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Abstract 

A problem of probability function optimization is considered. This function represents 
probability that some random quantity depending on deterministic parameters does not 
exceed some given level. The problem is motivated by studies of safety domains and risk 
control problems in complex stochastic systems. For example, pollution control includes 
maximization of probability that some given levels of deposition at reception points are 
not exceeded. Optimization of probability function is performed over a given range of 
parameters. To solve the problem stochastic quasi-gradient method is applied under 
quasi-concavity assumption on functions and measures involved. Convergence and rate 
of convergence results are presented. 

Keywords: risk, probability function, nonsmooth optimization, stochastic quasi- 
gradient method, quasi-concavity, cr-concavity. 
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The analysis and optimization of 
probability functions 

Vladimir I. Norkin 

1 Introduction 
Probability function represents the probability that some random quantity, depending 
on controlled parameters, exceeds some given level. The study of probability functions 
properties and the development of appropriate optimization techniques was motivated by 
studies of safety domains and risk control problems in complex stochastic systems. As 
an example, problems of environment monitoring and control can be considered. In this 
case probability functions reflect the risks to exceed permitted levels of depositions at 
reception points. 

In the present paper we discuss optimization problems for rather general (in particu- 
lar nonsmooth) probability functions, which cannot be optimized by the existing meth- 
ods. We also discuss connections between probability functions optimization and classical 
decision-making problems in inventory theory, two-stage planning, production planning 
under random supplies and others. 

As a solution technique we propose special modifications of stochastic quasi-gradient 
methods (see Ermoliev [7]), for which convergence rate estimates are obtained. 

Let us consider the problem of decision-making under stochastic uncertainty. Let 
vector x denote possible solutions (alternatives) from a feasible set X. Rational decision 
choice is made by taking into account their consequences. But these consequences often 
depend not only on the decision x but also on some random factors w from some space 
52. The connections between solution x and its consequence y can be written in the form 

4 

of functional dependence y = f (x, w), where the transformation f : X x R Y is 
called a model (of a decision-making situation); a process of calculation of y for given 
x and given or statistically simulated w is called a simulation process. The model can 
be described by algebraic relationships with random parameters, stochastic differential 
equations, Markov random processes and other controllable stochastic processes. Since 
parameters w are uncertain or random, then with each solution x a corresponding vector- 
function of consequences {(x, -) is associated. Generally, all consequences can be described 
by loss (expenses etc.) and gain (efficiency etc.). Moreover, to simplify the problem of 
decision-making, we shall assume that all consequences of decision x are characterized by 
a single "lossn or "gainn scalar function f (x, w). Let us consider some examples of such 
functions from a number of economic applications. 

Example 1.1 (A choice of stores). Let it be necessary to prepare an  inventory of n goods 
i n  quantities (xl,. . . , x,) = x for which there ezists random demand (wl, . . . , w,) = w. 
The lack of stored goods is  penalized by coeficients (cl, . . . , G) = c and ezpenses for 
keeping unsold goods are given by the vector (dl,. . . , d,) = d .  Then the loss function 
corresponding to  solution x has the form: 

n 

f (x, w) = C{C; max(0, w; - xi) + d; max(0, x; - w;)}. 
i=l 



Note that this loss function f ( x ,  w)  is convex with respect to the pair of variables (x, w) .  

Example 1.2 (Supply optimization). Let some manufacturing system produce a prod- 
uct from some basic ingredients. Let us consider the production function of this system 
f ( x )  = j(.xl,. . . , x,) which expprrsses the output of the product if ingredients are taken 
in quantztzes X I , .  . . , x,. A natural assumption accepted in mathematical economy is that 
production functions are concave in their variables. For example, the following production 
function 

f i ( x )  = m i n { ~ l / a l ,  - 7  xnlan) 

is concave, where a l ,  . . . , an are technological constants (numbers of ingredients necessary 
to produce a unit of resulting product). Cobb-Douglas production function 

where 0 < a; 5 1, i = I , .  . . ,n, is logarithmic concave. Part of the ingredients in such 
production functions can be taken in deterministic numbers (solution) and others are 
determined b y  random supply. So, in general, one can assume that a production function 
f ;  depends on a deterministic vector x and a random vector w and f;  is quasi-concave in 
the pair of variables ( x ,  w) .  

Example 1.3 (Shopkeeper's problem). Let a shopkeeper take from a store n kinds of 
goods in quantities X I , .  . . , xn for daily selling. Suppose there are (random) daily demands 
wl, . . . , wn of these goods. The shopkeeper's goal is to maximize the following daily gain 

where p; is the unit price of the i-th good, x = ( x l , .  . . , xn ) ,  w = (w l , .  . . ,w,). Solution x 
must satisfy availability restrictions 

0 I X ;  5 b;, 

and sale room restrictions 
n 

where q is a space taken b y  a unit of i-th commodity and d is the volume of the sale room. 
Let us observe that function f ( x ,  w )  is jointly concave in ( x ,  w) .  

Example 1.4 (Two-stage decision-making). Let some decision be made in two stages: at 
first a priori decision x E X is made, then some random factors w E R are observed and 
finally some optimal correction y from the set Y ( x , w )  is chosen. Suppose expenditures 
for decision x are given by a function f l ( x )  and expenditures for correction y under given 
x and w are given b y  a function f2(x ,  y,w). Optimal correction y*(x,w) is chosen as a 
solution of the problem: 

Thus the consequences of decision x are described b y  the following random loss vector- 
function 



Components fl(x) and f2(x, ye(x,w),w) of this function are related to diflerent time in- 
tervals so they can be summed only with some discount multiplier X determined by a 
decision-maker. Therefore total reduced ezpenditures for solution x are given by the ex- 
pression 

f (x ,w)  = f l ( 4  + Xf2(x, Y*(x,w),w), > 0. 

If the functions fl ,  f2 and the multivalued mapping Y are convez jointly in (x, y, w) then 
f (x, w) is also convez jointly in (x, w). 

A decision-maker while considering possible solution x should take into account all 
possible values of loss-gain function f (x, .). Formally it means that the decision-maker's 
preferences are given in a functional space containing functions of w. The decision-maker 
should decide which distribution { f (x, -))zEX is the most preferable for him. 

In general the choice of the most preferable distribution is a rather difficult problem. 
Even comparison of only two distributions can be a difficult task. So, the following ap- 
proach seems to be natural from a practical point of view (see, for example, Keeney and 
Raiffa [2], Harvey [3]). The distributions are evaluated by one or a number of criteria and 
the decision-making problem is reduced to one- or multi-criteria stochastic optimization 
problem. In probability theory several characteristics to describe and compare random 
quantities such as f (x, -) were elaborated: mean value, variance, probability of not ex- 
ceeding of a given level, ... and others. An enormous number of papers were devoted 
to optimization of mean values (see for example, Ermoliev and Wets [lo]). Much less 
works deal with probability function optimization. For instance, Raik [34, 351 established 
sufficient conditions for probability function to be (semi) continuous and hence conditions 
for probability function optimization problem to have a solution. Prekopa [30, 311, made 
a principal step in the theory of probability function when he discovered its logarithmic 
concavity for logarithmic concave measures. Borrell [I], Brascamp and Lieb [2], Rinnot 
[37], Das Gupta [6], Tamm [48], Roenko [38], Norkin and Roenko [25, 261 obtained an- 
other general results on quasi-concavity of probability functions. Raik [36], Roenko [38], 
Uryas'ev [50, 511, Simon [44], Roenko and Norkin [25, 261 studied differentiability prop- 
erties of probability functions. Szantai [47] proposed an efficient method for estimating 
of values and gradients of probability function. Rtiemisch and Schultz [42], Salinetti [43] 
studied stability properties of stochastic programming problems with probabilistic con- 
straints. Numerical methods for optimization of probability functions were proposed in 
Prekopa [30, 31, 32, 331, Raik [36], Yubi [53, 541, Tamm [49], Szantai [47], Lepp (19, 201, 
Roenko [38], Uryas'ev [50], Norkin [24], Kankova [13], Kibzun and Malyshev [16] Kibzun 
and Kurbakovski [15], Kovalenko and Nakonechniy [18]. There are also a number of papers 
devoted to numerical solution of probabilistic constrained programming (for references see 
Prekopa [32, 331). 

In the present paper we consider the problem of nonsmooth probability function opti- 
mization. While most of the existing methods assume differentiable probability functions, 
we apply the stochastic quasi-gradient approach which can handle the nondifferentiable 
case, too. We also exploit a special property of some probability functions - their cr- 
concavity. 



2 Properties of probability functions 

2.1 Notations 

Let us consider the following function 

where f : X x fl + R' is some (loss) function, X C_ IR" is a range for control parameters, 
fl C_ Rm is a range for random parameters, c E R1 is some given level, (0, C , P )  is a 
probability space, e ( i  = 1,2,.  . .) denotes i-dimensional arithmetic vector space. We 
consider two representation forms for the probability function. 

Let us introduce a multi-valued mapping 

with the domain 

D : = d o m H  := {x E X(3w(x) :  f(x,w(x)) 2 c). 

Then one can represent 

s (x )=P{H(x ) )= /  H ( X )  P ( ~ u ) .  

Thus the probability function Fo(x) is defined on the set D = domH. If for any x E X 
one has 

sup i f  (x, w)lw E fl) > c 

then D = X .  If f (x, w) is continuous in w and fl is a compact set in Rm then 

D = X n { X I  cp(x) := maxi f (x, w) - c) 2 0). 
w e n  

If in addition the function f(x,w) is concave jointly in (x, w) then the function ~ ( x )  is 
also concave. 

Another form of probability function is obtained by means of the following indicator 
function 

Consider the function F(x)  := Jn x( f (x, W) - c)P(&). 
Obviouslv, we have 

2.2 Continuity 

The conditions for the probability function to  be semicontinuous or continuous were es- 
tablished by Raik [34]. 

Theorem 2.1 (Raik[$d, 351). If the function f(x,w) is upper semicontinuous in x at a 
point x' for almost all w then Fo(x) is also upper semicontinuous at x'. If the function 
f(x,w) is continuous in x at a point x' for almost all w and 

then F (x )  is continuous at x'. 



Remark 2.1 Suppose that the measure P has a density on a nondegenerated convex set 
R Rm. If function f ( x ,  w )  is concave in w and supwEn f ( x ,  o)  > c then P{ f ( x ,  w )  = 
c )  = 0 as the measure of the boundary of a nondegenerated convex set {o E RI f ( x ,  w )  2 c )  

in Rm. The same takes place i f  f ( x ,w )  is strictly concave in w. 

2.3 Quasi-concave and a-concave functions 

Concavity and quasi-concavity are very important properties o f  functions in the theory of  
extremal problems. For probability functions similar properties are formulated by means 
of  the notion of  a-concavity o f  functions and measures (see Borrell [ I ] ,  Das Gupta [5], 
Roenko [38], Norkin and Roenko [25, 261). 

Definition 2.1 A function F ( x )  defined on a convex set X c Rn is called quasi-concave 
if for any xo, x1 E X and X E ( 0 , l )  the following inequality holds 

Definition 2.2 A nonnegative function F ( x )  defined on a convex set X c Rn is called 
logarithmic concave if for any xo,xl E X and X E (0,  I ) ,  we have 

Definition 2.3 A nonnegative function F ( x )  defined on a convex set X c Rn is called 
a-concave (a  is a real number parameter, a E -[w,+w]), if for any s o ,  xl E X and 
X E ( 0 , l )  one has 

Here the following conventions are accepted: In 0 = -w, 0 . (f w )  = 0,  O0 = 1, 
w- la l  = 0, 0-IQl = +w, +wO = 1. 

Obviously, a-concave functions are quasi-concave and 0-concave functions are loga- 
rithmic concave. 

Proposition 2.1 From the definitions it follows that F ( x )  is a-concave on X (-w < 
a < +w) if l  F Q ( x )  is concave, ( i f  a > 0)  l nF(x )  is concave (if a = 0 )  and F Q ( x )  is 
convex on X ( i f  a < 0) .  

For example, function f l ( x )  = max (0,  x ) ,  x E R', is logarithmic concave, function 
f2(x)  = 1x1-', x E R', is (-1)-concave. The indicator function of  a convex set in IRn i s  
logarithmic concave in Rn. 

Let us mention some properties of  a-concave functions (see Roenko [38], Roenko and 
Norkin [25, 261). 

Lemma 2.1 If a function F ( x )  is al-concave and a1 2 a2 2 -w then F ( x )  is also 
a2-concave. 

Lemma 2.2 If Fl is al-concave, F2 is a2-concave on X and either al > 0, a2 > 0 or 
ala2 < 0 and a:' + a;' < 0 then F l ( x )  . F2(x)  is a0-concave function, where a. = 
(a;' + a;')-'. 



Lemma 2.3 Let F;(x), i = 1,. . . , m, be nonnegative concave functions defined on a 
convex set X c R". Then the function F(x )  = n;"=, &(x) is ($)-concave on X. 

Let us now consider differentiability properties of a-concave functions. 

Definition 2.4 The quantity 

1 
ff(x; l)  = lim - [ f (x+t l )  - f(x)] 

t d + O  t 

is called a derivative of the function f at the point x E Rn in the direction 1 E IRn. The 
quantity q 

is called Clarke's [dl generalized derivative off at x in the direction 1. The set 

is called Clarke's [dl subdiflerential off at x. 

Function f is called (+)regular (regular) if fO(x; 1) = f'(x; 1) and (-)regular if (- f)O(x; 1) = 

(-f If(x; 1). 
Convex functions are (+)regular and concave ones are (-)regular. 

Lemma 2.4 If some function f(x),  x E X C Rn, is a-concave in an open set X and 
F(x)  > 0 in X then F ( x )  is locally Lipschitzian, directionally diflerentiable and (-)regular. 
Its Clarke's subdiflerential is defined by the fonnula: 

Proof. Represent 

F ( x )  = (F(x)")"", a # 0, 
exp(lnF(x)), a = 0. 

Functions Fa ( a  > 0) and 1nF ( a  = 0) are finite and concave and function Fa(a < 
0) is finite and convex. Finite convex functions are Lipschitzian and (+)regular, finite 
concave functions are Lipschitzian and (-)regular (see Clarke [4]). Thus Lipschitzian 
function F ( x )  is represented as a composition of a regular convex or concave function and 
a continuously differentiable function. (-)Regularity of F now follows from Clarke [4], 
Theorem 2.3.9. Subdifferential of a compound Lipschitzian function can be calculated by 
means of differentiation chain rule (see Clarke [4], Theorem 2.3.9) from which the required 
subdifferentiation formula follows. 

2.4 Quasi-concave and a-concave measures 

Not only functions but also measures have some convexity properties. 



Definit ion 2.5 Nonnegative measure P defined on a-algebra of Lebesgue measurable sub- 
sets of a convez set R c Rm is called a-concave if for arbitrary measurable sets Ao, A1 c R 
and for any number X E ( 0 , l )  one has 

where 
Ax = (1  - X)Ao + XAi = ( ( 1  - X)ao + Xul 1 a0 E Ao7 a1 E Al l7  

P ( A x )  is a lower measure of Ax. 

The  uniform Lebesgue measure on a nondegenerated convex set R c IRm is $-concave 
due to  Brunn-Minkowski-Lusternik inequality, (see [3, 22, 2:1]). 

A connection between a-concave measures and functions is given in the following 
theorem (see Borrell [ I ] ,  Brascamp and Lieb [2], Das Gupta [6], Prekopa [30]-[32] (a  = 0 )  
and for references Norkin and Roenko [26]). 

T h e o r e m  2.2 Let R be an open convez set in RmO and let P be a positive measure on 
R.  Suppose L is the smallest afine subspace in RmO containing R and let m denote the 
dimension of L .  Then the measure P is a-concave (-00 5 a 5 l l m )  if its density 
function p with respect to Lebesgue measure on L is a'-concave on R,  where a' = a / ( l  - 
ma)-' (- l lm 5 a' 5 +m). 

Corollary 2.1 Let an integrable nonnegative function p(w) be defined on a nondegener- 
ated convez set R C_ Rm. Suppose p(w) is a-concave ( - l l m  5 a 5 +w) and positive on 
the interior of R.  Then measure P on R defined by the formula 

is a'-concave on R,  where a' = a / ( l  + am). 

Corollary 2.2 If a measure P on Rm has a density function f such that f-'1" is convez 
then P is quasi-concave. 

2.5 Examples of a-concave functions and measures 

It turns out that many classical probability distributions have a-concave density functions 
and thus are generated by a'-concave measures on the appropriate sets (see, for example, 
Roenko [38], Roenko and Norkin [25, 261). 

Example  2.1 Consider the density function of nondegenerated multivariate normal dis- 
tribution in R n :  

1 1 T -1 
exp(--(x - m) B (x - m ) ) ,  2 

where B-' is a positive definite n x n-matrix, m is n-dimensional vector. Since the 
function In pl (x)  is concave then density p l (x)  generates a logarithmic concave measure 
P1 on Rn (Prekopa [30]). 



Example 2.2 Consider the uniform distribution on a convex set G C IRn with density 

where V(G)  denotes the Lebesgue measure of G. The function p I (x )  is (+m)-concave, 
hence by Corollary 2.1 it generates a !-concave measure P2 on G. 

Example 2.3 Consider the density function of the multivariate @-distribution (Dirich- 
let's distribution) with parameters - r(a1 ... I- an x:' . . . x::i1 (1 - X I  - . . . - ~ ~ - 1 ) ~ ~ ,  i/ 

m ( x )  = 2 ' 2 0  ,..., x n - ' > 0 , 1 - x ' -  ...- 2 , - ' 20 ,  
otherwise 

where r(.) is the gamma-function. By Lemma 2.2 the function p3(x) is ( a 1  + . . . + an)- '-  
concave on an open (n  - 1)-dimensional simplex {s E IRn-'(Cfz: xi < 1, xi > 0,  i = 
1 , .  . . , n - 1) ;  hence b y  Corollary 2.1 the corresponding measure PJ  is ( a 1  + . . . + an + 
n -  1)-'-concave on the set { x  E R " - ' J c ~ . ~ x ~  5 1, xi > 0,i  = 1, ..., n - 1 ) .  

Example 2.4 . Consider the density function of the 1-dimensional Student's distribution 
with number parameter n, vector parameter m and matrix parameter T 

where T is a symmetric positive definite matrix. Function p4(z)  is (-A) -concave, hence 

the corresponding measure P4 is (-5) -concave on lR1. 

Example 2.5 . The multidimensional Pareto's distribution has the following density 
function with parameters cr, e l , .  . . ,On > 0: 

The function p5(x) is (-A) -concave and hence the corresponding measure P5 is a-'- 
concave on the set { x  E IRnJxi > O;, i = 1,. . . n ) .  

Example 2.6 . The density function of the multidimensional F-distribution with param- 
eters no, nl ,  . . . , nl, n = c:=, ni looks as follows: 

-1 
The function n:=l x:'12-' is b y  Lemma 2.2 (f x:=l n; - I )  -concave and the function 

- 4 2  
[no + ~ j = ~  n ixi]  is (-!)-concave. By Lemma 2.2 the density function p6(x) is [-(no/2+ 

1)-']-concave on the set { x  E IR1 1 x1 > 0,  i = 1,. . . I )  and the corresponding measure P6 
is (-!)-concave. 



2.6 Quasi-concavity and a-concavity of probability functions 

Now we shall formulate sufficient conditions for a probability function to be cr-concave. 

Theo rem 2.3 Let measure P be cr-concave on a convex set R IRm, function f : X x 
R + IR1 be quasi-concave on X x R (see examples 1.1 -1.4)) and let X be a convex set in 
IRn. Then the probability function 

is cr-concave on the set 

Proof.  Observe that the multivalued mapping 

is convex on D, i.e. for arbitrary s o ,  x1 E D and X E (0 , l )  we have 

Indeed, if wo E H(xo), wl E H(xl) ,  XA = (1 - X)xo + Axl and wx = (1 - X)wo + Awl, then 
f(x0,wo) 1 C, f (21,~l)  2 cand  

and thus wx E H(xx). 
Now let cr # O , f  oo, xo E DO, XI E Do, xx = (1 - X)xo + Axl and X E (0 , l ) .  Then, 

due to cr-concavity of measure P, 

which was required to prove. The proof for cr = 0, f oo is similar. 
Similar statements were proved in Prekopa 130, 311 (cr = 0)) Borrell [I], Brascamp 

and Lieb [2], Das Gupta[6], Wets [52] (cr = -oo), Roenko [38], Norkin [24], Norkin and 
Roenko [25, 261. 

Corollary 2.3 . Under conditions of Theorem 2.5' the probability function F ( x )  is con- 
tinuous, diflerentiable in directions and Lipschitzian on the set {x E D I F ( x )  > 0). 

3 Approximat ion of probability functions 

3.1 Smoothing of probability functions 

In general, a probability function F (x )  can be discontinuous since its representation in 
the mathematical expectation form contains a discontinuous function x(-).  For the same 
reason one cannot differentiate F ( x )  by interchanging differentiation and integration op- 
erators in the expression defining F(x).  So, we replace the discontinuous function x(.) 
by some continous approximate function )7.(.) and in this way we obtain a continuous 



approximation for F(x) .  For discontinuous functions Steklov-Sobolev's [46, 451 average 
approximations are very convenient (see Ermoliev, Norkin and Wets [8]). 

Let k ( ~ ) ,  -00 < T < t o o ,  be a nonnegative integrable function such that 

For convenience we shall assume that k ( ~ )  is symmetric, i.e. k ( ~ )  = k(-T). The density 
function k ( ~ )  generates a measure K on R1 by the formula 

Denote its characteristic function by 

For the function 

we consider Steklov-Sobolev's average functions 

The following representation is true 

Now consider the following approximation for probability functions 

= / /-' k((r  + f (x, w) ) /E )~T .  
E n -= 

Remark 3.1 If w;, i = 1,2,.  . . , n, are i.i.d. observations of a random variable w then 
Fc(x) can be approzimated by its empirical estimate 

Such estimates for probability function F(x )  were constructed by Tamm [49] and Lepp 
[19]. They are similar to Parzen-Rosenblatt [28, 411 estimates for probability density. 

3.2 Convergence of approximations 

Let us study properties of approximations Fc(x) to probability function F(x) .  The next 
lemma establishes conditions of point- wise convergence of Fc (x) to F(x) .  

Lemma 3.1 If for a given x 
P{f(x,w) = c )  = 0 

then 
lim F,(x) = F(x). 
a--0 



Proof.  For a given x we have 

= 1 - P { Z t ( f ( x , w )  - c) % x ( f ( x , w )  - c ) )  5 
5 1 - P { f ( x , w )  = c }  = 1. 

Besides 0 5 Z,( f (x ,w)  - c) 5 1, 0 5 x ( f ( x , w )  - c) 5 1. Therefore 

Now consider conditions under which approximations Fe(x)  uniformly converge to 

F ( x ) .  

Lemma 3.2 (Norkin[Zd]). Let function f (x ,w)  be continuous in x for almost all w. 
Suppose that for any x and for all c' suficiently close to c, one has either 

0 r 
P { f ( x , w )  = c') = 0. 

Then for any compact X Do the functions Fc(x) uniformly converge in X to F ( x )  
under e -t 0. 

Proof .  Let 6(e) = el-", where 0 < v < 1. If e -, 0 then 6(e) -+ 0, X ( ~ ( E ) / E )  -t 1 and 
X(-6(e ) /e )  -t 0. We have the following estimate 

It is sufficient to show that ( ~ ~ ( x )  = P { J  f (x ,w)  - cJ 5 6 )  -t 0 uniformly in x in each 
compact X D if 6 -t 0. The function 

is continuous in ( x ,  6 )  and measurable in w. For sufficiently small 6 5 bo one has 

where the convention P(0 )  = 0 is accepted. By Theorem 2.1 function cp6(x) is continuous 
and hence uniformly continuous in ( x ,  6 )  E X x 1-60, bO]. So, for an arbitrary o there 
exists $0) such that l y ~ ~ ( x ) J  = Iv6(x)  - y ~ ~ ( x ) I  < 0 if 161 < 7. It means that uniformly in 
x E X P{l f ( x ,  w )  - cl 5 6 (e ) )  -t 0 if e -t 0, which was set out to prove. 



3.3 a-Concavity of approximations 

Under some conditions approximate functions Fc(x)  not only uniformly converge to F ( x )  
but are a-concave with some a. 

Lemma 3.3 The following representation for F'(x) is true 

where 
H,(x) = { ( w , T )  E n x I ~ ( x , w )  - cT 2 C )  c ~ m + l .  

Proof. Indeed, we have 

The following statement is obvious. 

Lemma 3.4 If the function f ( x , w )  is jointly concave in ( x , w )  (see examples 1.1 - 1.4) 
then the function f ( x , w )  - c r  is jointly concave in ( x , ~ ,  T )  and hence the multivalued 
mapping H c ( x )  is convex. 

Under the conditions of Lemma 3.3 the degree of concavity of F,(x) is defined according 
to Theorem 2.3 by the degree of concavity of the product of measures K and P. In the 
following three lemmas this degree of concavity of the product of measures K and P is 
calculated for a number of particular cases. 

Lemma 3.5 If k ( r ) ,  T E R1, and p(w), w E R Rm, are logarithmic concave junctions, 
i.e. K and P are logarithmic concave measures, then k ( r ) p ( w )  is also a logarithmic concave 
density function and by Theorem 2.2 the corresponding measure is logarithmic concave. 

Now define a function 

where G c R ,  -oo 5 a < 0 < b 5 +oo. This function is a lower estimate for F,(x): 

0 5 Fc(x )  - F , ( x )  5 1 - P(G) - K ( [ a ,  b]). 

Function & ( x )  is defined on the set 

& := { x  E X 1 3 w ( x )  E G : f ( x ,  w ( x ) )  2 c + ca} .  

If G = R and K ( [ a ,  b])  = 1 then F,(x) = & ( x )  on D c D,. 

Lemma 3.6 If a function p(w) is a-concave (a > 0 )  on the interior of a convex set 
G C R c Rm and a function k ( r )  is p-concave (P  > 0 )  on interval ( a ,  b) C R1 then 
by Lemma 2.2 the function k ( r ) p ( w )  is 7-concave (7 = (a-' + /I- ' )- ' )  on the set int 
G x ( a ,  b) and by Theorem 2.2 and Corollary 2.1 the corresponding measure is a'-concave 
(a' = ~ ( l  + y m ) - l )  on G x [a, b]. 

Lemma 3.7 If a function k ( r )  is constant on ( a ,  b) and a function p(w) is constant on 
G then the density function k ( r ) p ( w )  is also constant on intG x ( a ,  b) and by Theorem 2.2 
and Corollary 2.1 the corresponding measure is ( l / ( m  + I))-concave on the set G x [a,  b]. 



3.4 Differentiability properties of approximations 

Let us at  first consider differentiability properties of the approximate functions 

Fe(x) = jn l i ( ( f  ( x ,w )  - ~ ) l & ) P ( h ) ,  

where 

T h e o r e m  3.1 Let a density function k ( r )  be nonnegative, bounded and continuous, let 
function f ( x , w )  be concave in x E X for every w E R and let 

where L6(x ,  W )  is integrable in w for each x E X .  Then Fe(x)  is a Lipschitzian (-)regular 
function and its subdiflerential is given by the formula 

Proof.  Under the theorem's conditions the function % ( t )  is monotone and contin- 
uously differentiable. A concave function f ( x ,w )  is (-)regular (see Clarke [4],  Theo- 
rem 2.3.6), so a compound function z ( ( f ( x , w )  - c ) / E )  by Clarke [4], Theorem 2.3.9, is 
(-)regular and 

Now by Clarke [4], Theorem 2.7.2, the mathematical expectation function Fc(x) is Lips- 
chitzian (-)regular and 

what is required to be proved. 

Corollary 3.1 Suppose in addition to conditions of Theorem 3.1 that function Fc(x )  is 
a-concave and 

sup f ( x ,  w)  > c. 
wEQ 

Then probability function F ( x )  is also a-concave, the sequence of functions Fc(x),  E t SO, 
uniformly converges to F(z) on a compact X and the subdiflerentials dFc(x)  converge to 
subdiflerentials d F ( x )  in the following sense: for any E + SO, xc t x and gc E aFc(xc),  
gc+g, we have g E d F ( x ) .  

4 Approximate optimization of the probability func- 
tion 

4.1 Problem formulation 

Consider a stochastic optimization problem of the following form: 

Fo(x) = P{ f ( x ,  w )  2 c}  + max, 
ZE X 



where the function f (x,w) is concave in the pair of variables (x,w) (see examples 1.1 - 
1.4) X is a convex compact in Rn, R is a nondegenerated convex set in IRm, c E IR', 
(R, x, P) is some probability space. Suppose that the measure P has a positive density 
function on the interior of R and the function f (x, w) satisfies global Lipschitz condition 
in x E X with an integrable Lipschitz constant L(w). The above problem includes the 
following implicit constraint 

We represent this probability optimization problem in the mathematical expectation form: 

where 

Function F(x)  is defined on X and 

Fo(z), x E D C X ,  
'(')={ 0, r e  D,x E X ,  

D = {x E X I 3w(x) E R : f(x,w(x)) 2 c}. 

Let F,' be the optimal value and X i  be the optimal set of this problem. 
Define the function 

where k(r) is a continuous bounded nonnegative function such that k(r)  = 0 for T 5 a < 0,  
k(r)  > 0 if a < T < b and n(b) = 1, -oo 5 a < 0 < b 5 +oo. 

Now consider a family of approximate problems (e > 0): 

Let F: be the optimal value and X,' be the optimal set of this problem. 
Under our assumptions, the function F,(x) is by Theorem 3.1 Lipschitzian (-)regular 

and its subdifferential is given by the formula 

Theorem 4.1 If in  addition to the above assumptions 

then D = X ,  functions F,(x), E > 0, are continuous and positive on X,  sequence 
{F,(x), e -+ +0} uniformly converges to a continuous function Fo(x), F: + F; and 
ifx: E X,',x: -+ x* then x* E Xi .  

Proof. Obviously, D = X.  For each x E X the set 



has a nonempty interior, the function i((f(x,w) - c)/E) is greater than zero on this 
interior, so Fe(x) > 0 on X. For c' sufficiently close to c, one must have 

P{f(x,w)=cl)=O,  x E X ,  

since the Lebesgue measure of the boundary of a convex set 

is equal to zero. By Lemma 3.2 it follows that functions F,(x),E -+ +0, are uniformly 
convergent to F(x)  on X. This implies the required convergence of optimal values F: 
and sets X,' to F,' and X,'. 

Thus the original (possibly nonsmooth) probability maximization problem is reduced 
to solving a sequence of mathematical expectation maximization problems. Under our as- 
sumptions the functions F,(x) are by Theorem 3.1 (-)regular. It follows (see Rockafellar 
[40], Kiriluk [17]) that they are weakly concave (see Nurminski [27]). So, for their max- 
imization stochastic quasi-gradient methods are applicable (see Ermoliev [7], Nurminski 
~ 7 1 ) .  

Another approach to optimization of function Fc(x) consists in replacing Fc(x) by its 
empirical estimates. Such approach to optimization of probabilities was first applied by 
Tamm [49] and Lepp [19]. 

And finally, an approximation of F(x)  by F,(x) with E -+ 0 can be combined with 
optimization of Fe(x). Such approach combines ideas of stochastic quasi-gradient meth- 
ods and nonstationary optimization and was developed in Ermoliev and Nurminski [9], 
Gaivoronski [ll]. It was applied to optimization of probabilities by Lepp [20]. 

In the present paper we shall use the circumstance that functions F(x)  and F,(x) can 
be a-concave (see Theorem 2.3 and Lemmas 3.3 - 3.7). For stochastic maximization of 
concave functions there exists an efficient method by Nemirovski and Yudin [23], which 
is a modification of stochastic quasi-gradient method by Ermoliev [7]. We are going to 
apply this method to stochastic optimization of a-concave (probability) functions. 

4.2 Stochastic quasi-gradient method 

Now suppose that F,(x),E 2 0, is an a-concave function (see Theorem 2.3 and Lemmas 
3.3 - 3.7) and D is a convex set. We construct the following sequence of approximations 
(xO = 2' E D): 

X ~ + I  = ncxk + P k .  tk), 
D 

j j k + l  - - (1 - o k + l ) ~ * + ~ ~ + ~ x ~ + ' ,  k = 0 , 1 ,  ..., 
where stochastic quasi-gradient tk of Fc(x) at point xk is such that 

Next, nD is a projection operator on the set D, pk, k = 0,1, . . . , are some positive numbers 
and 

k 



In some cases the probability function Fo(x) is differentiable and its stochastic quasi- 
gradient ((x) can be constructed directly (see for example, Raik [35], Uryas'ev [50, 5:1], 
Szantai [47]). 

In a nondifferentiable case one can take stochastic quasi-gradients of Fc(x), E > 0, at 
xk in the form (see Theorem 3.1). 

where 
1 

C(x, W) = ;k((f (x,w) - c)/E) . g(x,w), 

g(x, w) is a measurable in (x, w) selection of the multi-valued mapping d, f (x, w), and 
wk, k = 0,1,. . ., are i.i.d. observations of problem random parameters w. 

If f(x,  w) is Lipschitzian in x with a square-integrable constant L(w), the function 
k(r) is continuous and bounded by constant K and L2 = J, L2(w)P(dw), then 

4.3 Convergence results 

Theo rem 4.2 Suppose that Fc(x) is a (-)regular (see Theorem 3.1) function, D is a 
closed convex set and 

00 00 

lim pi=O,  x p ; = + m ,  x p ? < + o o .  i4+m 
i=O i=O 

Then for almost all trajectories {xk} generated by the above stochastic quasi-gradient 
method the following properties hold: 

(i) all accumulation points of sequences {xk), {zk} belong to the set 

arg min Fc(x); 
ZED 

(ii) limk,, FC(xk) = limk4= FC(zk) = m i n z E ~  FC(x). 

Proof.  It follows from general results by Rockafellar [40] that (-)regular functions 
are weakly concave by Nurminski [27] (for direct proof see Kiriluk [17]). So theorem's 
statements follow from general convergence results for stochastic quasi-gradient algorithm 
when applied to  a weakly concave function (see Nurminski [27] (i), Ermoliev [7] (ii)). The 
statements for {zk) easily follow from the ones for {xk). 

R e m a r k  4.1 In the case of a compact set fl and a concave f(x,w), the implicit convex 
constraint 

cp(x) = max{f(x,w) - c(w E fl) 2 0 

can be taken into consideration not only through projection operation on D but directly in 
gradient procedure in the following way (see Polyak [29]): 

xk+' = I I ( xk  + f k  ' vk), 
X 

cp(xk) < 0, 
> 0 ,  vk = { 61ix*), V(X - 

where tk is stochastic quasi-gradient of Fc and g,(xk) is some generalized gradient of cp 
at xk. 



4.4 Rate of convergence 

Lemma 4.1 Suppose that the function Fc(x) is a-concave and 

F c ( x ) L S > O ,  X E X .  

Then the following estimates are true: 

where E denotes the mathematical ezpectation operator over all trajectories {?ik), and the 
point x* is such that 

Fc(x*) = max Fc(x). 
t E X  

Proof. Consider the case of 0 < a 5 1. For a 5 0 and a > 1 the proof will be 
similar. The function FP(x) is Lipschitzian and concave, its subdifferential is calculated 
by the formula (see Clarke [4], Theorem 2.3.9) 

For any gi E aFc(xi)  due to concavity of FE(x) the following inequality holds 

Denote gi = E { e / x O , .  . . ,x i ) .  The following estimates are true 

1 1  Xi+l - x* 112511 xi + pi t i  - x* 112 
. . 

= 1 1  xi - x* 1 1 2  +2pi((',xa - x*) + p? 11 C' 112  . . . . 
= 11 xi - X* (I2 +2pi(g1, X' - x*) + 2pi(ti - 9'3 X' - x*) + P? 1 1  ti 1 1 2  
= 1 1  xi - x* 1 1 2  +2pia~1~c(xi)1~a(a~c(xi)a~1gi, xi - x*) 

+ 2pi (5' - gi, xi - I* )  + p? (1 5' 112  
5 11 xi - x* 11 '  . + 2 p ; a - 1 ~ c ( x ' ) 1 - a ( ~ ( x i )  . - c ( x * )  

+ 2pi (ti - g', X' - x*) + p? )I ti 1 1 2  
5 11 xi - x* 11' + 2 p ; a - 1 ~ 1 - a ( ~ ( x i )  - c ( x * )  

+ 2p;(ti - g', xi - x*) + p; 11 ti 1 1 2  . 

Adding these inequalities from i = 0 up to i = k we obtain 



Dividing this inequality by c!=, p; and using the concavity property 

we obtain 
1. 

Now taking a mathematical expectation of both sides of the inequality and using the 
estimate 

E 11 ti [ I 2 =  E{E{ll ti 11' /xO,. . . ,xi}} 5 C(E) 

we get 

Finally we obtain 

The proof for a 5 0 and a > 1 is similar. 

Theorem 4.3 Under conditions of Lemma 4 .1  the following estimates are true 

Proof. Let a < 0. The function y", y > 0, is convex, so due to Jensen's inequality 

Due to convexity of y", y > 0, we have 

hence 
F~(x*) - EFC(zk) 5 (-~)-'F,'-"(X*)(EF:(Z~) - F:(x8)), 

from where the required estimate follows. 
Let 0 < a < 1. The function y", y > 0, is concave, so due to Jensen's inequality 

Due to concavity of y", y > 0, we have 



hence 
F,(x*) - E F , ( ~ ~ )  I a- I  F, ' -a(~*)(~;(~*) - EF;(~~)).  

Let a = 0. Function lny, y > 0, is concave, so by Jensen's inequality 

hence 
F,(x*) - EF.(ik) 5 F,(x*)(l - exp(-(lnF,(x*) - ElnF,(iik)) 5 

The required estimates for the difference (F,(x*) - EF,(zk)) now follow from the 
appropriate estimates of Lemma 4.1 

Let a 2 1. Then both F,"(x) and F,(x) are concave, so the required estimate for the 
difference (F,(x*) - EF,(zk)) is obtained from the last estimate of Lemma 4.1 with a = 1. 

Corollary 4.1 If 
00 

then stochastic quasi-gradient method with trajectory averaging converges in mean, i .e .  
limk,, E(F,(x*) - F,(zk)) = 0. 

Corollary 4.2 If pk = I/& then 

5 Conclusions 

We considered an approach to probability function optimization. In general this function 
can be nonsmooth, nonconvex and even discontinuous. But under certain conditions it is 
continuous and quasi-concave (a-concave). In such a case, we could apply a subgradient 
algorithm for its maximization. But calculation of subgradients for probability functions 
still remains a challenge. So we uniformly approximate the original function by a sequence 
of quasi-concave (a-concave) functions for which the calculation of subgradients is easy. 
For solution of approximate problems we apply efficient Ermoliev-Nemirowski-Yudin's 
stochastic subgradient algorithm with trajectory averaging. Convergence and rate of 
convergence results are obtained. The algorithms accuracy estimates are similar to ones 
in convex stochastic programming case and differ only by a multiplier. This multiplier 
is (F , , /F~ , )~~(O*~-~) ,  where F,, and FGn are maximum and minimum values of the 
probability functions F over optimization range, a is a concavity parameter. If FA, = 0, 
then the obtained estimates become only asymptotic because F(zk)  + F,,,. 
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