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Interior Point Methods 
in Stochastic Programming 

1 Introduction 
Theory and computational methods of optimization found numerous applications in 
science, technology and economy. The fundamental linear programming problem 

min cTx 

can be encountered in seemingly remote application areas. The demand for methods 
capable solving such problems with tens of thousands of variables and constraints 
stimulates intensive research in the area of linear programming. One of promising 
approaches to linear programs which may solve problems that are intractable otherwise 
are so-called interior point methods. Their rapid development started from the works 
of Karmarkar [13], but their main ideas can be traced back to  the discovery of Dikin [7] 
and to the general approach developed by Fiacco and McCormick [9] (see [12, 17, 181). 

There are, however, many application problems for which efficient general-purpose 
computational methods can hardly be succesful, even if they are so powerful as the 
latest generation of interior point methods like OSL of [lo] or OBI of [15]. These are 
primarily problems with imperfect information. When some of the data c, A or b in 
(1.1) are uncertain we have to  use special modeling techniques to correctly formulate the 
objective and the constraints. Thare are many ways to  do that, but the approach that 
proved successful in many applications is to describe uncertain quantities by random 
variables. This not only provides us with the access to deep results of the theory of 
probability, but also has the advantage of using the language that is understood by 
experts in various fields. 

Describing uncertainty by random quantities gives rise to stochastic programming 
problems. They are usually very difficult and even in the simplest case of linear pro- 
gramming problems of form (1.1) and finitely many events (scenarios) they lead to  
models with very large numbers of variables and constraints. We shall discuss such 
models in the next section of the paper. We shall see that their size can be made 
aribrarily large by more and more exact description of uncertainty, but at the same 
time they possess a special structure that can be exploited by solution methods. In 
sections 3 and 4 we shall discuss some ways of specializing interior point methods to 
such problems. 



Needless to say, presentation of such broad and important areas within a short 
paper is not possible without drastic simplifications. Our aim here is to provide an 
introduction to the subject for the readers who have not yet had the opportunity to 
work in both areas. We have no doubt that the demands of practice will drive more 
and more researchers into this field. 

2. Stochastic programming models 

2.1 Motivation 

In stochastic programming we assume that the uncertain parameters in (1.1) are ran- 
dom variables, i.e. c = c(w), A = A(w), h = h(w) with w denoting an elementary 
event in a probability space (R, 3, P). For example, R may consist of a finite number 
of events wl, wz, . . . , wr, occuring with probabilities pl ,pa, . . . , p ~ ;  each wl gives rise to  
a scenario (q, Sl, hl) - a particular instance of problem data. 

If we knew the realization of the problem data we could just substitute it into (1.1) 
and solve the (random) problem 

min C(W)=X 

we have split here the matrix A and the vector b in (1.1) into deterministic and stochas- 
tic parts: 

Obviously, the solution x(w) of (2.1) would be dependent on the event w. 
However, if we do not know w and our decision x has to  be determined in advance, 

ther may be no such x that the constraints of (2.1) hold for every w E R. The objective 
in (2.1) may also be substantially different for different w. We need a new modeling 
approach to cover such situations. 

Since the objective value 

Fl(x,  w) = C ( W ) ~ X  

and the error 

A(x,w) = h(w) - S(w)x 

are random variables, we may use the properties of their distributions as the objective 
and constraints in our model. There are many ways to  do that  - we refer the reader to 
[8] - but we shall focus here on only one approach: two- and multi-stage models. 



2.2 Two-stage models 

In a two-stage model we assume that an additional cost F2(x,  w )  is associated with 
the error (2.2) .  The cost is modeled as the minimum objective value in an auxiliary 
optimization problem. In the simplest case it may have the form 

min qTy(w) 

We call (2.3) the second stage problem and its variables - second stage variables. We 
denote them by y(w) to stress that they may be dependent on the event w; it is already 
" knownn at this stage. So the whole decision process has now the form: 

first stage decision x 
observation c(w),  S (w) ,  h(w) 
second stage decision y(w) 

The vector q and the matrix W in (2.3) can be used to assign costs to different com- 
ponents of the error A(w) .  For example, using 

T T T  
!7 = [Q+ Q - I  

we obtain the following version of (2.3): 

T min q:y+ + q- y- 

Then y+ and y- represent surplus and shortage with corresponding cost vectors q+ and 

Q - .  
The minimum second stage cost 

where Y ( X , W )  is a solution of (2.3) ,  is a random variable again. We can add it to the 
direct first stage cost Fl(x ,  w )  and formulate the problem 

where X = { x  E Rn : Dx = d ,  x  2 0) and E denotes the expected value. In an 
extended form the problem can be written as follows: 

min [ E C ( W ) ~ X  + E {min { q T y  I W y  = h(w) - S(w)x ,  y 2 o))] . 
xEX 

(2.4) 



It should be stressed that the concept of the second stage problem and second stage 
variables is not just a modeling trick, but it may reflect real-world situations where ad- 
ditional cost results from the necessity to deal with shortages and excesses. Clearly, one 
can also use nonlinear penalties in ( 2 . 3 ) ,  for example quadratic or piecewise-quadratic 
functions of y .  

In the case of finitely many scenarios w l ,  w2,  . . . , W L  occuring with probabiblities 
P I ,  p2, .  . . , p ~  we can rewrite ( 2 . 4 )  in a more transparent form. Let us observe that we 
shall have only L different instances of the second stage problem: 

W y l  = hl - S ~ X ,  ( 2 . 5 )  

Yl > 0, 

with I = 1 , 2 , .  . . , L; each of them occurs with probability pi. We can therefore look for 
x  and the solutions yl , y2, . . . , y ~  within one large optimization problem 

with E = E c ( w )  = plcl + p2c2 + . . . + PLCL. Indeed, for every fixed x  the best values of 
91,  y2 , .  . . , Y L  in ( 2 . 6 )  are solutions of ( 2 . 5 ) .  

We end this section by noting that we have obtained a very large linear programming 
problem of a special structure. Its size grows linearly with the number of scenarios L 
and may easily reach hundreds of thousands of rows and columns in ( 2 . 6 ) .  

2.3 Multi-stage models 

There are many real-world problems where the decisions are made successively with 
an increasing information about the uncertain parameters. In the two-stage models 
of the previous subsection we had the extreme case: a t  the first stage we did not 
know anything but the distribution of uncertain data; a t  the second stage the full 
information was available. We shall generalize this concept into many successive stages 
t = 1 , 2  ,..., T .  

Let us assume that our decision vector x  is comprised of subvectors corresponding 
to  successive stages 

x  = ( x ( l ) ,  x ( 2 ) ,  . . . , x ( T ) ) .  

Suppose that the constraints are also composed of subgroups relating decisions from 
neighboring stages 



x ( t ) > O ,  t = 1 , 2  ,..., T, (2.7b) 

(D(1) and x(0) are empty). The deterministic multi-stage model can be now formulated 
as the problem of minimizing the objective 

subject to the constraints (2.7). 
Let us now suppose that the data in the above problem are uncertain, i.e. S ( t )  = 

S(t,w), W(t)  = W(t,w), h(t) = h(t,w), c(t) = c(t,w) for w f R, where ( R , F , P )  
is some probability space. The principal question that has to  be answered in such a 
situation is what is the information available when x(t)  has to  be chosen. In multi-stage 
stochastic programming problems we assume that at time t we observe 

Then the decision process has the following form: 

observation ((I ,  w) 
decision x(1, w) 

observation ((2, w) 
decision x(2, w) 

observation ((T, w) 
decision x (T, w) 

It is natural that decision x(t)  may depend on the data ((7) observed at time instants 
T = 1 2 , .  t .  However, it must not depend on future data ((T), T > t. This 
requirement is called the condition of nonanticipativity. 

The nonanticipativity condition can be best illustrated for problems with finitely 
many events, i.e. with R = {wl, w2,. . . , wL). They result in finitely many scenarios 

The scenarios can be put into a tree whose levels correspond to time stages. At level 1 
we put ((1) - the already known data for stage 1, common for all scenarios. At level 2 
we put so many nodes as many different values of ((2) may occur. To each such node 
we attach nodes a t  level 3, that correspond to  different values of ((3) that may follow 
the particular sequence of ((I),  ((2), etc. This is illustrated in Figure 1 in the case of 
four stages and two possibilities of data values a t  each stage. A scenario corresponds 
to  a path in this tree. Nonanticipativity then means that there can be only so many 
versions of decision x(t)  as many nodes occur in the scenario tree at level t .  For the 
example of Figure 1 we must have one x(1) common for all scenarios, two versions of 
x(2) (one for each outcome of the observation of ((2)), four versions of x(3), etc. 

Formally, we can formulate a multi-stage stochastic programming problem as fol- 
lows: 



Figure 1: Scenario tree. 

subject to  the constraints 

x ( ~ , w )  2 0 ,  ( 2 . 8 ~ )  

and the additional nonanticipativity constraint that restricts the dependence of x ( t ,  w )  
on w  to  the events that can be distinguished on the basis of information collected up 
to  time t .  

3. Direct application of interior point methods 

3.1 The primal-dual method for quadratic problems 

Let us consider the quadratic programming problem 

1  
min cTx + - x T Q x  

2  

Applying the logarithmic barrier function to  the inequalities in ( 3 . 1 )  we obtain the 
approximate problem 

n 
1 

min cTx + - x T Q x  - p  C in x j  
2  j=1 

where p  > 0  is some small penalty parameter. It is well known that if ( 3 . 1 )  is solvable 
then the accumulation point of the solutions x ( p )  of (3 .2 )  with p  1 0  are optimal 
solutions of (3 .1 )  (see [9]). 

The necessary conditions for (3 .2 )  can be written as follows 



where y is the vector of Lagrange multipliers, e = [I 1 . . . 1IT, and X is a diagonal 
matrix of dimension n with Xjj = xj, j = 1,2,.  . . , n. Denoting the reduced costs in 
the original problem by z we can rewrite the last system as follows 

XZe = pe. 

Here, again, Z is a diagonal matrix of dimension n with Zjj = zj, j = 1,2,.  . . , n. This 
system of nonlinear equations can be iteratively solved by the Newton's method. The 
linearized system for Newton's directions d,, d, and d, takes on the form 

In the primal-dual interior point method one solves (3.3) with some p and makes a 
step 

xnew = x + ad,, 

with cr > 0 such that xnew and znew remain positive. Finally, a smaller p is calculated 
and the iteration continues. There are many important technical details concerning 
the choice of cr, p and of the point at which the linearized equations are solved; we 
refer the reader to [5, 6, 14, 191. 

Computational realization of the primal-dual iterations amounts mainly to repeated 
solution of the system of linear equations (3.3). Obviously, we can easily eliminate d, 
from (3.3) and arrive to the augmented system 

with r = c -  ATy + Qx - pX-le and s = b -  Ax. Further elimination yields the normal 
system 

1 T A(Q + x-'z)- A d, = s + A(Q + X-'2)-'r. (3.5) 
The standard approach is to solve the normal system for d, and then calculate d, and 
d, from (3.4) and (3.3). 

Crucial for the efficiency of the whole approach is that the nonzero pattern of the 
matrix 

1 T M = A O - A ,  (3.6) 

where O = Q + X-'2, does not depend on x and z. Therefore the sparse Cholesky 
factorization of M,  i.e. selection of a permutation P and a lower triangular matrix L 
such that 

P M P ~  = L L ~ ,  (3.7) 



can be carried out in two steps. First, we can compute the pivot ordering P and the 
nonzero pattern of L by analysing the location of nonzeros in M. This is called symbolic 
factorization and need to be carried out only once. Next, when x and z are known 
we can just calculate the numerical values of the entries of M and follow the recipes 
prepared in the symbolic step to fill-in the nonzeros of L. This part of the solution 
must be repeated at  least once per iteration; its efficiency is heavily dependent on the 
quality of the symbolic factorization and on sparsity of the factor L. 

Finally, it is worth noting that when Q is diagonal then the sparsity pattern of 
M is the same as for linear problems. Thus the computational effort per iteration 
is for separable quadratic programs almost the same as for the corresponding linear 
problems. 

3.2 The problem of dense columns 

When the primal-dual interior point method is applied to stochastic programming prob- 
lems we encounter difficulties created by the characteristic structure of the constraint 
matrix. 

Let us study this issue in detail on the two-stage problem first. The constraint 
matrix of (2.6) has the form 

Therefore, even for a diagonal or empty Q, the nonzero pattern of M in (3.7) will be 
the same as the nonzero pattern of 

Needless to say, a significant fill-in takes place during this multiplication; the number 
of nonzeros of AAT becomes excessively large and Cholesky factorization (3.7) involves 
many eliminations. We have to avoid that if we want to solve problems of realistic 
sizes. 

Clearly, the source of these difficulties are the columns corresponding to the first 
stage variables. Splitting A into 

A = [Ad As] (3.9) 



we see that 

The fill-in created by the columns coreesponding to second stage variables is restricted 
to the diagonal blocks WWT. It is clear that we need special techniques to  deal with 
first-stage variables, since otherwise our ability to solve large problems will be very 
limited. 

3.3 Schur complements an rank deficiency 

One of general approaches to dense columns in the sparse Cholesky factorization is the 
use of Schur complements. For a diagonal O  and A  given by (3.9) we can write 

Suppose that we know the Cholesky factors for the sparse part 

for simplicity we neglect here the permutations. Then, applying the Sherman-Morrison 
formula to the inverse of (3.11) we obtain 

Application of formula (3.13) to equation (3.5) requires an additional factorization of 
a small dense matrix 

B = od + A T c - ~ c - I A ~ .  (3.14) 

This matrix is the Schur complement of A,O;'AY in the matrix 

Solving the system (3.5) can be then reduced to three systems with CCT and one 
system with B. 



In our case, however, the straightforward application of the Schur complement 
technique encounters serious difficulties. Indeed, for the constraint matrix of form 
(3.8), if we define Ad and A, by (3.10), the matrix 

will be rank-deficient and the Schur transformation will not be correct ( C in (3.12) 
will not be invertible). 

Since it is necessary to  have A, of the full row rank, we need to  apply some special 
tricks to  achieve that. One possibility is to  include into A, some columns corresponding 
to the first-stage variables. This can be easy, if there are sufficiently many first stage 
variables that occur only in the deterministic constraints (e.g. slack variables for these 
constraintsl. Then 

and if D2 and W have full row rank we can define 

The financial planning problems analysed in [16] have such a property. 
Another technique for correcting the rank of A,o;'AT was suggested in [4]. It is 

based on the transformation 

The sparse part has a full row rank (if W has) and 



We can now apply the asymmetric Sherman-Morrison formula 
(AAT)-~ = C-Tc-1 - c - T c - ~ ~ B - ~ v T c - T c - ~ .  

with the "Schur complementn: 

L 

B~ = + D ~ D  + C s T ( w 1 w ~ ) - l s l  
1=1 

Some encouraging results have already been obtained in [2]. 
Carpenter [5] reports computational experience with the Schur complement method 

for a special class of two-stage problems where the form (3.16)-(3.17) could be obtained 
with a full-rank A,. She observed a dramatic (five- to ten-fold) improvement in solution 
time over the straigthforward approach. However, even in such medium-size problems 
a loss of numerical accuracy has been observed. This has also been noted for general 
LP problems in [6] and [15]. 

Generally, the loss of numerical accuracy and instability for larger problems is the 
main drawback of the Scur complement approach. There are two sources of it: 

- ill-conditioning or rank deficiency of the sparse part; 

- difficulties in the factorization of the dense Schur complement matrix. 

Both of them occur in stochastic programming. 
For multi-stage stochastic programs the situation is more difficult. Let us illustrate 

the problem on the example from Figure 1. The constraint matrix has the form 



where for simplicity we use S and W to denote all Sl(t) and Wl(t). To follow the Schur 
complement approach described here we would have to  incorporate into Ad the columns 
corresponding to all stages but the last one. This would result in a rank-deficient A, 
and would call for some special correcting devices, such as  that shown in (3.18). But 
also, for nontrivial problems, we would obtain a very large "dense" matrix B defined 
by (3.14); much larger than any dense factorization method can handle. So there is a 
need to  carefully select the columns to  be involved into Ad SO that A, will be sparse 
enough and B small. 

Such a technique can be based on the augmented system (3.4). Instead of elimi- 
nating analytically d, and arriving to  (3.5) we can deal directly with (3.4) and try to 
construct the factorization 

with a sparse, upper-triangular U and some permutation P. Let us observe that if 
the permutation P is such that the first pivots are from O, then (3.19) will become 
equivalent to  (3.5). However, when we delay processing some of the diagonals of 0 
(and the corresponding columns of A),  we can obtain different factors. To illustrate 
that,  suppose that we split A as in (3.9) and we choose P in (3.19) such that the 
columns from Ad appear a t  the last positions (last pivots will be from ad). We would 
then obtain the matrix 

Carrying out the elimination for the first pivots (in 0,) yields the system (3.15). There- 
fore the Schur complement technique is algebraically equivalent to a particular pivot 
selection in the augmented system (3.19). However, the advantage of (3.19) is that the 
pivot ordering (or division into sparse and dense parts in (3.20)) need not be specified 
in advance, but is determined dynamically on-line to satisfy sparsity and stability re- 
quirements. Encouraging computational results with this approach have been reported 
in [ l l ,  26, 271. 

3.4 Split-variable formulation 

There is an explicit way of formulating the non-anticipativity constraints in stochastic 
programming models that provides us with an additional insight into their properties 
and allows for the development of new computational techniques. Namely, with every 
scenario 

(1 = (tl(l), tl(2)) - , tl(T)) 
we can associate the corresponding sequence of decisions 

in the problem (2.8). The sequences xi, 1 = 1,2, .  . . , L, however, cannot be indepen- 
dent. Nonanticipativity requires that 



Figure 2: Sequences of decisions and nonanticipativity. 

For the example of Figure 1 the relations between the sequences are illustrated in 
Figure 2; the horizontal dotted lines denote equality. Such an explicit approach to 
nonanticipativity allows us to formulate multi-stage stochastic programming problems 
as follows 

L 

min x P I ( C I ,  X I )  ( 3 . 2 2 ~ )  

x l ( t )  = x k ( t )  for some 1 ,  k , t .  ( 3 . 2 2 ~ )  

Here CI  = ( c ~ ( l ) ,  c1(2), . . . , c l ( T ) ) ,  the set X I  represents the dynamics of the system in 
scenario 1 given by the constraints 

and ( 3 . 2 2 ~ )  represents the nonanticipativity constraint (3 .21) .  It is obvious that con- 
straints (3 .21)  are redundant and that we can work with a carefully selected subset 
of them. One of possibilities is to arrange some ordering among the scenarios and to 
relate x l ( t )  to only one other scenario in its equivalence group. We can generate for 
every t  a permutation 

u ( l , t ) ,  1 = 1 , 2  ,..., L 

such that u(1, t )  points to a sibling of scenario 1 at stage t .  defined as follows. It is the 
next scenario 1 + 1, if 1 and 1 + 1 have the common past up to t ;  otherwise it is the first 
scenario among those that have common past with 1 up to stage t .  We assume that 
the scenarios are ordered in such a way that each of them is followed by the one that 
has as much in common with it as possible from the scenarios having larger numbers. 
For the example of Figure 1  such a mapping would have the form shown in Table 1. 

The nonanticipativity constraint can be then written as 



Table 1: Siblings of scenarios. 

Time 
stage 

2 
3 
4 

There is a number of advantages of the split-variable formulation (3.22). The most 
visible one is the change of the structure of the constraint matrix of a stochastic prob- 
lem. Let us illustrate this on the case of a two-stage problem (2.6). In the split-variable 
formulation it takes on the form: 

The constraint matrix has the form 

Scenario 

There are no more dense columns in this formulation (at most three blocks in each 
column), so the Cholesky factorization of AAT may be much sparser than in the original 
formulation. The experiments of [16] show that the spli t-variable formulation is always 
better than the compact formulation; the factors have less nonzeros and the cost of 
solution can be decreased 2-3 times. The computation time is still higher than in 
the Schur complement approaches, but no stability difficulties have been observed. 
It should be stressed, however, that the decrease of the number of nonzeros in the 
Cholesky factors is not so high as the decrease of the number of nonzeros in AAT; the 

1 2  3 6 4 

1 2 3 4 5 6 7 8 1  

7 5 

2 3 4 1 6 7 8 5  
2 1 4 3 6 5 8 7  
1 2 3 4 5 6 7 8  

8 



additional nonanticipativity constraints create a significant fill-in during the elimination 
process. 

Summing up, splitting variables is a simple and general technique for dealing with 
dense columns in stochastic programming. It is reliable and always leads to moderate 
gains over the straightforward formulation. 

3.5 Solving the dual problem 
Since the constraint matrix of the dual problem is the transpose of the matrix of primal 
contstraints, it seems that a simple remedy to our problems is formulating and solving 
the dual of (2.6): 

max bTy 

ATY I C, 

with A of form (3.8). However, y is not sign-constrained, so in order to  avoid getting 
the system (3.3) again, we have to  split y into 

Y = Y 1  - y2, (3.26) 

y1 2 0, y2 2 0. 

This yields the problem 
max bTyl - bTy2 

ATy' - + 2 = C, (3.27) 

y1 2 0, y2 2 0, 2 2 0. 

We can now formulate the logarithmic barrier function and arrive to a new primal- 
dual method for the dual problem (3.27), in a similar way to  section 3.1. This idea 
was analysed in [25] and [3]. However, passing to  the dual and splitting variables by 
(3.26) increases the size of the problem considerably. Even more dangerous is that 
the transformation (3.26) introduces an inherent ill-conditioning into direction-finding 
systems due to  the non-uniqueness of the dual solution: usually both yj and y,? grow 
and only their difference is convergent to  yj (see [25]). 

4. Decomposition 

4.1 The augmented Lagrangian 

Let us recall the split-variable formulation of multi-stage problems. For each scenario 
1 the feasible set has the form 

where Al is a staircase matrix resulting from the constraints (3.23a): 



The non-anticipativity constraints (3.24) can be put together into some joining con- 
straint x = Ux, which, although simple, is nonseparable and multidimensional. Thus, 
the whole problem has the following structure: 

subject to  
x - Ux = 0, 

The well-known Dantzig- Wolfe decomposition method is the classical approach t o  such 
problems. It  may be viewed as a dual method based on the Lagrangian junction 

The Lagrangian function is separable into terms dependent on XI, 1 = 1, .  . . , L: 

with 

and can be minimized subject to  (4 .2~)  independently for each XI. However, updating 
multipliers w requires solution of a linear master problem which has the number of rows 
equal to  the number of rows in (4.2b) and unspecified number of columns. This makes 
the Dantzig-Wolfe method hard to  implement for multi-stage stochastic programming 
problems. 

An alternative dual approach to (4.2) is the use of the augmented Lagrangian junc- 
tion 

L 1 
7 r) = C ~ ~ ( c r ,  XI)  + (a, x - Ux) + l r  11, x - Ux 1 1 2  

1=1 

Here r > 0 is a penalty parameter. The augmented Lagrangian method (see, e.g., [I]) 
can be stated for (4.2) as follows. 



Algor i thm 1 

1 For fixed multipliers ak solve the problem 

min A,(x , ak) subject to x E XI x . . . x XL. 

Let xk = (xf , x i ,  ..., x i )  be the solution of (4.5). 

2 If x:(t) = ~ : ( , , ~ ) ( t )  for all I and t,  then stop (optimal solution found); otherwise set 
for I =  1 ,..., L a n d t = l ,  ..., T - 1  

increase k by 1 and go to 1. 

There is a number of general advantages of the augmented Lagrangian approach 
over usual dual methods: simplicity and stability of multiplier iterations and possibility 
of starting from arbitrary ?rO are among the most important ones. It is also well known 
that if (4.2) has a solution, then Algorithm 1 is finitely convergent. 

One of the "disadvantages" of the augmented Lagrangian approach is that the 
objective in (4.5) is no longer linear, but quadratic. But for interior point methods it is 
not a disadvantage any more, especially in our case, where both the constraint matrix 
A and the Hessian Q in (3.1) are sparse. Indeed for (4.5) we have 

with each Al of form (4.1). Next, since the quadratic terms in (4.4) relate only neig- 
boring scenarios we shall have Q with at most 3 nonzeros in each row and column: one 
diagonal entry with value 2r and two off-diagonals with value -r. Therefore Cholesky 
factorization of (3.5), and especially of (3.4), can be quite successful. Nevertheless the 
presence of off-diagonal entries in Q creates a substantial fill-in in the factors; it is 
analogous to the effect of linking constraints in the split-variable formulation (3.25). 

In the next section we shall present an approach based on augmented Lagrangians, 
in which we shall remove off-diagonal elements of Q. It. will make the factorization 
much easier and it will even allow a parallel distributed solution of the problem (for 
another approach to augmented Lagrangian decomposition see [22]). 

4.2 Diagonal quadratic approximation 

Clearly, nonseparability of (4.4) is due to the quadratic terms 



which contain cross-products (xl(t), ~ , ( ~ , ~ ~ ( t ) ) .  Suppose that x belongs to a neighbor- 
hood of some reference point ?. As noted in [20], we can use then the technique of 
Stephanopoulos and Westerberg [24] and approximate the cross-products locally by 

with an error of order O(I( x - ? lJ12). Using (4.9) in (4.8) and then in (4.4) we see that 
problem (3.5) can be in the neighborhood of ? approximated by L subproblems 

1 

min h:(xl, T; 5 )  = C ( & ( t ) ,  xl(t)) + 
t=1 

subject to 
21  f XI, 

with 4 ( t )  defined by (4.3). 
The approximation point 5 can be iteratively updated by the following algorithm 

(see [21, 231). 

Algorithm 2 

1 Set T = rk, zkvm = xk-l and m = 1. 

2 For 1 = 1,. . . , L solve (4.10) with ? = ?k*m obtaining new points x: '~.  

3 If 1 1  xl(t) - Zl(t) (15 E for all 1 and t < T,  where E > 0 is some prescribed accuracy, 
then stop; otherwise set for 1 = 1,. . . , L, t = 1,. . . , T  

5:'"+l (t) = ?:lm(t) + ol(xPm(t) - q m ( t ) ) ,  (4.11) 

increase m by 1 and go to 2. 

We can use this approximation in two ways. 
First, we can just apply the interior point method of section 3.1 to the collection 

of problems (4.10) treated as one big problem - similarly to (4.5). Then, owing to the 
absence of off-diagonal elements in the Hessian matrix, the nonzero pattern of (3.6) 
will be the same as of 

This will not only make the factorization easier, but allow a block-wise factorization of 
(3.7). The experiments reported in [20] show that removing off-diagonal entries of Q 
dramatically improves the quality of Cholesky factorization: the number of nonzeros 
in the factors (3.7) decreases at least three times. 



Secondly, we can deal with the problems (4.10) in parallel and have an independent 
interior point algorithm running for each of them. We can run them in parallel and 
exchange only the information that is necessary to continue computation. 

Expanding the quadratic penalty term in (4.10a) and neglecting terms that do not 
depend on X I  we arrive to the following formulation 

1 
min 8 x 1  + 2 x T ~ l x l  (4.12~) 

subject to 

where 

and Ql is a diagonal matrix with the diagonal elements equal to 2r for variables which 
have siblings, and 0 otherwise. 

Problem (4.12) is a separable quadratic programming problem, so, identically as in 
section 3.1 we can use logarithmic barrier functions for nonnegativity constraints. We 
can solve (in one way or another) the system (3.3) for each 1 and make steps 

with stepsize cul and barrier coefficient pl calculated by appropriate rules [6, 16, 141. 
In this way we can proceed until the solution of (4.12) will be found. However, we 

may stop after a small number of iterations (or just one) and update the approximation 
point 5 by (4.11). 

In general, change of 5 results in the change of 21 given by (4.13) which in turn 
causes the loss of dual feasibility. But we are still in an interior point so it is possible 
to continue the iterations without essential difficulties. It  is even better to change 5 
more frequently to modify the trajectory further from the boundary. 

Summing up, the iterative character of barrier methods and their ability to start 
from arbitrary interior points makes it possible to integrate the algorithm for solving 
(4.10) with the updates of the approximation point (4.11). 

4.3 A parallel distributed implement at ion 
The Diagonal Quadratic Approximation method is a flexible theoretical scheme which 
can be implemented in many ways, in particular, in a parallel distributed environment. 

Let us assume that we have a sufficiently large number of processors and let us 
assign each scenario to a different processor. Then it is clear that iterations (4.14) can 



Figure 3: Communication between subproblems by full decomposition. 

be carried out (for a fixed i) independently in each processor. It  is also true for the 
algorithm for updating i by (4.11). 

Although the change of i causes changes in Z in (4.12), it follows from (4.13) 
that the interactions occur only between siblings at a given stage: Zl(t) influences the 
cost Z,(t) in scenarios j = v(1,t) and j = v-'(l,t), and vice versa. So, we derive 
a communication structure between processors, in which messages need to be passed 
between nearest neighbors. For the example of Figure 2 and Table 1 the communication 
structure is depicted in Figure 3. The number of lines joining subproblems in Figure 3 
denotes the number of stages a t  which the siblings need to exchange data. 

The multiplier iteration (4.6) can also be carried out in a distributed fashion. In- 
deed, when Algorithm 2 stops, we have xl(t) = i l ( t ) ,  so xl(t) is known to the sibling 
v(l,t) ,  while x,(ltt) is known to subproblem i. Thus, both i and v(1,t) can calculate 
~ ( 1 ,  t )  by (4.6). Clearly, the same argument applies to the sibling v-'(1, t). Thus, all 
subproblems can update their costs (4.13) in a distributed fashion. 

It is worth stressing that in this way we arrived to a decomposition method without 
any coordinating unit. What once was a large master problem in the Dantzig-Wolfe 
method became in our approach a simple shift of costs (4.13) distributed among sub- 
problems. 

Assigning each scenario to a different processor is not the only possibility to dis- 
tribute the DQA method. We can form larger subproblems comprising multiple scenar- 
ios. Then, obviously, the non-anticipativity links between scenarios included into one 
subproblem should be treated directly as constraints in the subproblem solver. The 
only non-anticipativity constraints that need to be coordinated by the DQA method 
are those that link scenarios assigned across subproblems. 

To describe it formally, let Il = (1,. . . ,ill, I2 = {il + 1,. . . , i2) ,  . . . , IK = {iK-1 + 
1,. . . , L) be subsets of scenarios assigned to subproblems 1,2, .  . . , I<. Let us define the 
outgoing boundary of subproblem k by 



In a similar way we define the ingoing boundary: 

Then we can formulate subproblem k as follows 

subject to 
XI E Xl, i E Ik, (4.15b) 

xr(t) = xU(l,t)(t), i E I k ,  v(l,t) E I k ,  (4.15~) 
with the modified costs defined by: 

 PIC^^) + 4) - r&(~,t)(t) if (1, t )  E 8 + I k ,  

otherwise. 

Since internal non-anticipativity constraints (4.15~) are treated directly, we only need 
to apply augmented Lagrangian terms to the links between boundaries of subproblems: 

and only for these (1,t) we carry out iteration (4.6). So, similarly to the full de- 
composition scheme, exchange of information between subproblems occurs only along 
coordinated links (I, t) tt ( ~ ( 1 ,  t),  t) with (1, t) E PIk, k = 1,. . . , K .  

In the example of Figure 2, assuming that subproblem 1 contains scenarios 1, 2, 3 
and 4, subproblem 2 contains scenarios 5 and 6, subproblem 3 contains scenario 7 and 
subproblem 4 contains scenario 8, only links shown in Table 2 need be coordinated. 
The resulting communication structure of subproblems is shown in Figure 4. It could 
also be obtained by clustering subgroups of nodes of Figure 3. 

Table 2: Coordinated links by partial decomposition. 

Time 
stage 

1 
2 
3 
4 

The experiments reported in [21] show that in this way we can solve problems of 
remarkable sizes - with hundreds of thousands of variables and constraints by using 
standard workstations connected in a network. We assign as big subproblems as pos- 
sible to the workstations; owing to the use of interior point methods they can be quite 
large. Messages about the approximation points El and multiplier iterations are passed 
via the network. The stability of the multiplier method makes coordination of the 
subproblems possible, even in the presence of numerical errors. 
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- - -  
- - - -  

1 2  13 
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Figure 4: Communication between subproblems by partial decomposition. 

5. Conclusions 

Modeling uncertainty in linear programming problems by stochastic quantities gives 
rise to very large models with special structures. Their size can easily become so large 
that a straightforward application of general-purpose solvers can hardly be succesful. 
We have shown two ways of overcoming these difficulties within the primal-dual interior 
point methods. 

One way is to exploit the problem structure within the linear algebra of the method. 
These are mainly special tricks for dealing with dense columns; in stochastic program- 
ming they lead to highly structured procedures with a potential of parallelization. 

The second approach is the decomposition of the whole problem into smaller parts 
and coordination of them. Here, the availability of interior point methods that can 
solve quadratic programs as easily as linear ones is a breakthrough, because it allows 
for using stable and simple augmented Lagrangian techniques. 
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