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On the Determination of an On-Demand .

Policy for a Multilayer Control System

Abstract

The cost-performance tradeoff problem associated with a multilayer

control system for controlling a class of static.nonlinear. multivari

able systems is considered. The multilayer control system has a ,

number of layers of control functions each of which updates different

subsets of the manipulated variables at different costs.

A favorable cost-performance tradeoff is achieved by determining

at each control decision time which subset of the control variables

is to ~e updated. In this paper, we present a mathematical rrodel which

describes the operation of the multilayer control system. Also we show

that the problem of determining a. decision rule (policy) which results

in an optimal cost-performance tradeoff can be formulated as a problem

in Markovian Decision Processes. Consequently, an optimal policy can

be identified by solving a linear program.

In order to reduce the computational effort required for identi

fying the optimal policy, a class of parameterized policies is intro

duced based on ~ measure of deviation of the disturbance. This approach

provides a designer with a practical method of determining a control

policy which achieves a favorable cost-performance tradeoff.

An example is given for demonstrating a possible application to

process control.



- 1 -
I. INTRODUCTION

In many cases, industrial systems are subject to uncontrollable

disturbances, and the performance of the system depends on these dis

turbances as well as on the variables which can be controlled. Due to

changes in the disturbances, the implemented values for the control

variablest at a particular instant of time (for example, the values

of rn which maximize a performance function P(m,u) for a particular

value of disturbance u) may not be very appropriate at some later time.

In order to compensate for this, we consider a control strategy which

updates the vector of control variables from time to time, respondin~

to the observed changes in the disturbance. Since the complexity of

the system may result ill si~nificant costs for computation, measure

ment alld implementation each time an update is performed, the effect;ve

ness of performing an update becomes very important. That is, there

exists an economic tradeoff between the averaged performance achieved

and the averaged cost of control over a long period of system operation.

This tradeoff depends on the relative frequency of carryin~ out the

updates and also on the structure of the control system. For instance,

we would expect that more frequent updates would achieve a better

averaged performance at the expense of a higher cost. Also, we expect

that it would cost more, in general, to perfonn an optimization and

control action with respect to all of the control variables than with

respect to only a subset of them.

The general multilayer control system proposed.by Donoghue[l]

provides one way of incorporating the cost-performance tradeoff

t We use the term IIcontrol variable ll to denote generally the output of a
decision making or control process.
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associated with the structure of the control system. In his general

multilayer control system. he considers various control functions each

of which affects only ii subset of the control . variables; the con

trol variables are ordered and the control system is structured so that

those variables to'which the performance of the system is most sensi

tive tend to be updated more frequently and by simpler functions. The

structure provides a basis for investigating the heuristic1deas a

designer might consider with regard to the cost-performance tradeoffs

as mentioned before.

In this paper, we present a mathematical model of both the multi

layer control system and the cost-performance tradeoff for the case in

which the control functions at the different layers in the system are

based on updating different subsets of the control variables at different

costs. A favorable cost-performance tradeoff is achieved by deciding

at each control decision time which supset of the control variables

is to be updated. We refer to this decision rule, in the subsequent

sections, as an updating policy, or more simply, as a policy. Thus,

the tradeoff problem is reduced to determining an updating policy which

achieves a favorable cost-performance tradeoff.

In section IV, we show that the tradeoff probl em can be formul ated

as a Markovian Decision Process and that an optimal policy can be ob

tained as a solution to a linear program. In section V , a class of

parameterized policies are introduced and the design problem is

reduced to determining a set of parameters. This approach may not lead

us to an optimal solution. Nevertheless, it is considered to be prac

tical for determining a policy which gives a favorable cost-perfor~nce
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tradeoff because of the significant reduction in computational effort.

II. Multilayer Control System

The structure of the multi 1ayer control system whose cost

performance tradeoff is to be examined is shown in Fig. 1. The process

performance is assumed to be given by P(m,u), where m is the vector

of control variables and u is the vector of disturbances. The

block G is the measurement and data processing unit where the set

of raw data describing the disturbance input is transformed into an

information vector (e.g., current observation u(t), mean and vari

ance values, density function, etc.), which is denoted bye. It is

assumed that there is a pre~determined orderingtamong the control

u
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Fig~ 1 Multilayer Control System

~ The ordering is based on the sensitivity of system performance to
each variable. If i < j~ then system performance ;s more sensitive
to mi than nlj .
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variables so that the following partitioned form of the vector m is

given:

m= (1ll1, .•. ,mp mi+.1,. .. ,mt ). (1)

Note that mi may itself be a vector. Let mi be a subset of m

defined as follows:

The control function Fi , in general, determines the subset of

m, i.e., mi , based on the current value of e and mi +1 which is

the output of the control function Fi+1. However, we assume that Fi ,

in effect, changes only mi , i.e., the i-th (~artitioned)e1ementof~

control variables. Therefore, we may express the relationship

among the variables mi , mi+1, and e as follows:

. ·+1 ·+1 ·+1 ·+1
m1 = (mi ~ m1

) = ( f i (a ,m1
) ~ m1

.) = Fi (e ,m1
) •

mR. =m = f (a) = Fn(a),R. R. I(,

i =1.2, ..• ,R.-1,

(3)

where f i , i=1,2, •••• R. are given functions. As an example, f i may

be the result, of a maximization operation on some perfonmance index

with respect to the indicated subset of m (see [1],[2]).

We also assume that there is a pre~determined period on which

the operation of the control system is based, which will be referred

to as the "basic period ll
• In the decision ma~ing block, we assume

the following: the information vector, a, is made available to the

control system every time So is closed; Fi is performed every time

Si is closed. The decision maker determines which switches are to

be closed -every basic period of time. In the most general situation,
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the way the switches are closed is completely arbitrary, however, with

out loss of generality, we can restrict our attention to those decisions

described below for convenience.

First, it is assumed that the decision as to which control func

tion should be performed will be made only when So is closed.

Second, we define the control actions as follows:

Control action i denotes that all of the control functions

F., F. l, ••• ,Fl are performed in this order, where i=l, ••• ,~., ,-
(4 )

We identity- the control action i simply by i, and define the set of

alternative decisions ~ as follows:

(5)

where 0 denotes the decision that none of the control functions is

to be performed. It should be noted~ from the definitions (3) and (4),

that control action i results in an update of only a subset of m,

i.e., ml ,m2, ••• ,mi • It is assumed that once the subset of m is

updated, then the values are kept constant until the next time of

measurement and decision.

The following control costs are considered explicitly:

1) ~GH = Cost of measurement, data processing and decision

making which is incurred every time So is closed.

2) Ci = Cost of the control action i, which is incurred

every time the control action i, i~t. is taken.

The cost Ci includes the cost of computing the new set of values for

the 'control variables and the costs associated with implementing

the results. We assume zero cost for no control action, i.e., Co=O.

After each decision making, the process produces a performance tlhich
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is measured by the given function P(m,u). Thus, the cost-performance

tradeoff problem is now reduced to the problem of determining an up

dat"ing policy ( a decision rule which produces a sequenc~ of integers

from ~ ), which gives a favorable balance between the performance

achieved and the cost of control. It should be noted that the struc

ture of the multilayer control system described here reflects the

various ideas of the cost-performance tradeoff mentioned in section I.

III. Formalization of the Tradeoff Problem

In this section g we derive a mathematical model of the control

system and define the cost-perfol'mance tradeoff problem explicitly.

Let the basic period be normalized to unity and let t=O,l, ••• be

the discrete time index for the operation of the control system. Let

~ be an integer which represents the decision as to whether the

switch So is closed or not. That is,

A =J 1,

10,
if So is closed,

otherwise. (6)

Let t5 be an integer which represents the control action 15 , t5E~.

Let m~ be the value of the vector of control variables after

taking a control action.· Then, there is a function ~ such that

m~ = ~(m,a,J,t5),

where ~ is defined as follows:

1) (A=O, t5€6) or (..&=l, 15=0) =;> m~ = m., for all je{l, •• .,.Q,}.
J J

2) (.~=l, cSE{l, •• .,JI.-l}.) *
~ (~ ~mj=fj 0, mj+p .. .,mJl,

~mj = mj ,

) fo r all j G{l II ••• ,t5} II

for all jE-{t5+l, ••• ,Jl,}.
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3) (.6=l.cS=~) * for all jet 1••••• R.-l}.

(7)
r
I

, ,J

The table is derived by considering that control action <5 implies

the execution of Fa' Fa_l •••.• Fl in this order. resulting in only

a subset of m being updated. Supposing now that m. a,..d. m; cS are

functions of time and considering the assumption that the implemented

value of m is kept constant over the basic period. the dynamic

behaviour of the control system is described by

m(t+l) = m'1'(t) :: '1'( m(tL a(t), 'A(t), a(t) ). t=O.l ••••• (8)

Now. we consider an expression for a measure of the cost-perfor

mance tradeoff associated with the control system operation. Let

{u(t)} • t=O.l •••• be a discrete time stochastic process representing

the disturbance. Suppose at time t. the values m(t). a(t). A(t)

and <5(t) are given and suppose the actual value of the disturbance is

u(t). Then. the performance actually achieved over the next basic

period 'can be expressed as

Wt = P(m'1' (t) •u(t)) - J (t H CGH + C<5 ( t) ). t=O. 1• • • • (9 )

over all Infinite
T
2: E[~/t]' (10)

t=O
Planning Horizon = Pnet(H.m(O) = lim 1

1-+00 T+l

We will refer to this quantity as the net performance over the basic

period. Wt • t=O.l •••• is a sequence of random variables whose sto

chastic nature depends on {u(t)} • the initial value m(O) and the

policy denpted by H. An appropriate measure of the cost-perfonnance

tradeoff is represented by taking the expected average net performance

over an infinite planning horizon. i.e .• we define

Expected Average Net Perfonnance
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where E denotes the mathematical expectation. It is now possible

to define our. cost-performance tradeoff problem formally as folaows.

Cost-Performance Tradeoff Problem:

maximize Pnet(H,m(O)) (11)

where maximization is taken over all feasible policies and over all

possible initial values for In. In the subsequent sections" we will

show methods for solvin~ this problem.

IV. Markovian Decision Process Approach

The cost-performance tradeoff pl'Oblem formulated by (11) is a

sequential decision process. One of the most powerful tools for

sequential decision proceSses is the theory for Markovian Decision

Processes which has been developed extensively over the last ten years.

In this section, we show that the behaviour of the multilayer

control system can be described as a Markovian Decision Process by

introducing an alternative state expression. Some assumptions are

made for this purpose.

1) Measurement and decision making is performed every basic
period of time, i.e., ..b(t)=l, for all t=Og 1g....

2) The vector of disturbance information e(t) may take on only
a finite number of possible values denoted by ai, i=l, ••• ,N,

where N is the total number of possible values for a(t).·

Alternatively, we will characterize the disturbance as the

i-th disturbance level when e(t) = ai • We denote the set of

possible disturbance levels by S, i.e., S = {l, •••• N} •
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3) The stochastic nature of the process {e(t)}t. t=O.l •••• is

Markovian and ergodic. Let the transition probability for the

process (e(t)}. denoted by qij' i,jES. be given.

Under the assumption 2). let xi(t) represent the Ileve1" of

disturbance at the most recent time prior to t when control action

i \'/as performed. where Xi(t)ES for i=1 ••••• 1 and for t=O.l ••••

Then it can be shown that the vector X(t) = (xo(t).x1(t) •••••xR,(t))

may be consi dered as the "state" of the mul til ayer control system.

Here. xo(t) represents the present level of the disturbance at time t.

From the assumptions 2) and 3), X(t) takes on only a finite number
"-

of poss"ib1e values and. therefore, the state space S is finite. i.e ••

5=S1+1.

In terms of this state expression, the operation of the control

system under the assumptions 1) through 3) can be described as follows.

Suppose at some time t. the state of the control system is found to be

X= (xo,x1•••• ,x
1
). where the argument t is suppressed for notational

convenience. If the decision maker now selects a control action. say 6,

then X changes immediately to some new state X~ because, by defini

tion. the first (t5+l) elements of the state vector X are reset to the

present level of the disturbance. That is. there exists a function tt, ~

defined as follows which expresses the results of control actions.

j =0.1 ••••• t5

(12)

t{e1t)}is the process induced from tu(tJJ through G.
tt This function ~ corresponds to the function ~ defined by (7) where

J:J =1 •
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The state may then move to soma new state due to a change in the

current disturbance level.

Note that the last ~ elements of the state vector X{t) con-

tain sufficient information for determining the values of m unique

ly. That iS g for each component Xjg j=1,2g •.• ,~, there is a

corresponding value of the information vector which can be denoted as
)(.e J g and it can be shown that there exists a function g such that

( ) -- (e'l(,It)e'Xt!'tl eXIt) 11 ( ). h f hm t g g go •• g for a t g where mt 1S testate 0 t e

control system defined by (8). The function 9 can be easily derived

from (7).
A

We may considerg in general, the transition from a state X€:S
~

to a state Y€:S. Then, the behaviour of the control system can be

described by the following diagram.

time t time t+1

x = ( XogX p " . ,x~ ) VIRTUAL >- Y= ( Yo gyp •• .,yR. )

TRANSITION

DETERI~INISTIC

TRANSITION BY

CONTROL ACTIONS

X'P= 'P{Xg~)

Fig. 2 Transition Diagram

PROBAB ILI STI C

TRANSITIOI~ DUE TO

CHANGES IN DISTURBANCE
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Fig. 2 shows that the operation of the control system is a

Markov~an Decision Process explicitly. The transition probability to

state V given that the present state is X and the control action
ois 0 , denoted by PXV ' can be expressed by

-iqxaYo '
o , otherwise. (13)

where X<P = 4>( X, 0), as defined in (12) and of;.li ,X,VEt

The cost associated with the transition from state X to state
oV by taking control action' 0, denoted by rXV ' can be expressed by

the following equation:

(14)
K
I

k=l

where X<P represents the state right after control action 0, and
<P

m
X represents the unique. numerical value for the contro.l

variable vector corresponding to the state X~. ?~O represents the dis

crete probabi 11 ty corres pondi ng to the present 1eve1 of the di sturbance

i.e. ,
?xO, k = (15)

(16)

Note that if the information vector 0 provides the numerical

value of u directly, then (14) reduces simply to

o x4>
r XV = P( m II JCo) - (CGH+Co ).

The net performance Wt given by (9) becomes

, (17)
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and the expected average net performance over an infinite planning

horizon can be written as

lim
T-+<»

1 T
L E[Wt ]

T+l t=O

T
:I Tl~ "T1l L' L" L ry

k Prob(X(t)=y,6(t)=k DH,X(0», (18)
-or- t=O Yt: S k~~ .

where

(19)

Thus, the problem is to determine a policy which maximizes Pnet over

all possible policies and over all initial states.

It is well known that if a Markovian Decision Process is complete

ly ergodic, then the linear programming formulation proposed by Manne[j]

determines an optimal policy. When a Markovian Decision Process is not

completely ergodic, Manne's linear program only identifies an ergodic

chain which gives an optimal expected average criterion[4]. It can '!

easily be shown that the tradeoff problem is not completely ergodic.

However, it is enough to identify only an optimal ergodic chain, be

cause for any state Xe~, we can calculate the value of m a p~iori

and therefore we can always set the state of the multilayer control
.'

sytem to one of'the states in the identified ergodic chain. Thus,
,

Manne1s linear program is considered to be appropriate and it is shown

in the following:

6Find {wy} to maximize (20)
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subject to

L..
XfS

\' 0 0
t.. PXV 1TXoc6

= 0,
1\

VeS , (21 )

(22)

The objective function represents the quantity given by (18). The

constraints are derived from the familiar steady state relationships

between the state distribution and the set,of transition probabilities

in Markov chains where P~v is given by (13). It can be shown that

for each Vt:g, at most one 06.6 such that 1T~>O,Will appear in every

basic feasible solution of the above program.. Therefore. an optimal

policy can be identified by taking the pairs (V.o) such that

AO 0 h ~o" t" 1 1" h1TV > ,were 1TV 1S an op 1ma so ut10n of t e linear program.

V. Parameterized Policy Approach

The linear program (20)~(22) identifies an optimal ergodic chain

whose expected average net performance is a maximum. However. the size

of the linear program may become very large as Nand 1 increase. be

cause the number of rows is given by N1+l (which is the same as the

number of possible states). Therefore, a technique which requires

much less computational effort is desired. In this section. we develop

a method which determines an approximation to an optimal policy with

considerably 1ess~omputationa1 effort.

Parameterized Policy

Let r be a function which represents a measure of difference' .
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between two disturbance levels, i.e.,

p{a,b) ~ 0, equality holding if a=b.

p{a,b) = p{b,a), a,b€S. (.23)

It should be noted that the number of possible values that p can

take on is finite because S is finite. We refer to this function as

a testing function. An example of p is p{a,b) = (a_b)T B (a-b),

where a > a is a weighting matrix. The idea of a parameterized policy

is as follows: Let a be the disturbance level at the last time of up

date and let b be the present disturbance level. Then, using the

function p, we can consider the following updating rule:

update

do 'not update

if

if

p{a,b) ,? a

p{a,b) < a (24)

where a >0 is some real number which is refer-red to as the testing

criterion. In other words, an update will be carried out only if the

value of the testing function equals or exceeds a certain prescr"ibed limit.

We can extend this idea to the general multilayer control system

under consideration. Now, let a = (a1,a2, ••. ,a
t

) be the vector of

testing criteria where ai is the criterion for control action i. Then

a parameterized policy Ha can be defined by

0, if p{xo'xj ) <'aj , j=1,2, ••. ,t.

Ha{X) =

k, if p{xo'xk) ~ ak for some kE{1, ••• ,t-l}

and if

p(xo' xj) < aJ fo r all j E{k+1, ••• , i,} •

t, if p{xo'xt ) ~ at-

/\

where X= ( xo,xl" •• ,Xi ) E S. (25)
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The parameterized policy determines the control action as follows:

starting from control action 1, we calculate the value of the testing

function.

performed.

If the value equals or exceeds a, control action 1 is to be
1

If the value is less than a1, then we evaluate the testing

function again for control action 1-1. In this way, the control action

to be taken is determined as the first one (counting from control action

1 ) whose value of the testing function is not less than its testing

criterion. lhus, this class of parameterized policies assigns a unique

control action to each state in 5, and gives priority to the higher

layer control actions. Note that the number of possible parameterized

policies is finite for given P and 1.

As an example, consider a 2-layer control system in \'Jhich the dis

turbance takes on only three values, i.e., S= {l,2,3l. A state for this

case is represented by the vector (xo 'xl ,x2), where xicS, i=0,1,2.

Let P be chosen as

p(a,b) = la - b I , a ES, bE: S. (26)

Then, accordi ng to (25), the control action for the state ( Xo ,xl ,x2) i s

deternri ned by

Ha (xo 'Xl 'x2) = 0 if Ixl-xo I<al and Ix2- xo l < a
2

1 , if Ixl-xo I~al and Ix2- xo l < a2

2, if Ix2-xo l~a2'

where a= ( a
l

, a2).

(27)

For instance, if the policy vector a =(1,2), then the control actions

associated with the states (1,1,1), (1,2,2), (1,2,3) are given by 0,1,
, .

2 p respecti vely.
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Having defined the class of parameterized policies, our next

concern is to develop a method for evaluating the expected average net

performance (Pnet ) for a given parameterized policy. Based on the

virtual transition illustrated in Fig. 2, the states of the multilayer

control system operating under the class of parameterized policies form

a Markov Chain which, in general, may contain a number of ergodic chains·

*depending on the initial starting state X. Let us denote the ergodic

* * tchain for gi ven a and X by A(a,X ). Then the expected average net

performance over an infinite horizon defined by (18) exists and is

given by

~ Ha(X) *
l * r X wX(a,X ),

XeA(a,X )

/) *where rX is defined by (19) and wX(a,X ) represents the steady state

probability that the state of the multilayer control system is X, and

is given as a solution to the following set of equations.

L
*XEA(a,X )

Ha(X) * *PXY wX(a,X) = 0, YEA(a,X ) (29)

L
*XE A(a,X )

(30)

Thus, the tradeoff problem is reduced to determining the set of

*values a and the initial state X so that Pnet is maximized over all

*possible a and X.

*For given a and X, Pnet can be calculated by first identifying

A( a,X*) f\nd then sol ving (29) and (30) for wx(a,X*). Since the number

t Since an arbitrary initial starting state may be a transient state
and may lead to two or more distinct ergodic chains, the range of A
must be appropriately restricted.
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*of states contained in the ergodic chain A(a,X } may be very large,

solving (29) and (30) directly may still require an excessive compu

tational effort.

The amount of computation can be reduced by considering an al

ternative "virtua1 transition". Consider the state transition of the

multilayer control system under the class of parameterized policies

h ' ,as s own in Fig. 3, where Xt ' Xt +1 denote the states before taking

control actions, and where Xt ' Xt +1 denote the states immediately

after taking control actions.

Xl
t

l"=!I~M)
Xt

Fig. 3 State Transition under a Parameterized Policy

Since the control actions associated with the states Xi, Xt+1
are determined by the given parameterized policy, we Y'fl'l:i..y consider the

virtual transition Xt -t>Xt+1 instead of Xi ~Xi+1 t. Then, it is

*clear that for each ergodic chain A(a,X } generated by the transition

Xi -+ Xi+l • there ~s an ergodic chain (we denote this chain by AS(a,X*)}

generated by the vi rtua1 transi tion Xt - Xt+1 • Based on the chain

AS(a,X*}. we can show that (28};y(30) may be modified to the following

set of equations from which the averaged performance Pnet can be determined.

t Note that this new interpretation of virtual transition is not
appropriate in the formulation of the Markovian Decision Process developed
in section IV •
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(31)

where

*where xo' Yo are the first elements of X,V, respectively, and ~X(a,X )

is given as a'solution to the equations

where P~v(a) denotes the transition probability between states Xand

V in AS(a,X*). P~v(a) is given by

if the last t-elements of V and XI~,

respectively, are identical, where

XI~= ~(XI, Ha(X ' », and where

Xl = (yo,x1,x2, .•. ,x
t
).

o , otherwi se. (35)

In the expression (35), the function ~ is defined by (12) in section IV:.

The advantage of this formulation is the fact that the number of

states in AS is usually much less than the number of states in A (See

Appendix). Hence, it requires much less computational effort to use

(31) through (35) instead of (28) through (30).
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Sea rch Method
ok

The discussion so far is concerned with the evaluation of Pnet(a,X )

*for given a and X. In order to obtain the best parameterized policy,

a search procedure must be considered. Since Pnet is not continuous with

respect to its arguments, we have to rely on so-called direct search

methods, such as Hooke and Jeeves[5], Rosenbrock[5], Nelder and Mead[5].

*For each index state X , these methods may be appl ied to detenn'j ne the

best value for a. The best parameterized policy is then determined by

*taking the best combination of a and X •

It shoul d be noted here that due to a speci al property of the mul ti

layer control system operating under parameterized policies, the range of

a for which an optimal value is searched can be restricted. We call this

the "Collapsing Property" and it is described in the following.

Collapsing Property

Let us consider a two-layer control system.as in section V. The

parameterized policy is defined by (27), and let us assume that al ~ a2•

Suppose at some instant of time~ control action 2 was taken. Immediately

follows the control action, the state satisfies the condition xo=x1=x2,

because control action 2 has reset the values of xland x2 to the current

disturbance level xo' Therefore, at the next time testing, we observe

that IX1-xol=lx2-xol. However, since al ~ a2' Ix1-xo' ~ a1 always

implies Ix2-xo ' ~ a2 . Thus, the next control action cannot be control

action 1. By repeating this argument for each time of testing, we can

show that control action 1 will never be carried out under the condi-

tion a1 ~ a2' As a result, the two-layer control system, in effect,

"collapses" to a one-layer control system for which only control action

2 is implemented.
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The above property is valid in the general R.-layer control system.

That is, if a i ~ai+l for some i, then control action i will not be

implemented.

Suppose a given parameterized policy Ha has a testing criterion

ai ,ai+l such that ai ~ ai+l . Then, the collapsing property quarantees

that \'le can obtain an equivalent policy by replacing ai by ai+l •

Therefore, we conclude that it is sufficient to consider only the values

of a which satisfy

(36)

and this reduces the range of a to be searched considerably.

VI. An Exampl e

In order to demonstrate a possible application of the multilayer

control approach, the static control of a simple stirred tank reactor

process is considered .

. The reactor process has been studi ed in [7] from whi ch the desc

ription is taken. The inflow to the reactor contains two components

RX and Ry with concentrations (x
o

and ¥Yo ,respectively. The out

flew contains components RX' Ry and RZ with concentrations YX' ¥y,

and YZ ' respectively. The only reactions taking place in the reactor

are given by

(37)

where Ki are the reaction rate coefficients

K - V A -B./T '-1 2 ( )i - q i e 1 , 1 - , , 38

and T is the temperature, and V is the volume of the reaction mixture,
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q is the throughput rate and A1, A2, 81 and B2 are given cons tants.

The steady state relationships are given by

ryo - Yy (l y K2) + K1¥x = a

K£ty - YZ = a

6'X
o

+ 'tYo = 1

Yx + 'ty + Yz = 1.

The measure of system performance is taken to be

y(t) = 61 Yy(t) q(t) - < 62K2(tH'y(t)-S3>2

-84T4(t) -8ST(t)q(t) - (S6q(t)-S7)

, where Si' i=1,2, ••• ,7 are given constants and

(39)

(40)

<~>= 5~' ~ >0

10 , ~ ~o. (41 )

The fi rs t term -; n (40)' is the value of the des i red product Ry, the

second term is a loss due to the high concentration of the side pro

duct RZ' the third term represents the heat loss due to radiation,

the fourth term is the cost of heating the mixture, the fifth term is

the cost associated with the input stream.

The volume V and the temperature T are considered as 'the

contro1 'vari ab1es and the throughput rate q is considered to be

the disturbance. Using the relationships (39), the measure of system

performance (40) can be expressed in terms of only V, T and q, i.e' D

y(t) = P(V(t),T(t),q(t)). (42)
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If the throughput rate q is a constant, then the values for V

and T can be chosen so as to maximize (42), and they can be kept cons

tant throughout the operation of the system. When q varies with res

pect to time, however, the values for V and T should be updated in order

to keep the system in its best operating condition. In this example.

we assume that there are costs associated with updating V and/or T and

the tradeoff problem considered in the previous sections becomes important.

We consider a two-layer control system where the first layer

updates T and the second layer updates V (See Fig. 4). and define

control actions 1 and 2 according to (4) as follows:

Control action 1 = Calculate the value of T so that P(V.T.q)
is maximized with respect to T and·
implement the result on the system.

Control action 2 =Calculate the values of both T and V so
that P(V,T,q) is maximized with respect to
T and V, and implement the result on the
system.

We assume that there are costs Cl and C2 associate with control

actions 1 and 2, respectively. For simplicity, q(t) is assumed to be

measured directly with no cost(this implies that G is an identity and

CGH in section II is zero).

A sample record for q is assumed to be given as in Fig. 5. Since

q is continuous valued, it is necessary to quantize the value of q in

order to apply the techniques in the previous sections. The number of

disturbance levels N is chosento be 3 and the quant~l values for each

level are determined by the method suggested in [7] and the transition

probabilities are calculated from this sample record. These results

are shown 1n Table 1.
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q

UPDATE

V V
UPDATE

T r--~P(V,T,q)
V,T

Fig. 4- Two Layer Control System

DLSCRETIZATION OF DISTURBANCE

DISTURBANCE RANGE Ri'i€fl ,2,31 QUANTUM VALUES ui t i f.{1 ,2, 3}LEVEL

1 q~J'-0.432q-= 10.78 ul =,u-0.969q-= 10.52

2 10.78<q~P+0.432cr-= 11.19 u2= f = 10.98

3 q> 11.19 u3=f+0.9690" = 11.45

TRANSITION PROBABILITY: qij = probfu(t+l)~Rjlu(t)ERJ

q11 q12 q13 0.904 0.096 0.000

q21 q22 q23 = 0.095 0.833 0.072

q31 q32 q33 0.000 0.068 0.932

Tab1e.1 Discretization of Disturbance Record
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The state of the two-layer control system is expressed by

X = (xo'xl ,x2), where Xo is the present disturbance lev~l, xl is the

disturbance level at most recent time of control action 1, and x2 is

the disturbance level at most recent time of control action 2, where

xi E{1,2,3} , i=O,l ,2. There are 27 states in the state space. The

net performance associated with the transition from state X to Y

taking control action ~, i.e., r~y is approximated by the following

expression:

1 X~ X~ X~ X~
r~y = 2 [P{V , T , qXO)+ p{V , T , qYO)] - C~, (43)

where X~ = ~(X,~) as in (12) and VX is the result of performing

Maximize P{V,T,qX2),
V,T

and TX is the result of performing

Maximize P{VX,T,qXl):

The following numbers are used °in the example.

Al=14000, A2=80, 81=4000, 82=2500, ~yo=O.l, ~Xo=0.9,

6 -3 -661=25000, B2=5.0xlO, 83=5.0xlO , 84=3.0xlO , 85=5.0,

86=3590, 8t26500; . --

Cl =50, C2=200, Co=O, CGH=O.

(44)

(45)

The linear program_(20)~22) was set up using these numbers. An optimal

policy was determined by taking those variables in the optimal basic

feasible solution whose values are strictly positive-. This procedure

resulted in identification of the following policy:

State Optimal Action State Optimal Action

~1,1,1~ 0 P,2,3) 2
2,1 ,1 1 2,2,3) 0

(1,2,1) 1 P,2,3) 1
~2,2,1) 0 2,3,3) 1
3,2,1) 2 (3,3,3) 0_
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The parameterized policy approach in section Vwas also applied

to the example. Here, we used the testing function (26) and the policy

is determined by (27). The best parameterized policy identified was

a = (l,2) with the initial state (l, 1,1). This policy happened to be

exactly the same as the policy identified by solving the linear pro

gram. This may not always be true in general, because an optimal policy

may not be expressed in the form of a parameterized policy.

VII. Conclusions

A general mul ti 1ayer control system is developed whi ch improves the

balance between the control cost and the performance achieved for a class

of static, nonlinear, multivariable systems. The control system is

formalized as a generalization of the multilayer control approach. A

convenient mathematical model describing the behaviour of the control

system is obtained which admits a simple state expression. The problem

of determining an updating policy is then shown to be formulated as a

Markovian Decision Process under some assumptions. Consequently, a

policy which is optimal over all possible policies can be identified as

a solution to a linear program. Since the computations of an optimal

policy become quite tedious, a parameterized policy approach is proposed,

which results in an identification of a suboptimal control policy with

much less computational effort.

It should be noted that the development described in this paper

did not really take the effect of the measurement cost on the expected

average net performance into account. This follows from the fact that
r ' .

we have made the assumption that measurement and decision making are
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performed every basic period (refer to assumption. 1) in section IV).

However, it is rather straightforward to extend both the Markovian Deci

sion Process Approach and the Parameterized Policy Approach to the case

where the effect of CGH on Pnet is significant [2]. The key is to

include the interval of two successive measurements into the set of

decision alternatives. This results in defining a Markovian Decision

Process similar to the one discussed in [8].

The above investigation provides an extension of the multilayer

control strategy in Donoghue's development, and also formalizes an

important notion of controlling on-demand (i.e., controlling only when

it is economically worthwhile to do so) for the class of static systems.

Some of the important questions such as the optimality of the

best parameterized policy, the treatment of non-Markovian disturbance

and extensions to the class of dynamic systems need further investiga

tion.
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Appendix

The superiority of using the ergodic cha'in AS(a,X*) instead of
* -using A(a,X ) is illustrated in Table 2 in which the numbers of states

s * * *in A (a,X ) and in A(a,X ) are compared for some values of a and X •

Note also that this table shows an indication of the computational

reduction in the Parameterized Policy Approach,because,in this example,

the number of rows in the linear program (20)~{22) is given by 625.

Table 2 Comparison of the number of states in A and AS
3-1ayer example (R,=3)! Number of disturbance levels N=5 ..
{qij} is given by

...
'"0.5 0.3 0.2 0.0 0.0
0.2 0.6 0.2 0.0 0.0
0.3 0.4 0.1 0.2 0.0
0.0 0.0 0.4 0.1 0.5
~O.O 0.0 0.0 0.6 0.4

~
The number of states in
* AS (a X*)A(a,X }

POliCY~ (1.1.1.ll {3.3.3,3} (1.1.1.ll {3,3.3.3}

(l,l,l) 15 15 5 5
(1.2,3) 29 21 9 7

(l ;2,4) 31 21 10 7

(1 ,3,4) 39 ·15 12 • 5:

(2,3,4) 33 11 16 ,. 7
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