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Foreword 

There are different paradigms for decision support. The most usual one has, as core-activity, 
the modelling of the basic processes together with the possible decisions and their effects. In 
this approach, the goal of the modelling is to  find a problem formulation which truly represents 
reality and allows evaluation with the available methodology. Although the modelling paradigm 
can point at many successes, i t  does not satisfy in all cases. For instance, i t  is not always possible 
to  find a workable compromise between "truly representing reality" and "analyzability of the 
resulting models". There are also cases where the basic processes are so badly understood that 
proper modelling is doomed to  fail. One typically encounters these phenomena in some economic 
and in some environmental processes. In such cases, the black-box paradigm might be useful. In 
this paradigm, one relaxes the ambition to model the basic processes. According to the black- 
box paradigm, one takes some parametrized black-box and tries to fit the parameters in such 
a way that the black-box shows a sensible behavior in a t  least a representative set of cases. It 
appears that neural nets are good candidates for being used as black-boxes in decision situations, 
because of their learning capabilities and their apparent qualities in pattern recognition. 

The present paper investigates how these capabilities may be exploited for decision support. 
The results show that the approach is very promising. 

iii 
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Abstract 

The aim of this paper is to discuss the possible role of neural nets for decision 
support. The discussion will be conducted along two connected lines. The first line 
regards the possibilities to solve combinatorial optimization problems with multi- 
layered perceptrons. Particular attention is paid to the required complexity of such 
neural nets. The second line regards the use of neural nets as a kind of black-box 
decision mechanism for decision problems for which the underlying processes are 
difficult or even not well understood. For direct use of the results of the first line it 
would be essential to have cheap neuro-based computing aids available. However, 
even without the availability of such aids, the results are useful for supporting the 
second line. The second line itself has its value independent of the availability 
of special neural computing aids. Its essence is that it provides an alternative 
paradigm for decision support, which can also be simulated on traditional computing 
equipment. 

1 Introduction 

In recent years, neural nets have become very popular. The main reasons for this rise in 
popularity are, firstly, the apparent successes of neural nets for the solution of problems 
with a pattern-recognition-related aspect and, secondly, the possibility to tune neural nets 
by learning from examples. 

In this paper it will be investigated how and when neural nets can'play a role as a tool 
for decision support. With the term "decision support" we will indicate all help that can 
be given for decision making with respect to the management of systems, the design of 
control systems or the planning of activities. So, we don't include technical applications 
like automatic reading of cheques in a bank. 

The essential feature of the neural net approach to decision making is that it is a black- 
box approach, which means that one does not try to model the underlying processes, but 
only looks for a tuning of the parameters of the neural net such that the black-box mimics 
sensible behavior. One may expect that such an approach can lead to useful results when, 
firstly, the task of the black-box is essentially pattern recognition and, secondly, the 
decision problems are too complicated for the traditional model building approach and, 
moreover, it is relatively easy to say what would have been the right decision a posteriori. 
The latter feature makes it easy to construct learning pairs for the tuning of the neural 
nets. 
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We will illustrate the possibilities of using neural nets for decision support by treating a 
simple type of production planning problem. Many production planning problems can be 
formulated as combinatorial optimization problems. However, most production planning 
problems also have a dynamic aspect, which is not taken into account in the combinatorial 
optimization formulation. Usually the dynamic aspect implies that at the beginning of the 
planning there is a lack of information and, in the course of the process, more information 
becomes available gradually. In production planning problems, the external demand often 
represents such a dynamic aspect, but also available capacities or required resources may 
be uncertain in the beginning. Modeling of such features is, in several cases, extremely 
difficult, particularly, if the underlying processes are not well-understood. The use of 
such models for optimization is also complicated and, practically, only feasible for highly 
simplified models. Afterwards, it is often quite easy to conclude what should have been 
done. Therefore, it seems worthwhile to investigate whether under these circumstances 
neural nets would be able to  use their pattern-recognition-abilities in such a way that 
they discern the right decision a t  the right time. 

We will restrict attention to a relatively simple type of neural nets, namely multi- 
layered perceptrons with hard-limiting response functions. First, we will investigate the 
capabilities of multi-layered perceptrons for solving combinatorial optimization problems. 
Afterwards, we will demonstrate how the dynamic aspect might be included. The paper 
is organized in the following way. Section 2 contains a definition of multi-layered per- 
ceptrons and some results regarding their classification capabilities, since classification is 
what multi-layered perceptrons with hard-limiting response functions essentially do. In 
Section 3, combinatorial optimization problems are introduced and related to  classification 
problems. Section 4 summarizes some results regarding the capabilities of multi-layered 
perceptrons for solving combinatorial optimization problems. In Section 5, a dynamic 
aspect is added to the well-known production planning problem of Wagner and Whitin. 
This is done by removing the finite time horizon and introducing unknown demands for 
time periods farther away. These demands become known gradually as time goes by. 
Section 6 contains some conclusions and remarks. 

2 Mult i-layered Perceptrons 
h4ulti-layered perceptrons consist of a number of nodes arranged in some layers (cf. figure 
1 for an example with 3 layers). The nodes are simple processors, which get information 
from "below", i.e. the first layer gets information from the outside world (the xi in figure 
1) and the nodes in layer n get information from the nodes in layer n - 1 (n 2 2). So, 
all nodes proceed the result of their processing step to  nodes in the next higher layer, i.e. 
all links emerging from one node transport the same information a t  the same time. The 
nodes in the  top-layer communicate their results to the outside world (the y j  in figure 
1). The nodes process the incoming information as follows: the values on incoming links 
are multiplied by a link-specific weight and added, the outgoing links all get the same 
value, determined by a function on the sum of weighted incoming values. In the case of 
the hard-limiting response function for a node with incoming values ui, i = 1, .  . . , n,  and 
outgoing value v, this would imply: 
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n 

if x a ; u ;  > b then v = 1 
i= 1 

if x a,ui < b then v = 0. 

Here a;, i = 1, - - .  , n, are the weights and b is a threshold value. 
We will only consider hard-limiting response functions and hence the inputs xi may 

be real valued, but the outputs yj are necessarily zero or one. One reason for this choice 
is that it fits well with use for planning purposes; a second reason is that one may expect 
that this choice facilitates the analysis; a third reason is that multi-layered perceptrons 
learn relatively fast. 

Figure 1: A multi-layered perceptron with 3 layers of nodes; the xi are the inputs of the 
perceptron and the yj the outputs. 

Let us consider an m-layered perceptron with n inputs xi, i = 1, - - - , n, and k outputs 
yj, j = 1,.  . , k and with hard-limiting response functions on the nodes. Then the set 
of input vectors 3" consists of vectors (xl , .  , x,) which result in yl = 1 and of vectors 
(x l , - . .  ,xn)  which result in yl = 0. In other words, 3" is partitioned in 2 sets Al and 
A; = Rn\A1 such that 

YI = 1 for (xl , . .  . , 5,) E 

YI = 0 for (x l , . . .  ,x,) E A; 

Similarly, yj, j = 2, . . , k, signalises whether (sly . - , 5,) E Aj  C Xn or not. 
Summarizing, we may conclude that the effect of putting a vector (x I , .  - , 5,) into this 

m-layered perceptron is, that the vector (yl,. - .  , yk) indicates to which of the sets Aj, j = 
1,.  . .  , k, the input vector belongs. In this sense the perceptron performs a classification 
task: it classifies any possible input vector with respect to the sets Al,  . . - , Ak. 

Actually, the consequence of the preceding reasoning is that, if we want to use a 
perceptron for some task, then this task is (explicitly or implicitly) translated into some 
classification problem. So, it is important to know which classification problems can be 
solved by multi-layered perceptrons. 
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Several authors show that a given subset in Xn can be classified by some two-layered 
perceptron with arbitrary precision (cf. Cybenko [3], [4], Funahashi [7], Hornik et al. [8]). 
However, approximate classification is difficult to translate to the original problems, there- 
fore it is worthwhile to obtain more knowledge about the exact classification capabilities 
of multi-layered perceptrons. 

Consider therefore m-layered perceptrons with n inputs and one output. Such percep- 
trons exactly classify one subset of 3". 

Denote by Cm the class of subsets of Xn which can be classified exactly by some m- 
layered perceptron. Formally, we call a set A c sRn classified by an m-layered perceptron 
if for some m-layered perceptron we have 

if (XI , - . . , xn )  E A, then y = 1 

if (x l , . . . ,xn)  $ A, then y = 0 

Then we have the following results: 

Lemma 1 (cf. Minsky and Papert [12], Lippmann [ll], Zwietering et al. [22]): 
Let {V,(i = 1, .  . . , I )  be a collection of subsets with 

Theorem 1 (cf. Zwietering et al. [22]): 

C m c U f o r m > l  

C,,, > U for m > 3, 

where U is the collection of subsets of sRn which can be written as finite union of 
pseudo-polyhedra; a pseudo-polyheder is the intersection of a finite number of open or 
closed linear half-spaces. 

Corollary 1 
Cm = U for m > 3. 

From these results one may conclude that the capabilities of 4-layered perceptrons do 
not exceed the capabilities of 3-layered perceptrons, although it is still possible that a 4- 
layered perceptron performs the same task as a 3-layered perceptron but needs less nodes 
for it. 

From Lemma 1 we may conclude that pseudo-polyhedra themselves may be classified 
by 2-layered perceptrons. So, 

P c C 2 c U  

where P denotes the set of pseudo-polyhedra in 3" (cf. Lippmann [ l l ] ) .  Indeed, C2 
is only a subset of U ,  since there is a necessary condition for classifiability by a 2-layered 
perceptron which excludes a substantial subset of U .  
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Theo rem 2 (cf. Zwietering et al. [23]): 
V  c Rn can only be classified by a ,$?-layered perceptron if there do not exist a set 

W  E C1 and open balls B1 and B2 such that 

4 # B l n W O  C V  
and 

4 # ~~n W* c V* 
4 # B 2 n W 0  c V *  4 # B , n W *  c V  

Here W0  indicates the interior of W .  

Figure 2 indicates 3 sets which cannot be classified with a 2-layered perceptron according 
to Theorem 2. For practical purposes it is useful to check whether one of these structures is 
present or not. The next theorem gives a sufficient condition for sets in Xn to be classifiable 
by a 2-layered perceptron. This theorem can be used to prove that C2 is essentially larger 
than P. A nice feature of this theorem is that it can be verified algorithmically. 

Figure 2: Three subsets that cannot be classified exactly by a 2-LP. Note that solid bound- 
ary lines do and thin boundary lines do not belong to the presented sets. 

Theo rem 3 (cf. Zwietering et al. [23]): 

If K E P, i = 1 , a . S  1 7  1 

then &\(V2\. - - - )  E C2. 

For an algorithm which verifies if a given subset of Xn can be written in the form 
shown in theorem 3, we again refer to [23]. 

In fact, the proofs of the theorems as stated here also give indications of required 
numbers of nodes, but we will not go into that detail here. 

3 Combinatorial Optimization 

In many planning problems there is an essential combinatorial aspect. Therefore, it is 
useful to obtain insights in the capabilities of neural nets with respect to solving combi- 
natorial optimization problems. In this paper we will try to obtain the required insight 
for multi-layered perceptrons with hard-limiting response functions. 

From the preceding section it is clear that the essential step will be to translate com- 
binatorial optimization problems into classification problems. 
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What do we mean by solving a combinatorial optimization problem by a neural net? 
We hope to  find a multi-layered perceptron for a particular type of combinatorial opti- 
mization problem such that all instances of that problem are solved by that multi-layered 
perceptron. In this terminology, two instances of one problem only differ with respect 
to input data. For example, the travelling salesman problem has as input data a square 
matrix representing the distances between the cities involved. So, each square matrix with 
non-negative entries represents an instance of the travelling salesman problem. Hence, 
what we are looking for is a multi-layered perceptron which can be fed with an arbitrary 
square distance matrix and which gives the optimal route for the related instance of the 
travelling salesman problem. 

From the above problem statement, we can already derive some constraints. In the first 
place, we have to accept that multi-layered perceptrons have a fixed input dimensionality. 
As a consequence, we better restrict attention to problems with a fixed size for the input 
data, i.e. "the travelling salesman problem for m cities" rather than " the travelling 
salesman problem". In the second place, the problem should be formulated in such a way 
that the output of the perceptron, consisting of zeros and ones, determines the solution. 
As a consequence, we need problem formulations in which the decisions are represented 
by zeros and ones. 

Formally, we can now proceed as follows (cf. [22]): 

Definition: 1 
A (fixed sized) combinatorial optimization problem is a triplet (I, F, C ) ,  where I is a 

subset of 32" for some n, each x E I will be called an instance of the problem and represents 
the input data, F determines for every x E I a subset F ( x )  of (0, l I k  for some fixed k of 
feasible solutions for the instance x, and c(-  ; x) maps for fixed x the set F ( x )  in 32 and 
represents the criterion function which should be minimized for fixed x.  

For convenience it is supposed that c is chosen in such a way that for each x the 
minimizing solution is unique. This assumption is not restricting generality, since any 
preference structure can always be made strict in a simple way. 

T h e o r e m  4 (cf. [22]): 
The combinatorial optimization problem (I, F, c)  is solved by solving the classification 

problem in 32" for the sets (Al,. -., Ak),  where 

Aj = {x E IJ(arg min c(y;  x)) j = I ) ,  
uEF(z) 

i.e. instance x E I is solved b y  the classification result of vector x. 

The next question to  be solved is about the nature of the classification problem of 
theorem 4: if Aj E C,, j = 1,  - - , k, then the classification problem as well as the under- 
lying combinatorial optimization problem can be solved by an m-layered perceptron. The 
following theorem indicates that, indeed, most combinatorial optimization problems can 
be solved by 3-layered perceptrons. 
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Theorem 5 (cf. [22]): 
Let (I, F, c) be a combinatorial optimization problem with I = 3". 
This problem can be solved by a 3-layered perceptron with n inputs and k outputs if 

{x E Ilc(y; x) I c(z; x) )  E C1 for all y, z 

{x E I(y E F ( x ) )  is a polyhedron for all y 

In this way it is shown that piece-wise linearity of both the cost function and the feasi- 
bility constraints is sufficient for exactly solving the problem with a 3-layered perceptron. 
It is never necessary to  use a klayered perceptron, however, it appears that in some cases 
a solution via a klayered perceptron requires much less hidden units. This is particularly 
the case if the sets F ( x )  really depend on x. This question of the required number of 
hidden units is discussed in some more detail in [22]. The general conclusion, however, 
may be that the construction of theorem 5 will require large numbers of hidden units, 
since it is essentially based on enumeration. Therefore, it remains an interesting problem 
to find more efficient perceptrons for particular combinatorial optimization problems. 

4 Sorting and Lot-sizing 

In the present section some results will be summarized regarding two simple types of 
combinatorial optimization problems, namely sorting and lot-sizing. Let us start with 
sorting. 

In its standard formulation the sorting of n real numbers x 1 , x 2 , - - a  , x n  amounts to 
finding a permutation a, where a ( i )  indicates the position of xi, such that 

x,(;) 1 x,(;+~) for i = 1,2, - - , n - 1. 

This formulation can easily be transformed into the formulation of a combinatorial 
optimization by representing the permutation by an n x n-matrix with (0 - 1) 
-entrances and introducing a minimization criterion. The matrix-entrance y;j is defined 
as 1 if a(i) = j and 0 otherwise. As criterion we may choose 

with v,, i = 1, - . , n an arbitrary strictly increasing sequence. 
The solution of this combinatorial optimization problem can be made unique by re- 

quiring that in case of equal entries the ones with lower indices come first, but we will 
not work this detail out. 

It can easily be shown that the sorting problem satisfies the requirements of theorem 
5 and therefore: 

Theorem 6 (cf. Zwietering et al. [24]): The sorting problem for n real numbers can be 
solved by a 3-layered perceptron. 

However, the perceptron obtained in this enumerative way is quite large. It contains 
O((n!)2) nodes. 
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By considering the constructed perceptron more carefully it appears that it does more 
than necessary and, hence, it can be reduced in size. By first reducing the number of 
comparisons performed by the first hidden layer to $n(n - 1) and subsequently reducing 
the number of nodes in the second layer we obtain: 

Theorem 7 (cf. Zwietering et al. [25]): 
The sorting problem for n real numbers can be solved by a 3-layered perceptron with 

jn(n - 1) nodes in the first hidden layer and n2 nodes in the second hidden layer as well 
as in  the output layer. In total this perceptron needs in(5n - 1) nodes. 

This 3-layered perceptron has a strong affinity to the 5-layered perceptron proposed for 
the same problem by Chen and Hsieh [2]. It is also strongly related to Preparata's parallel 
sorting algorithm 1151. This is the more remarkable since the perceptron of theorem 7 
is the result of applying reduction techniques on a perceptron obtained by a standard 
construction. 

One might wonder whether it is possible or not to find a 2-layered perceptron which 
does the same job. However, theorem 2 can help in proving that two layers are not 
sufficient (cf. [24]). Actually, it can be shown that it would be necessary to classify a set 
similar to the one in Figure 2(b) by a 2-layered perceptron which is impossible according 
to theorem 2. 

It can also be proved that the number of nodes in the first hidden layer cannot be 
diminished. So, the required number of hidden nodes in a 3-layered perceptron solving 
the sorting problem for n real numbers is O(n2) (cf. [25]). 

It is also possible to formulate the sorting problem in a less ambitious way. In such a 
formulation it may very well be possible to solve the problem by a 2-layered perceptron 
(cf. [24]). 

The other problem to be treated in this section is a simple version of the economic 
lot-sizing problem. In its original form the problem was posed by Wagner and Whitin [20] 
and transformed into a shortest path problem, which could be solved by dynamic pro- 
gramming. We use the following formulation: 

For n periods it has been specified how much of a product has to be made 
available: d, for period i,  i = 1, - , n. The marginal production costs are p 
per unit of product, but there is also a fixed set-up cost r for each period 
with actual production. On the other hand it is possible to avoid set-ups 
by combining the production of demands for different periods as long as the 
required amounts are available in time. Each unit of product is charged with 
holding costs h for any period it is produced earlier than necessary. 

Wagner and Whitin's dynamic programming algorithm solves this problem in O(n2) 
time (cf. [20] and Evans [5] for an efficient implementation). It is even possible to solve 
this problem in O(n log n)  time by exploiting its special features (cf. Wagelmans et al. 
[19]). By adding capacity constraints, the problem would become much harder from a 
computational point of view (cf. Bitran, Yanasse [I], Florian et al. [6], Salomon [17]). 

It will be clear that the lot-sizing problem, as formulated here, has a cheapest solution 
of the following form: if there is production in a period, then the lot-size will be the 
total demand for a number of subsequent periods; moreover, there will only be produc- 
tion if stock is empty. Note that the marginal ~roduction costs p are irrelevant for the 
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minimization. As a consequence, it suffices to determine in which periods there will be 
production since the lot-sizes follow from these decisions. In this way it is easy to give a 
0 - 1 formulation of the problem: 

x E I = [O,oo)"+' with x; = d; for i = l , - - . , n  and xn+l = r l h  

y; = 0 if there is production in period i and 
y E F = (0, l)"  with 

y; = 1 if there is no production in period i. 

According to theorem 5, this problem can be solved exactly by some 3-layered per- 
ceptron. A neural net which does the job can be found straightforwardly by applying 
the construction method of [22]. Unfortunately, however, this 3-layered perceptron has 
a number of hidden units which is exponential in n. One might hope that in this case 
there exists also an essentially more efficient 3-layered perceptron since the problem is in 
POLYLOGSPACE (cf. Kindervater [9]) and it has been shown in [22] that a perceptron 
with a polynomial number of hidden units may only be expected under that condition. 

It is definitely not possible to solve the problem for n > 3 with a 2-layered perceptron 
since, we could have to classify a set like the one in figure 2(c), which is impossible with 
two layers according to theorem 2 (in [26] it is shown for an example with n = 3 that 
such a classification problem does actually occur). 

5 Lot-sizing with Realistic Dynamics 

Although the lot-sizing problem of section 4 is usually called "dynamic", its dynamics are 
rather poor and only consist of the variability of demand over time for a finite number 
of periods, but with given values for the demands. For practical applications this implies 
that the world is supposed to stop after the few periods for which the demand is known. 

We need an approach in which it is accepted that new information will come in after 
the first decision has been implemented, so that decisions are taken under uncertainty. 

The simplest modeling approach to this more realistic situation would be to suppose 
that from period n + 1 onwards the demands are independent realizations of one random 
variable with a given distribution. One might suppose that realization d ;  for i > n 
becomes known at the beginning of period i - n. In this way the demand would always be 
known for a time-horizon of n periods. This problem, with the discounted or average cost 
criterion, could be formulated as a Markov decision problem and solved as such. However, 
the state space of the problem would be rather large. A simple approximation could be 
obtained by replacing the random demands by their constant expected value (cf. Van 
Nunen, Wessels [13], where this idea is used for a decomposition approach for the case of 
several products and a capacitated production unit). 

A disadvantage of this type of approach is that it only works for very simple models 
of the demand generating process, whereas, in reality, the demand generating process 
is frequently rather complicated and not well-understood. Therefore, it seems sensible 
to explore the possibilities of a black-box approach based on multi-layered perceptrons, 
exploiting their proven capabilities for solving combinatorial optimization problems, for 
predicting real-world time series (cf. Weigend et al. [21]), for recognizing patterns (cf. 
Pao [14]) and their conjectured capabilities for adapting to changing circumstances. The 
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latter type of capabilities is strongly related to the learning capabilities (cf. Rumelhart 
et al. [16]), which can be extended to relearning. 

In the rest of this section, we will describe some experiments with demand generators 
of increasing complexity. The experiments are run through 1000 periods, but the decisions 
have to be taken with demand information for 5 periods. Only known demand can be 
produced. In the experiments 3 methods are compared: 

a) a rolling horizon version of Wagner and Whithin's method; 

b) a rolling horizon version of Silver and Meal's heuristic; 

c) a method using a multi-layered perceptron. 

ad a)  In the rolling horizon version of Wagner and Whitin's method, one computes the 
optimal solution for the next 5 periods as if the world was to stop. This is repeated 
every period which starts with positive demand and zero-stock. Only the first 
decision of the optimal solution is implemented. If the usual lot-size is essentially 
less than the demand for 5 periods, one may expect that the future has only relative 
importance for the decisions. 

ad b) Silver and Meal [18] have published a simple heuristic for the problem with a finite 
planning horizon which can easily be transformed into a rolling horizon version. The 
idea is the following: 

1 i-1 

Compute subsequently ai = y(r + h ldt+{) for i = 1, - . - , 5  
2 l = O  

and choose the value of i for which a;+l 2 a; for the first time. If this does not 
occur choose i = 5 a t  time t if there is no stock available and dt > 0. 

In [26] it is shown that this procedure can be represented by a 1-layered perceptron. 

ad c) A 2-layered perceptron is used. One of the reasons to use two layers is that the 
popular Silver-Meal heuristic is essentially a 1-layer approach. So the question is 
whether more layers really help or not. Another reason is that 2-layered perceptrons 
are supposed to learn faster than 3-layered perceptrons. The 2-layered perceptron 
is adjusted by presenting a number of learning pairs in different rounds using back 
propagation in a more or less standard way (cf. [26] for details). The perceptron is 
not adapted during the experiment. We use 10 hidden units although the difference 
with 5 hidden units is not essential. The learning is based on optimal solutions for 
10 periods in order to account for learning to anticipate on the future. 

The results of the three methods are compared with the optimal solution for the case 
that the demands for all 1000 periods would have been known in advance. This solution 
is computed via dynamic programming. For the three methods the average loss in costs 
over 1000 periods is indicated for a series of experiments with the same model. 

For more details of the experiments compare Zwietering et al. [26] and Van Kraaij [lo]. 
In all experiments reported here the value of h is 1 and the value of r = 100. 

A. In the first experiment the demands are supposed to be independent and identically 
distributed according to a uniform probability density on [5,9Ct]. 

In this case the dynamic programming solution for given demands over 1000 periods 
gives the following relative frequencies for the lot-sizes in the optimal solution. 
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1 period : 0.15 
2 periods : 0.56 
3 periods : , 0.24 
4 periods : 0.05 

1 .oo 

So, one may expect that the rolling horizon version of Wagner and Whitin's method 
works fine. Indeed, it only looses 0.55% on the total costs in several experiments. 

The rolling horizon version of the Silver and Meal heuristic looses 2.54%, which is 
more than expected, given the fame of the heuristic. 

The performance of the 2-layered perceptron is much better, but not as  good as the 
rolling horizon Wagner and Whitin. To give an indication, the results for different 
numbers of learning pairs, different numbers of hidden units, and different lengths 
of time on which the learning solutions are based, have been displayed in table 1. 

In this experiment the demand process is very simple, nevertheless the 2-layered 
perceptrons perform already quite well. Of course one should consider that both 
other approaches are much simpler. 

Table 1: For experiment A the losses in costs with respect to the ideal solution are indicated 
in percentages for diflerent set-ups with a 2-layered perceptron. 

number of learning pairs: 
time length 5 

time length 10 

B. In order to introduce some complexity in the demand pattern, we introduce a cyclic 
demand process by taking demand alternatively from uniform distributions on 
15, 47.51 and 147.5, 901 with a random choice for the starting distribution. 

In this case the ideal solution is always purely cyclic with cycle length 2. 

All three approaches find the ideal solution exactly. 

5 hidden units 
10 hidden units 
5 hidden units 

10 hidden units 

C. The next step is to keep demand cyclic, but with overlapping ranges: 15, 701 and 
[25, 901. The average losses now become: 

500 800 1200 
1.48 1.36 1.14 
1.42 1.26 1.10 
0.97 0.89 0.88 
0.94 0.91 0.91 

WagnerIWhitin : 0.50% 
SilverIMeal : 1.57% 
2-layered perceptron : 0.80% 

D. For a cyclic demand pattern with cycle length 3 on the ranges [5, 401, 125, 651, 
[50, 901 the average losses become: 

WagnerIWhitin : 0.93% 
Silver/Meal : 5.50% 
2-layered perceptron : 0.50% 
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Apparently, it becomes more difficult for the other approaches to cope with the 
complex pattern, but the perceptron feels fine. 

E. For a cyclic demand pattern with cycle length 6 on the ranges [5, 401, [5, 401, 
[25, 651, [25, 651, [50, 901, [50, 901 we get the following average losses compared to 
the ideal solution: 

WagnerIWhitin : 4.71% 
SilverIMeal : 2.75% 
2-layered perceptron : 1.00% 

In this case, the Wagner and Whitin approach works worse because larger produc- 
tion lots become more reasonable. An extra experiment with the WagnerIWhitin 
version for 10 periods in which the 5 extra periods get an estimated demand ac- 
cording to the modeled pattern, leads to a diminished loss of 0.64%. Of course, 
this experiment represents an unrealistic situation, but it shows the relevance of 
some extra information on the demand pattern. It also shows that the 2-layered 
perceptron does the forecasting very well. 

F. The last experiment reported here is based on a demand generation with a still more 
complex pattern. 

There are supposed to be three ranges for the demand, namely [5, 401, [25, 651, 
[50, 901. A Markov chain determines which range is used: the first, the second or 
the third. Transition probabilities are P12 = P31 = 1, PZ1 = 1 - P23 = 0.2. 

The experiments show the following average losses with respect to the ideal solution: 

WagnerIWhitin : 4.49% 
SilverIMeal : 1.27% 
2-layered perceptron : 0.90% 

6 Conclusions and Remarks 

In section 5 we saw indications that, indeed, multi-layered perceptrons might be used 
well for decision support in a situation with complex and, perhaps, badly understood 
background processes. A strong point of the perceptron approach is that the learning 
can be based on optimal posterior solutions which are computed after realization of the 
background processes. In the examples, the computation of posterior solutions is simpler 
and, particularly, requires less modeling assumptions. 

A weak point of the perceptron approach is the necessity of having large numbers 
of learning pairs. It seems that current research can help in speeding up the learning 
process, but, most probably, this point will remain an essential weakness in any method. 
This weakness becomes particularly apparent if one wants to extend the learning to re- 
learning for the incorporation of adaptivity. Nevertheless, the main conclusion may be 
that the black-box approach has promising features for use in decision support for at least 
a particular type of situations. 
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