PGW.

Therefore, in our reduced factorization (5.4) we only need to subtract the j-th
column r-' of R2 from all other columns that correspond to the same block I. To avoid
introducing subdiagonal nonzeros to R2 we choose j to be the smallest among the
candidates.

To update the other data, let us note that (4.7) yields

This has an influence on the right side of (5.5) and implies

Subtracting the j-th columns of &'2 and R2 from the related ones does not have any
influence on the solution of (5.5) because it only combines the equations there.

After performing the above exchange of a basic and a nonbasic cut we carry out
the procedure for deleting a nonbasic cut.

If gL is the only gradient in block 1, the need to delete it may arise only when we
tried to append a new gradient g from block 1 and linear dependence occured. Then
the new gradient simply replaces gb leaving the set of nonbasic gradients unchanged.
Similarly to (5.17),

xEw = X B + apr(gL -g) = XB + apli.

Using it in (5.5), analogously to (5.18), we get

with r given by (5.7).

Deleting a bound

Suppose that bounds on variables xl,x2,. . . ,xk are active and that we have to
delete a bound x j = x y , j 5 k. We have at first to put the bound to the end of 6
and 6 in (5.1) and the corresponding column to the end of Q in (5.2), which yields a
matrix

where sT is the j-th row of 61 (this is essentially inverting the procedure for adding a
bound, cf. (5.13)). Now we can restore the upper triangular form of R2 by a sequence
of Givens operations P = Pm,m+l - . P2,m+1 that act on rows i and m + 1 of
~ 2 , i = 1,. . . , rn to annulate sT:

Again, this is an inverse operation to (5.14). Likewise, we update w by an inverse of
(5.151,

6. Data structures

The specific form of our problem and its large size create a need for designing data
structures which on the one hand would use the computer memory in an economic
way and on the other hand allow for efficient execution of the operations appearing in
the sub-algorithms of the method. There are three groups of problems related to this
subject:

(a) original problem data,

(b) data related to the procedure for solving the subproblems,

(c) data related to the master algorithm.

Let us discuss these issues in more detail.

Original problem data

It is a matter of routine in linear programming systems that problem data are
stored as sparse matrices, usually as files of packed columns. However, storing A, W
and T, for w E R in this way does not fully exploit characteristic features of stochastic
programs, because in practice only some of the entries of the technology matrix are
random, if any. Each T, can be thus expressed as

T, = T + AT, (6.1)

where is a certain deterministic matrix and AT, has only few nonzero entries. Fur-
thermore, the sparsity pattern of AT, is the same for all w E R. Similarly,

This suggests the use of a structure in which we store the following data:

(a) the deterministic entries of A, T, b, d and W together with their positions;

(b) the positions of random entries in T, and d,;

(c) the realizations of the entries of AT, , Ad, for w E R.

This structure allows for easy recovery of any data and its storage requirements exceed
the deterministic formulation only by LN, , where N, is the number of random entries
and L is the number of realizations. It is also clear that A and T may be input as one
constraint matrix, and their separation can be performed on the basis of information
about positions of random entries and nonzero entries of W.

Subproblem data

Subproblems (2.4) differ only in the right hand sides

which on the basis of (6.1) and (6.2) can be fast calculated by

2, = cZ, + AJ,

with
2= 6- Tz, -

Ad, = Ad, - (AT,)z.

As mentioned in section 2, a reasonable method for solving (2.4) is the dual simplex
method: we can successively process all the subproblems by starting each from the

optimal basis obtained - for the previous one. To speed up the reoptimization procedure
we can reorder d,, w E 0, in such a way that subsequent realizations would be close
one to another, as in bunching procedures (see [7, 251). One of possibilities, which
we used in our code, is to base bunching on the sign pattern of A(?,. More advanced
techniques that store a search tree of possible bases, such as trickling down (see, e.g.,
[7]), are very hard to implement for large problems, especially when Bartels-Golub
factorization is used to represent the basis inverse.

U p p e r level data

The most difficult problem concerning data storage is the way for storing and using
objective and feasibility cuts (2.8) and (2.10). Since gw and ijw are computed vectors
and are usually dense, the simplest approach is to store them in an n x M matrix,
where M is the number of computed cuts in (3.2), L 5 M 5 n + 2L. Together with
this, we can store three integer arrays indicating the numbers of blocks and pointing
basic and nonbasic cuts. The reduced cuts (4.4) may overwrite GN.

Still, for a very large number of realizations, or when the number of rows of T is
much smaller than the dimension of x, this data structure may suffer from excessive
storage requirements. On the other hand, from (2.8) and (2.10) we see that each
computed cut is defined by the correspbnding vector of simplex multipliers ?r and the
original problem data. Hence, it is sufficient to store a file of multipliers ll defining
the cuts and to recover from them the subgradients necessary for each transformation.
Next, noting that the same basis in (2.4) may be optimal for many right hand sides, we
see that many cuts may have the same multiplier vector ?r, so the number of columns
of ll may be significantly smaller than the number of computed cuts. This is similar to
the bunching procedure (see [25,6,7]) but we group here the cuts, not the subproblems.
While there is no doubt as to storage savings due to the implicit data structure, we have
to carefully examine the computational overhead implied by the necessity of recovering
cuts from multipliers. The most time-consuming operations here are multiplications by
G and G ~ , but the specific structure (6.1) used for storing T, may allow for mitigating
this overhead considerably.

Numerical results

A specialized code has been developed on the basis of the techniques described in this
paper. For the purpose of solving lower level subproblems (2.4) we used subroutines
from the XMP package of [lo] and the LA05 routines from Harwell library for basis in-
verse management (see [14]). All computations were carried out on a Sun Sparcstation
1. The time reported is always in seconds.

The first series of experiments were carried out on a network planning problem
with a random demand (see [20]). The original problem has 82 independent random
variables, each taking 5-10 possible values, which results in an astronomical number of
all possible scenarios. Therefore, we sampled from this distribution a smaller number
of scenarios. The sizes of the original problem and the resulting LP approximations

are given in tables 1 and 2.
Four versions of the method were run on these problems. The first one was our

basic RD method described in this paper, with the penalty parameter a controlled
on-line as follows (0.5 < 7 < 1.0):

if P (zk) > 7 P (t k) + (1 - 7)Pk ("null step") then decrease a;

if P(xk) < (1 - 7)P(tk) + 7Pk ('exact step") then increase a;

otherwise ("approximate stepn) keep a unchanged.

The second version had a very large parameter a in (2.6), which practically disabled
the effect of the regularizing term (we used a = lo6). In this way we aimed at assessing
the effect of regularization on performance of the method. We still kept, however,
separate cuts for each subproblem, as in the multicut method of [I].

The third version was the regularized method again, but with the cuts generated
for the expected second stage cost

instead for each f w separately. We used the same code again, but the objective cuts
from subproblems were averaged before being passed to the master:

wER

As a result, we obtained the bundle-type method of [9].
The fourth version also accumulated aggregate cuts, as the previous one, but had

the regularizing term disabled by a = lo6. So, the method was practically equivalent
to the L-shaped method of [23].

The results are summarized in tables 3 and 4.
Our RD method clearly outperforms all the other versions for larger problems.

Comparing the performance of the regularized and the linear version (table 3) we see
that the use of regularization substantially decreases the number of iterations of the RD
method and, consequently, the number of dual simplex steps in subproblems. However,
regularization alone, without the decomposition of cuts, does not help much, as the
results for the bundle-type method in table 4 show. It turns out that it is much better
to work with our large master having separate cuts for each f w than with a bundle-type
master of [9]. Both methods with aggregate cuts - the bundle method and the L-shaped
method - were very slow near the solution: they had increasing difficulties in identifying
attractive sets of cuts and good dirctions. Presumably, directional minimization for the
bundle method might help a little, but in our case it would be prohibitively expensive.
It is much better to have a more accurate approximation of the recourse function, as
in the RD method, even if it requires solving a 'large" master.

Apart from a much slower convergence, the methods with averaged cuts (table 4)
encountered numerical difficulties in the neigborhood of the solution: the cuts did not

support the graph of the recourse function with the required accuracy. So, also from
the numerical point of view it is better to keep cuts for subproblems separately and to
use probabilities explicitly in the master (see (4.7)), than to have a smaller number of
averaged cuts.

Since the size of the master could be the only possible argument against using
separate cuts for the subproblems, we can safely discard methods with averaged cuts
as clearly inferior (for two-st age stochastic programs).

The next example is a stochastic scheduling and transportation problem described
in detail in [ll]. Again, in tables 5 and 6 we present problem statistics for various
numbers of scenarios. In table 7 we summarize the performance of the RD method and
of its linear counterpart (but still with decomposed cuts) and in tables 8 and 9 we give
details of the runs for the two largest problems. Again, for these large problems our
RD method is a clear winner, mainly because of a smaller number of null steps - long
trial steps to points which are much worse than the current one. The method without
regularization was not able to solve the largest 1000-scenario problem in an acceptable
time; the number of fruitless null steps was too large.

There seems to be no doubt as to efficiency of our approach and to usefulness of
regularization. We were able to solve successfully problems that have deterministic
equivalents of enormous sizes. This is mainly due to the use of regularization and cut
decomposition in the master and to our specialized technique for solving the master
problem, which boils it down to a size that is practically independent on the number
of scenarios.

Straightforward LP techniques fail on these problems already for moderate numbers
of scenarios. As an illustration, in table 10 we present available computation times (on
an identical computer) of a simplex code MINOS 5.3 of [13], an interior point code
LOQO of [22] and a Benders decomposition code MSLIP of [6] for our second example.
The methods are all much slower than RD, and they could not, so far, solve problems
with larger numbers of scenarios. The method that was able to solve problems of
comparable sizes was the Diagonal Quadratic Approximation method (DQA) of [ll, 121;
it was also slower than RD (although it was run on a network of workstations rather
than just one), but it has a potential of solving a broader class of problems (see [19]).

8. Conclusions

The regularized decomposition method appears to be a rather efficient tool for solving
large scale two-stage stochastic programming problems. Its efficiency is due to the
following features.

1. The quadratic regularizing term stabilizes the master problem and helps to avoid
aimless steps.

2. The use of separate approximations for scenario subproblems instead of aggre-
gate (averaged) cuts speeds up convergence owing to a better description of the
recourse function.

3. The special algorithm for solving the master problem based on dynamic selection
of critical scenarios reduces it to a small numerical core whose size does not
depend on the number of scenarios.

4. The use of the dual simplex method allows for rapid re-optimization of the sub-
problems.

There is also a disadvantage associated with our approach: the work with the
reduced master requires a number of involved operations, so implementation of the
method is not easy. But this is one of the keys to the good performance, because we
use many closed-form formulae.

The method allows for a number of generalizations and extensions: its dual form
turns out to be a decomposition method for augmented Lagrangians (see [16, 17)); it
can also be generalized to an asynchronous multistage version (see [18]). We hope to
be able to present for these versions results for equally difficult examples as the ones
discussed here.

References

[I] Birge J.R. and Louveaux F.V.,"A multicut algorithm for two-stage stochastic lin-
ear programs", European Journal of Operations Research 34(1988) 384-392.

[2] Birge J.R. and Wets R.J.-B., "Designing approximation schemes for stochastic
approximation problems, in particular for stochastic programs with recourse", in:
Stochastic Programming 1984, A. Prekopa and R.J.-B. Wets (eds.), Mathematical
Programming Study 27(1986) 54-102.

[3] Daniel J.W. et al., "Reorthogonalization and stable algorithms for updating the
Gram-Schmidt QR factorization", Mathematics of Computation 30(1976) 772-795.

[4] Dantzig G. and Madansky A., "On the solution of two-stage linear programs un-
der uncertainty", in Proceedings of the 4th Berkeley Symposium on Mathematical
Statistics and Probability, vol. 1, University of California Press, Berkeley 1961, pp.
165- 176.

[5] Dantzig G. and Wolfe P., "Decomposition principle for linear programs", Opera-
tions Research 8(1960) 101-111.

[6] Gassmann H.I.,"MSLiP: A computer code for the multistage stochastic linear
programming problem", Mathematical Programming 47 (1990) 407-423.

[7] Haugland D. and Wallace S.W., "Solving many linear programs that differ only in
the righthand side", European Journal of Operations Research 37(1988) 318-324.

[8] Kall P., Ruszczyfiski A. and Frauendorfer K., "Approximation techniques in
stochastic programming", in: Numerical Techniques for Stochastic Optimization
(Y . Ermoliev and R. Wets, eds), Springer-Verlag, Berlin 1988, pp. 33-64.

[9] Kiwiel K.C., Methods of Descent for Nondiflerentiable Optimization, Springer-
Verlag, 1985.

[lo] Marsten R., "The design of the XMP linear programming library", A CM Trans-
actions of Mathematical Software 7(1981) 481-497.

[I].] Mulvey J.M. and Ruszczyhski A., "A new scenario decomposition method for
large-scale stochastic optimization", technical report SOR-91-19, Deapartment of
Civil Engineering and Operations Research, Princeton University, Princeton 1991
(to appear in Operations Research).

[12] Mulvey J.M. and Ruszczy6ski A., "A diagonal quadratic approximation method
for large-scale linear programs", Operations Research Letters 12(1992) 205-215.

[13] Murtagh B.A. and Saunders M.A., "MINOS user's guide", Technical report SOL
83-20R, Systems Optimization Laboratory, Stanford University, 1983 (revised
1987).

[14] Reid J., "A sparsity-exploiting variant of the Bartels-Golub decomposition for
linear programming bases", Mathematical Programming 24(1982) 55-69.

[15] Ruszczyhski A., "A regularized decomposition method for minimizing a sum of
polyhedral functions", Mathematical Programming 35(1986) 309-333.

[16] Ruszczyhski A., "An augmented Lagrangian decomposition method for block diag-
onal linear programming problems", Operations Research Letters 8(1989) 287-294.

[17] Ruszczyhski A ., "Regularized decomposition and augmented Lagrangian decom-
position for angular linear programming problems", in: Aspiration Based Decision
Support Systems (A. Lewandowski and A. Wierzbicki, eds.), Lecture Notes in Eco-
nomics and Mathematical Systems, Springer Verlag, Berlin 1989, pp. 80-91.

[18] Ruszczy6ski A., "Parallel decomposition of multistage stochastic programming
problems", Mathematical Programming (forthcoming).

[19] Ruszczyhski A., "Augmented Lagrangian decomposition for sparse convex opti-
mization", WP-92-75, IIASA, Laxenburg, 1992.

[20] Sen S., Doverspike R.D. and Cosares S., "Network planning with random demand",
technival report, Department of Systems and Industrial Engineering, University
of Arizona, Tucson, 1992.

[21] Topkis J.M., "A cutting plane algorithm with linear and geometric rates of con-
vergence", Journal of Optimization Theory and Applications 36(1982) 1-22.

[22] Vanderbei R. J., " LOQO user's manual", technical report SOR-91- 10, Deapart-
ment of Civil Engineering and Operations Research, Princeton University, Prince-
ton 1991.

[23] Van Slyke R. and Wets R.J.-B., "L-shaped linear programs with applications to
optimal control and stochastic programming", SIAM Journal on Applied Mathe-
matics 17(1969) 638-663.

[24] Wets R.J.-B., "Stochastic programs with fixed recourse: the equivalent determin-
istic program", SIAM Review 16(1974) 309-339.

[25] Wets R.J.-B., "Large scale linear programming techniques", in: Numerical Tech-
niques for Stochastic Optimization (Y . Ermoliev and R. Wets, eds), Springer-
Verlag, Berlin 1988, pp. 65-94.

I Rows I Columns 1

Table 1: Dimensions of Example 1.

1st stage
2nd stage

1
175

Table 2: Dimension of equivalent LP formulations for Example 1.

Scenarios

1
10
20
50

100
200

Rows

176
1751
3501
8751

17501
35001

Columns

795
7149

14209
35389
70689

141289

Table 3: Performance of the methods with decomposed cuts for Example 1.

Scen.

10
20
50

100
200

Bundle Method

* - final accuracy not obtained

Regularized Decomposition

L-shaped Method
Scen.

Table 4: Performance of the methods with aggregate cuts for Example 1.

Linear Version
CPU
Time

128
361

2137
4191
7803

Iterations CPU
Time

125
455

2898
6928

17442

Main

14
19
41
40
39

Iterations

Iterations
Main I Subs

Subs

7241
20523

115711
231074
453346

Main

14
24
56
67
87

CPU
Time

Iterations
Main I Subs

Subs

7241
25606

157782
389453

1011807

CPU
Time

Table 5: Dimensions of Example 2.

1st stage
2nd stage

Table 6: Dimension of equivalent LP formulations for Example 2.

Rows

467
118

Columns

121
1259

Columns

1380
12711
63071

126021
251921

1259121

Scenarios

1
10
50

100
200

1000

Rows

585
1647
6376

12267
24067

118467

I Decom~osition I Version
Scen. I Iterations I CPU I

I

Iterations I CPU
I Main I Subs (Time I Main I Subs I Time

* - final accuracy not obtained

Fkgularized

Table 7: Performance of the method for Example 2.

Linear

Table 8: Operations in the 200-scenario version of Example 2.

Main algorithm
Iteration
Exact steps
Approximate steps
Null steps
Mas te r
Adding a cut
Adding a bound
Deleting a cut
Deleting a bound
Dependence
Relaxat ion

Regularized
Decomposition

Linear
Version

23 120
15 1
3 19
5 100

1007 2330
99 414

950 1196
6 165

64 1351
892 10

Table 9: Operations in the 1000-scenario version of Example 2.

Main a lgor i thm
Iteration
Exact steps
Approximate steps
Null steps
M a s t e r
Adding a cut
Adding a bound
Deleting a cut
Deleting a bound
Dependence
Relaxation

Scenarios 1 MSLIP 1 MINOS 1 LOQO 1 DQA* 1 RD 1

*- elapsed time on a network of workstations.

Regularized
Decomposition

Table 10: Execution times of different methods for Example 2.

Linear
Version

50 200
17 0
15 8
18 192

4 764 9106
99 1280

4675 4828
6 599

308 5396
4373 31

