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Abstract 

Equilibric behaviors typical for differential and multi-step games are defined for a 2 x 2 
evolutionary game (two populations of players, two strategies for each player) roughly 
modeling interactions between sellers and buyers. It is shown that currently optimal be- 
haviors of individuals form long-run equilibric dynamics at both individual and population 
levels. 
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Behavioral Equilibria for a 2 x 2 
"Seller-Buyer" Game-Evolut ionary 

Model 

A.  V. Kryazhimskii* 

Introduction 

We hold the viewpoint that economical evolution is driven by large groups (populations) 
of individuals interacting in a game style. This viewpoint developed within the frame- 
work of the evolutionary game-theoretic approach (see e.g. [Friedman, 19911 and [Young, 
19931) supplements the general theory of economic change (see Nelson and Winter, 19821) 
with new analytical tools; these tools allow, in particular, to specify individual behaviors 
that,  being subjectively rational for individuals, guide the whole populations to an equi- 
librium. Thus, a formal pattern for explaining the driving forces of economical evolution 
is provided. 

In this paper we use another principle to select individual behaviors, which can be 
called the behavioral equilibrium principle. It extends the Nash equilibrium property - 
from populations' final states - to individuals' behaviors during the whole gaming process. 
Thus, within the pool of all potentially admissible collections of individual behaviors, Nash 
equilibric ones are selected. Nash equilibrium is treated in a usual way: a collection of 
individual behaviors is equilibric if every individual having any other behavior receives, 
eventually, a worse payoff. 

The principle originates from the theories of multi-step and differential games. Ap- 
plication of the principle to a discrete time evolutionary game model does not reduce it 
to a standard multi-step game (see [Owen, 19681, [Basar and Olsder, 19821): in a stan- 
dard multi-step game payoffs are pre-determined by players' behaviors; in an evolutionary 
game model it is not so due to uncontrolled mixing of partner pairs (provoking strong 
uncertainties in dynamics). 

In this paper we illustrate the behavioral equilibrium principle at a simplest two- 
population repeated game with two options (strategies) for each individual. Having in 
mind the economical background, we treat it as a stylized interaction between "buyers" 
and "sellers". 

Starting with evolutions of individuals (the lower-level model), we, afterwards, convert 
them into population dynamics (the upper-level model). 

Finally, we obtain multi-optimality of equilibric dynamics at both, individual and 
population levels, with respect to both short- and long-run payoff criteria. 

At the individual level, it is reflected in the fact that individuals' instant optimal 
behaviors intended to increasing current personal benefits (though, due to dynamical 
uncertainties, not necessarily increasing them actually) satisfy the behavioral equilibrium 
principle, i.e. entirely fit individuals' long-run interests. 

At the population level, it is reflected in the fact that populations' evolutions driven 
by instant optimal behaviors of individuals, first, are intended to  increase current pop- 



ulations' benefits (instant optimality), and, second, satisfy the behavioral equilibrium 
principle - with the populations regarded as partners. 

Moreover, the. population behavioral equilibrium principle holds within the extended 
pool of regulation patterns involving both decentralized and totally centralized ones. Thus 
for our model, population's decentralized self-regulation (with individuals acting instant 
optimally with respect to their personal interests) is in the long run equivalent to best 
centralized regulation. 

The subject of the paper adjoins the theory of evolutionary games (see [Maynard 
Smith, 19821, [Hofbauer and Sigmund, 19881, [Friedman, 19911, [Young, 19931, and the 
references in the last two papers). Methodologically, we follow in a great deal the spirit 
of the theory of closed-loop differential games [Krasovskii and Subbotin, 19881. 

A 2 x 2 Population Game Model 

1.1 The Model 

The model we are concerned with is as follows. There are N sellers and N buyers. At 
every time from the time net A = {O,S, 26, ...) every buyer visits a seller to buy a unit of 
good, and every seller deals with a single buyer. Thus, at each time N seller-buyer pairs 
are formed. The pairs vary arbitrarily. 

In a more realistic model a number of sellers should be assumed less than that of 
buyers. Our approach allows to treat this model too. Wishing to deal with minimum 
technical details, we focus on the simplest variant. 

Every seller controls prices. Following our line to extreme simplification, we suppose 
that a price of a good unit can be only of two categories: either low or high. Choosing a 
low or a high price are the two possible strategies of a seller. Let us call them, respectively, 
"low price" strategy and "high price" strategy. Every buyer has two strategies: to  buy a 
good unit ( "buy" strategy) and not to buy it ( "not buy" strategy). 

1.2 Payoff Matrices 

Every time a buyer and a seller meet, their srategies match. Four possible outcomes are 

I "not buy" "low price" ( "buy" Y o w  price" 1 
I 

h o t  buy" "high price" I "buy" "high price" 1 
Table 1.1 

Following the game-theoretical approach, we suppose that every individual (a  seller or a 
buyer) associate each outcome with a certain value serving as a fitness measure of this 
outcome; these values are called payo$s. If one replaces in Table 1.1 the outcomes by 
the corresponding payoffs for a certain individual, one obtains the payo$ ma t r i x  of this 
individual. Thus, a seller and a buyer get their 2 x 2 payoff matrices a and b. 

"Low price" and "high price" seller's strategies mean, respectively, choosing the first 
and the second line in a and b; in the standard manner, we will identify these strategies 
with their line numbers. "Not buy" and "buy" buyer's strategies mean, respectively, 
choosing the first and the second column in a and b, and thus will be identified with these 
column numbers. The payoffs to the seller and the buyer stand respectively in a and b 
at the intersection of the chosen line and column. This is a standard 2 x 2 matrix game. 
The process described in subsection 1.1 is therefore a collection of N 2 x 2 matrix games 
played infinitly many times with time step S by mixing partners. 



What payoffs should be associated by a particular seller and a particular buyer with 
the outcomes indicated in Table 1.1? 

The answer is not obvious. The main difficulty is that an individual can hardly 
nominate a definite payoff value for each outcome. It is much easier for an individual 
to specify some preference relationships between the outcomes or, equivalently, some 
inequalities between the elements of her payoff matrix. (Here and in what follows we 
write "she" instead of "he/shen.) If only such specifications are made, an individual 
actually does not know her payoff matrix precisely. What is known to  her is a class of 
matrices containing her payoff matrix (this is the case we will be dealing with). This class 
is determined by the above inequailities between matrix elements. 

We will denote every matrix class of the above kind by several arrows in brackets, 
every arrow showing the direction from a smaller to a bigger element; sometimes, in order 
to avoid ambiguity, we use instead of an arrow, the sign V meaning no order specification. 
For instance, the class (r1) consists of all matrices c with ell > czl and clz < ~ 2 2 ;  the class 
(tt) consists of all c with ell > c12 and czl < cz2, etc. Here and in what follows, c;j 
stands for the element at the intersection of the i-th line and the j- th column of matrix 
C. 

1.3 Seller's Preferences 

Take a particular seller. To sell a good unit for a high price is better for her than to sell 
it for a low price. Thus, looking at Table 1.1, we conclude that in the second column of 
the payoff matrix b the lower element is greater than upper. 

Compare the outcomes from the first column of Table 1.1. What is better for the 
seller? To have the good unit not bought for a low price (the upper outcome), or to have 
it not bought for a high price (the lower outcome) If the good unit has not been bought 
for a high price, then the seller can think that it could have been bought if the price had 
been low. This means at last some moral discomfort ("my price strategy was possibly 
wrong"). If the good unit has not been bought for a low price, the seller does not feel 
such a moral discomfort ("I did my best, it is definitly not my fault"). The second case 
is more prefereble for the seller. 

Along with the above "moral" justification for the seller's preference of the upper 
outcome in the first column of Table 1.1, one can imagine an "economical" reason for it. 
Suppose for instance that the seller pays a tax for profit in advance, i.e. having prices 
declared and goods not sold. Then, in case the good unit is not bought, the seller looses 
more money if a price is high. Thus, we assume that in the first column of the seller's 
payoff matrix a the upper element rather is bigger than lower. Not selling a good unit is 
worse than selling it, no matter what is the price, and selling a good unit for a high price 
(the left lower outcome) is worse than selling it for a low price (the right upper outcome). 

Summing all up, we conclude that the seller's payoff matrix a belongs to the class 

(rl-t-tr). 

1.4 Buyer's Preferences 

Take now a particular buyer. Starting with the supposition that the buyer is interested in 
purchasing a good unit, we turn it as follows: if the price is low, then buying a good unit 
is better for the buyer than not buying it. Consequently, in the first line of the buyer's 
payoff matrix b, we have the right element greater than left. 



If this is so for the second line too, then "buy" is the totally dominating buyer's 
strategy, and there is no game. We reject it. Thus, we assume that the high price is 
actually too high for the buyer to buy a desired good unit. In other words, if the price 
is high, then not buying (saving money) is better than buying. The second line of the 
matrix b has the bigger element on the left. Finally, buying a good unit for a low price 
(the upper outcome on the right) is better than buying it for a high price (the lower 
outcome on the right). 

Compare the outcomes in the left column. Not buying a good unit for a low price 
is a mistake; not buying it for a high price is a right decision. Consequently, the lower 
outcome on the left is better than the upper. Finally, not buying a good unit for a high 
price (the lower outcome on the left) is definitely worse than buying it for a low price (the 
upper outcome on the right). 

Thus, b belongs to the class (Lt++/). 

1.5 Identity of Individuals. Individual and Population Goals 

For simplicity, we will suppose that all sellers have the same payoff matrix a ,  and all 
buyers have the same payoff matrix b. Note once again that individuals do not know their 
payoff matrices being aware only of their classes. We will also suppose that sellers know 
the class of the buyers' payoff matrix b. 

Each individual desires to increase her income in the long run. Besides, at each time 
she wants to increase her current income. These two (somewhat different) goals pre- 
determine the indidual's behavior. 

Individuals do not care of whole populations, which admittedly have their own goals 
too. We understand those as reaching maximum total populations' incomes with time 
going to infinity. 

2 Population Dynamics 

2.1 Local Events 

We suppose that individuals are conservative enough - they do not change their strategies 
too frequently. Each individual comes to a decision to revise her strategy periodically, at 
some isolated times. We will call such times active for a corresponding individual, or say 
that an individual is activated at such times. All other times it will be called passive. We 
assume that there exists an activation mechanism that acivizes every individual by sending 
her from time to time the message "decide"; later we will describe it more definitely. 

Besides, we assume that a seller's price change activates a buyer automatically (even 
without "decide "). 

Narrate the above rules for individual decision making more accurately. In the sequel, 
we will use "names" for individuals. Times near which an individual named C receives 
a "decide" will be called C-active; all other times will be called C-passive. A pair (S, B) 
of interacting buyer and seller will be called a partner pair. Individuals S and B, being 
activated at time t ,  select their actions ps(t), pB(t) in the two-element action set A = { 
"change", "keep" ); "change" means a strategy change and "keep" means no strategy 
change. 

Using the above terms, specify local sequences of events as follows. 
Let t be passive for a buyer B. Take the sellers S[t] and S[t + 61 playing with B at t 

and t + 6 respectively. Between t and t + 6, we have the following sequence of events: 



1) S[t] and B play their game; 
2) B learns the S[t + 61's strategy planned for t + 6, and, in case it differs from the 

strategy of S[t] a t  t ,  chooses her action pB(t). 
Let t be active for B. Then between t and t + 6, the sequence of events is as follows: 
1) S[t]  and B play their game; 
2) a "decide" message comes to B ;  
3) B learns the S[t  + 61's strategy planned for t + 6, and chooses her action pB(t). 
Let t be passive for a seller S .  Take the buyers B[t] and B[t + 61 playing with S a t  t 

and t + 6, respectively. Between t and t + 6, we have the following: 
1) S and B[t] play their game; 
2) S keeps her strategy till t + 6 (uses "keep"); 
3) B[ t  + 61 behaves as described above, i.e. learns the S's strategy for t + 6 and works 

out her action ~ ~ [ ~ + ~ ] ( t )  if t is B[ t  + 61-active, or t is B[ t  + 61-passive, and the S 7 s  strategy 
is new for B[ t  + 61 (i.e. differs from the seller's strategy B[ t  + 61 played with a t  t). 

Let finally t be active for a seller S .  Then: 
1) S and B[t] play their game; 
2) a "decide" message comes to S ;  
3) S chooses her action ps(t); 
4) B[t  + 61 behaves as above. 

2.2 Local Transitions 

Take a seller S playing a t  t and t + 6 strategies is(t) and is(t + 6) respectively. Let ps(t) 
be a S 7 s  action a t  t. According to the previous description, the following relations are 
admissible. 

t 
S- passive 

Here and in what follows, l i  denotes the individual's strategy complementary to i. 
Take a buyer B playing iB(t) and iB(t + 6) at t and t + 6 respectively, and acting 

p ~ ( t )  a t  t. Let S[t] and S[t + 61 be the B's partners a t  t and t + 6 playing isltl(t) and 
iqt+6](t + 6) respectively. Then, the following relations hold. 

S- active 

ps( t)  
''keep7' 

i s ( t  + 6) 
is(t) 

"keep" 
"change" 

t 

. , 

is(t) 
l i s ( t )  

relation between I P B ( ~ )  I i ~ ( t + 6 ) 1  

B- passive 

B- active 

is[t+s1 (t + 6) and is[t] (t) 
- - 

# 

Table 2.2 

- 

- - 

# 

"keep" 
"keep" 

i ~ ( t )  
i ~ ( t )  

"keep" 
"change" 

"keep" 
"change" 

iB(t)  
i i B  (t)  
iB(t)  

l i B ( t )  



2.3 Individual Feedbacks 

Individuals S and B choose their control actions ps(t), pB(t) based on available informa- 
tion. If B is allowed to make her decision at t ,  she works out pB(t) based on her last 
strategy i ~ ( t )  her partner's strategy i ~ [ ~ + h ] ( t  + 6) at t + 6 and a strategy is[tl(t) of her 
partner S[t] at t. Write it as 

Using the terminology of the control theory, we will call any function PB associating to 
every t and every triplet (iB(t),  i.qt1(t), i ~ [ ~ + ~ ] ( t  + 6)) of strategies a control action ( I ) ,  a 
buyer feedback. 

Introducing, in a similar way, seller feedbacks, one should take into account that a 
seller S, when forming her action ps(t), knows a strategy i ~ [ ~ ] ( t )  played by her partner 
B[t] at t but does not know iB[t+h1(t + 6): 

Thus, a seller feedback is identified with an arbitrary function Ps associating to  every t 
and every strategy pair (is(t), iBp1(t)) an action (2). 

We regard buyer and seller feedbacks as models of admissible individuals' behaviors. 

2.4 Control Laws and Motions 

Denote by S and B the populations of sellers and buyers, respectively. Admissible pop- 
ulation motions are driven by collections (families) of seller and buyer feedbacks; such 
collections will be called control laws. More accurately, define a S-feedback to be an 
arbitrary family (Ps) of seller feedbacks, with S running through S. Similarly, a B- 
feedback as an arbitrary family (PB) of buyer feedbacks, with B running through B. A 
pair ((Ps), (PB)) composed of a S-feedback (Ps) and a B-feedback (PB) will be called a 
control law. A control law ((Ps), (PB)) generates certain evolutions of strategies is(t) of 
every seller S and strategies iB(t) of every buyer B .  To distinguish such evolutions which 
are functions defined on the time net A from particular strategy pairs at time t ,  we denote 
them by is(.) and iB(.). A family of all such evolutions describes a population motion. 

More accurately, a population motion generated by a control law ((Ps), (PB)) is iden- 
tified with a family M = ((is(.)), (iB(.))),  S E S, B E B, of maps from A into the set of 
all seller-buyer strategy pairs, such that for every S, B. 

(i) the strategies is(t), is(t + 6) and the action ps(t), are subject to Table 2.1, and 
ps(t) satisfies (2) (B[t] is the S's partner at t )  whenever Table 2.2 does not restrict it to 
"keep ", 

(ii) the strategies iB(t),  iB(t + 6) and the action pB(t),  are subject to Table 2.1 (S[t] 
and S[t + S] are B's partners at t and t + S respectively), and pB(t) satisfies (1) whenever 
Table 2.1 does not restrict it to  "keep". 

Note that,  along a population motion, any evolution of partner pairs is admissible. 

2.5 Regular Activation 

Let us say that an individual C jumps at time t (along a population motion M )  if the 
strategy pairs played (along M)  by C - together with her partner - at t and t + 6 are 
different; 0 will formally be regarded as a jump time for every individual. 



In the sequel, the following regularity condition is assumed: for an arbitrary individual 
C and an arbitrary time t at which C jumps (along an arbitrary population motion M),  
there is a time > t at  which C either is active or jumps. 

Example 2.1 Suppose that each individual C has several critical levels for a current 
amount of her benefit (i.e. payoffs summed up to a current time); the lower and upper 
levels could be, respectively, those of survival and prosperity. Whenever one of these levels 
is reached, C gets an impulse to revise her behavior, or, in our terms, a "decide" message. 
As long as C plays - together with her current partners - a fixed pair of strategies, her 
current benefit has a constant speed. With this speed, C comes necessarily to one of the 
critical levels (and thus to an active time) provided she does not jump before. Under this 
activation mechanism, the regularity condition is satisfied. 

3 Population Game 

3.1 Game Description 

The long-run goal of every individual is to maximize a limit payoff with time going to 
infinity. 

Formulate it more accurately. 
Let a population motion M = ((is(.)), (iB(.))) be performed. The payoff to a particu- 

lar seller S and a particular buyer B at time t are, respectively, ais(t)iB[tl(t) and bisltl(t)iB(t) 
where B[t] is the S's partner at t ,  and S[t] is the B's partner at t .  Therefore, S's and B's 
desire is to  guide the population motion M so as to have 

as big as possible. In case these limits do not exist we assume JS and JB to be multivalued: 

We understand joint maiximzation of these values as reaching an equilibrium in a multi- 
person game between sellers and buyers playing with their feedbacks. We use the Nash 
consept of equilibrium. According to the Nash approach, a collection of feedbacks (' 1.e. a 
control law) is considered as equilibric if there is no feedback leading a particular individual 
to a better payoff provided all other individuals play equilibrically. We strengthen it by 
replacing - in the above equilibrium nonimprovability requirement - a single individual 
by an arbitrary group of individuals from an equal population. (Multivalidity of JS and 
JB implies several ways to modify the standard definition; we will take the "sharpest" 
one). 

Call a control law ((Pi), (Pg)) (a, b)- equilibric if 
(i) for every set S* of sellers, every family (P:), S E S*, of seller feedbacks, every popu- 

lation motion M0 generated by ((Pi), (Pi)) and every population motion MO* generated 
by ((Pi*), (Pg)) where Pi* = Pi for S 4 S* and Pi* = P: for S E S,, it holds 

min J'(M') > max J S ( ~ O * )  



with an arbitrary S E S*, and 

with an arbitrary S $! S*; 
(ii) for every set 23' of buyers, every family (PE;), B E B*, of buyer feedbacks, ev- 

ery population motion M0 generated by ((Pi), (Pi)) and every population motion M*O 
generated by ((Pi), (PgO)) where Pg = Pi for B $! B* and Pi0 = PI; for B E B*, it holds 

min JB(MO) 2 max JB(M*O) 

with an arbitrary B E B*, and 

with an arbitrary B $! 23'. 
The long-run goal of an individual can be now expressed as finding her component of 

an (a, b)-equilibric control law. 

3.2 Instant Optimal Feedbacks 
The instant goal of an individual is maximizing a payoff increment a t  a current time step. 
Let us model a possible way of thinking of a particular buyer B and a particular seller S 
at a current time t ;  we will end up with some heuristic decision making patterns which 
will be called instant optimal. 

The  B's  speculations could be as follows. "The S[t +6]'s strategy i ~ [ ~ + & ] ( t  $6) is known 
to me. My action p; ( t )  should bring me to a iB(t + 6) such that 

bi~It+61(t+s) i ~ ( t + S )  2 bisIt+61(t+s) - i~( t+s)  

The fact that my payoff matrix b belongs to the class (+t) (subsection 1.4) lead me to 
the following table." 

We consider Table 3.1 as a buyer feedback; call it instant optimal. If the activated buyer B 
holding this feedback finds herself a t  time t not buying a low-price good unit (i.e. playing 
the strategy pair ( 1 , l ) )  and before t + 6 learns that the price will not be high a t  t + 6, 
she buys a good unit a t  t + 6. In a similar way, other values of p;3(t) can be commented. 
One easily sees that  this buyer's behavior corresponds to the best-reply principle. 

Now turn to the seller S deciding what p;(t) is instant optimal for her. Let, first, 
( is(t) , iB(t)) = ( 1 , l ) .  The  S's way of thinking could be like that. LLSuppose that  a t  
B[t  + 61 played the same strategy as B[t]. Suppose that I act "change". Then B[t  + 61 
is automatically activated and reacts optimally with Pi l t+sl( t )  = "keep" (I refer to Table 
3.1). In this case we move to ( 2 , l ) .  Suppose that I act "keep ". If B[t  + 61 is not activated 
with a "decide", then we stay a t  (1,l). If B[t  + 61 is activated, then, with her optimal 
reaction Pk[t+61(t) = "change", we move to (1,2).  Each of the last two strategy pairs is 
better for me than the first one, since my payoff matrix a is in (flf). Consequently, my 
instant optimal action p;(t) is "keep"." Represent the above pattern schematically: 

~ is[t+s](t + 6) 
1 
1 
2 
2 

Table 3.1 

iB(t) 
1 
2 
1 
2 

P;(t) 
"change" 

"keep" 
"keep " 

"change" 



( "keep", "keep") ( "keep", ~ k [ t + a ~ ( t ) )  
(171) (172) 

T T 
( 4han9e", pOB[t+s](t) ) 

(271) 
Table 3.2 

Here arrows mark S's preferences. They show that at (1,l) the instant optimal S's action 
is "keep". Rolling, similarly, S's speculations under the assumption that B[t + S] played 
at t the strategy different from that played by B[t], we come to the simpler variant of 
Table 3.2 where the left option on the top is removed (due to the fact that B[ t  + S] is 
definitely activated at t) .  

For other strategy pairs the decision making patterns are 

I ( "keep", "keep") ( "keep", p'&t+s1(t) I 

( "change", pOBrt+al(t) ) 
(271) 

Table 3.3 

( "keep ", "keep ") ( "keep", ptrt+sl(t) ) 
(271) (271) 

(172) - - 

Table 3.4 

1 ( "keep", "keep") ( "keep", ~OB[t+s~(t) ~ 
( "change", pk[t+,](t) ) 

(172) 
Table 3.5 

(We omit the simplified variants of the Tables where the left options on the top are 
removed; they occure, as above, under the supposition that at t the strategies of B[ t  + S] 
and B[t]  were different). 

Tables 3.3 and 3.4 show that at (1,2) and (2 , l )  the instant optimal S's actions are, 
respectively, "keep" and '%hangen. At (2,2) ( "buy", "high price") there is no definite 
preference for S (Table 3.5): "keep" is better if B is not activated at t (the uparrow in 
Table 3.5); otherwise, "change" is better (the downarrow in Table 2.6). In other words, 
if the seller expects that the buyer that buyes a good unit for the high price at t will not 
do it at t + S (being activated), then the seller should lower down the price; if the seller 
expects that a good unit will be bought at t + S for the same (i.e. high) price (i.e. the 
buyer is not activated), she should keep the price high. Thus, if S believes that B will 
be activated before the next play, she uses "change"; if her belief is opposite, she uses 
"keep". Each belief is possible and therefore each of the two actions can be assumed as 
instant optimal. Summing up, we come to the following table for p:(t): 



We consider Table 3.6 as a seller feedback; call it instant optimal. 

pz ( t )  

3.3 Equilibria 

We will call S- and B-feedbacks composed, respectively, of instant optimal seller and buyer 
feedbacks instant optimal. A control law composed of instant optimal S- and 23-feedbacks 
will be called instant optimal. 

Our main conjecture is 

Table 3.6 

(171) 
"keep " 

Proposition 3.1 An instant optimal control law is (a ,  b)-equilibric. 

Proposition 3.2 Let M0 = ( ( i i ( . ) ) ,  (ig(.))) be a population motion generated by an 
instant optimal control law. Then for every seller S and every buyer B, (i%(t), ig( t ) )  = 
(1,2) = ( "buy", 'low price" ) for all t suficiently large. 

(172) 
"keep" 

Prove Propositions 3.1 and 3.2. Fix an instant optimal control law ((Pi), (Pi)), and 
arbitrary control law ((P,'), (PE;)), arbitrary groups S* and B* of sellers and buyers, 
respectively. Build the control law ((Pg*), (Pi)) where Pi* = Pi for S @ S* and Pi* = P,' 
for S E S*.  Take an arbitrary population motion MO* generated by this control law. 
Similarly, build the control law ((Pi), (P2)) where PgO = Pi for B @ B* and P$ = PE; 
for S E S*, and take an arbitrary population motion M*O generated by this control law. 

We base on the following lemmas. 

Lemma 3.1 Let B be an arbitrary buyer and S[t] be the B's partner at t along the 
population motion MO*.  Then (isrtl(t), iB(t)) E {(1,2), ( 2 , l ) )  for all t suficiently large. 

(231) 
"change " 

Lemma 3.2 Let a seller S not belong to S* and B[t] be the S's partner at t along the 
population motion MO*. Then (is(t), iB[q(t)) = (1,2) for all t suficiently large. 

(272) 
"keep " or "change " 

Lemma 3.3 Let a buyer B not belong to B* and S[t] be the B's partner at t along the 
population motion M*'. Then (is[tl(t),iB(t)) = (1,2) for all t suficiently large. 

Proposition 3.2. follows immediately from Lemmas 3.2 and 3.3 by putting P,' = Pi, 
P;, = P i .  

Prove Proposition 3.1. By Proposition 3.2 for an arbitrary seller S, it holds min J'(M') = 

al2. By Lemmas 3.1 and 3.2 we have, respectively, max JS(MO*) 5 rnax{alz, azl) = a12 
if S E S*, and min JS(MO*) = a12 if S @ S*. The first property from the def- 
inition of an equilibric control law is verified. The second one is verified similarly. 
Namely, by Proposition 3.2 for an arbitrary buyer B, it holds min JB(MO) = b12. Ob- 
viously max JB(M*O) 5 max{bll, b12, bzl, bz2) = b12 if B E B*, and by Lemma 3.3 
min JB(M*O) = b12 if B @ B*. Proposition 3.1 is proved. 

Prove Lemma 3.1. Take an arbitrary buyer B. If at a certain t S[t] and B play (along 
MO*) (1,2) or (2,1), the same is at t + 6, i.e. S[t + 61 and B play (1,2) or (2,l).  Indeed, 
if S[t + S] plays the same strategy as S[t], then, no matter if B is activated at t or not, 
she acts "keep" (see Table 3.1), and plays with S the same as with S[t]. If S plays the 
other strategy as S[t], then B acts "change" (see Table 3.1), and therefore plays with 
S (2,l) or (1,2) provided she plays with S[t] (1,2) or (2,1), respectively. Hence for all 



times greater than t ,  B plays with her partners (1,2) or (2,l).  Let at a certain time J B 
play - with her partner - (1,l) or (2,2). By the regularity condition, there is a minimum 
t > J at wich B either jumps or is activated. If B jumps at t, then either she changes her 
strategy at t ,  and thus t is necessarily B-active, or her partner's strategy at t + 6 differs 
from that a t  t ;  the latter also implies that t is B-active. Therefore, we conclude that B 
is necessarily activated at t. Hence, B acts at t in accordance with Table 3.1 (where S 
is the B's partner at t + 6). Her action pL(t) moves (S, B) to (1,2) or (2,l). We get the 
previous situation. Lemma 3.1 is proved. 

Prove Lemma 3.2. Take a seller S not belonging to S* .  By Lemma 3.1 for all suf- 
ficiently large t every buyer B plays with her partner (along M O * )  either (1,2) or (2,l) 
(we take into account that the number of buyers is finite). Since for every such t ,  S plays 
with a certain buyer, we conclude that for all sufficiently large times S and her partner 
play either (1,2) or (2,l).  Let us consider only such large times. At (1,2) the S's action 
is "keep" (see Table 3.6); therefore if S arrives at (1,2), she never leaves it. If S plays 
(2,l) at some t ,  then, by the regularity condition, there exists a J > t at which S either 
jumps or is active. A jump at J without S being active at this time means that at J + S 
S - together with her partner - play (2,2). This is impossible. Hence S is active a t  J. 
According to Table 3.6, the S's action at J is "change". Thus, at J + S S - with her 
partner - move to (1,l) or (1,2). The first case is impossible. Consequently, starting from 
J + S, S plays with her current partners only (1,2). 

Lemma 3.3 is proved similarly. Namely, modifyting unessentially the proof of Lemma 
3.1, we establish that for all t suffiviently large, it holds (iqt1(t), iB(t)) E {(1,2), (2 , l ) ) .  
The rest of the proof is similar to that of Lemma 3.2, the above property playing the role 
of Lemma 3.1. 

3.4 Stationarity of Equilibric Motions 

The property of population motions indicated in Proposition 3.2 will be called (1,2)- 
stationarity. Proposition 3.2 admits the following generalization. 

Proposition 3.3 If ((Pz),  (Pi)) is (a ,  b)-equilibric, then every population motion gener- 
ated by ((P;), ( P i ) )  is (1,2)-stationary. 

Indeed, suppose that there is a population motion M* = ((i:(.), (i;3(.))) generated by 
((Pz), (Pi)) which is not (1, 2)-stationary. Then one of the two cases takes place: (i) there 
exists a seller S such that for infinitely many t ,  (i;(t), i i l t l ( t ) )  = (k, 1) # (1,2) where B[t] 
is the S's partner at t along the population motion M*, or (ii) there exists a buyer B such 
that for infinitely many t ,  (i;[,](t), i;3(t)) = (k, 1) # (1,2) where S[t] is the B's partner at t 
along M*. If (i) takes place, then among buyers B[t] a one buyer B is repeated infinitely 
many times, and we have (ii) with S[t] = S. Similarly, (ii) implies (i) with B[t] = B. 
Therefore assume without loss of generality that there exist a seller S and a buyer B such 
that along the population motion M*, S and B are partners at infinitely many times t 
every time playing (k, 1). The minimum of JS at M* - denote it J: - is no bigger than akl, 
and the minimum of JB at  M* - denote it J: - is no bigger than bkl .  Let (k, 1) = (2,2). 
Then J: 5 b22 < min{b12, bnl) .  The last value is no bigger than the minimum of JB at an 
arbitrary population motion generated by ((Pi), (P:)) where (Pg) is the instant optimal 
B-feedback; this follows from Lemma 3.2 (where S* = S and B* coincides with B minus 
B) .  Consequently, ((Pi), (Pi)) is not (a ,  b)-equilibric. The same is obtained similarly in 
the case (k, 1) = (1,l). Let (k, I )  = (2 , l ) .  Then J: 5 a21 < min{all, a12) The last 
value is no bigger than the minimum of JS at an arbitrary population motion generated 



by ((PSI, (Pi)) where Ps prescribes "change" at the lower line and "keep" at the upper 
line. Consequently, (P;, P;)) is not (a,  b)-equilibric. Proposition 3.3 is proved. 

Proposition 3.4 Proposition 3.3 is irreversible. Namely, if a control law ((P;), (Pi)) 
is such that an arbitrary population motion generated by it is (1,2)-stationary, then 
((P;), (Pi)) is not necessarily (a ,  b)-equilibric. 

Indeed, let Pj: prescribe "keep" at the upper line and "change" at the lower line, and 
Pi prescribe "keep" at the right column and "change" at the left column. The (1,2)- 
stationarity property takes place for any population motion generated by ((P;), ( P i ) ) .  
Hence for an arbitrary seller S, JS takes value a12 at any such population motion. On the 
other hand, JS takes the greater value a22 at a population motion generated by the control 
law ((PS), (P;))) where Ps prescribes "keep" in any position; the above (constant) popu- 
lation motion occurs if all sellers and buyers play 2 at t = 0. Consequently, ((P;), (Pi)) 
is not (a, b)-equilibric. 

4 Evolutions of Cluster Nurrtbers 

4.1 Clusters of Partner Pairs 

In this section we look at the population evolutions from a "far away" point where a single 
individual is not seen. Only the numbers of the groups (clusters) of partner pairs playing 
different strategies are distinguished. In other words, we project population motions onto 
the space of the numbers of clusters and track their evolutions. The goal is to  describe 
macro-level transitions resulting into individual efforts and driving the populations along 
equilibric trajectories. 

We understand a cluster as a group of partner pairs playing the same strategies. 
For a cluster of partner pairs playing at time t a strategy pair (k ,  1) we will use the 
notation Gkl(t).  The sets of all sellers and buyers playing within a cluster Gkl(t)  will 
be denoted, respectively, Gf,(t) and G4fi(t). By nkl(t) we will denote the number of the 
partner pairs belonging to a cluster Gkl(t), or, equivalently, the number of individuals 
in each of the groups Gfl(t) and G4fi(t). Note that collections n(t) of numbers nkl(t) 
( k ,  1 = 1,2) determine the total payoffs KS(t) and KU( t )  to  the populations S and B at 
time t; namely, 

In this sense, a collection of numbers nkl(t) provides minimal characterization of a popu- 
lation state at time t.  We will be interested in modeling evolutions of these numbers. 

Each population motion M (speaking of a population motion we always imply that it 
is generated by a certain control law) determines an evolution of clusters: at every time t 
Gkl(t) is the collection of all partner pairs (S, B) occuring at t along M and playing (k ,  1). 
This evolution identified with the function G(.) = (GI1(.), (G12(-), (G21(-), ( G z ~ ( - ) )  will be 
called the cluster image of the population motion M. Taking cluster numbers nkl( t)  occur- 
ing along the cluster image G(,),  we come to the function n(.) = (rill (.), n12(-), nzl(.) ,  n22(.)); 
call it the number image of the population motion M. Number images of population mo- 
tions are now in the focus of our study. 



4.2 Local Transitions and Number Evolutions 

Specify the mechanism driving number images of population motions. 
Take the number image n(.) = (rill(.), n12(.), nzl(-),  n22(.)) of an arbitrary population 

motion M and consider the transition from n(t) to n(t + 6). We represent it as the 
following three-step procedure. 

Step 1 (sellers' decision making). The individual games at t are over, a part of sellers 
are activated, and some of them act "change". The output at this step is the numbers 
Xl (t + S) and Xz(t  + 6) of sellers who will play 1 and 2 respectively at t + S. The transition 
is expressed as follows. Let ukl(t) be the number of all sellers from Gfl(t) acting "change". 
Note that 

~ k l ( t )  i nkl(t) (k ,1  = 1,2) (2) 

Put 

u(t) = -u11(t) - u12(t) + u21(t) + u22(t) 

Then 

where 

x i ( t )  = nil (t)  + nlz(t), Xz(t) = nal(t) + n22(t) = N - Xl (t) ( 5 )  

are, respectively, the numbers of sellers playing 1 and 2 at t. Note that u(t) is the 
increment of the number of sellers playing 1 which one gets after the t-to (t + 6) transition 
(u(t) could be negative). 

Step 2 (partners mixing). Buyers come to sellers; partner pairs for t + S are formed. 
At the output we have the numbers mkl(t) of the pre-clusters Ekl(t  + 6). The pre-cluster 
Ekl( t  + 6). is the set of those partner pairs where the seller is ready to play k and the 
buyer (having yet no strategy for t + 6) played 1 at t. Let qilYk(t) be the number of all 
buyers who emerge from G$(t) and meet sellers ready to play k at t + 6. Note that qilTk(t) 
is subject to 

Then for the numbers mkr(t)  of the pre-clusters we have 

Step 3 (buyers' decision making). A part of buyers (those who are sent a message 
"decide" or find their partners playing strategies different from those at t )  are activated 
and some of them act "change". Pre-clusters Ekr(t  + S) turn into clusters Gkr(t + 6). Note 
that a buyer's 1-to-11 strategy change moves a partner pair from a pre-cluster indexed kl 
to the cluster indexed k l l .  The corresponding transition is expressed as follows. Let vkr (t) 
be the number of buyers who, after finding themselves - together with their partners - in 
the pre-cluster Ekl(t + S), change their strategies before t + S. Clearly, 

For the numbers nkr(t + 6) of clusters Gkl(t + 6) we have 



Thus we conclude that if n(.) = (rill(-), n12(.), nzl(-) ,  n22(-)) is a number image of a 
certain population motion, then at every time t there exist nonnegative integers ukl(t),  
satisfying (2), Xk( t  + 6) satisfying (4), (3), qil,k(t) satisfying (6), (7), and vkl(t) satisfying 
(9), such that the transition from n(t) to n(t + 6) is given by (8), (10). Every function 
n(.) = (n l l  (.), n12(-), n21(.), n22(-)) having the above property will be called a number 
evolution. The brief summary is 

Proposition 4.1 The number image of an arbitrary population motion is a number evo- 
lution. 

Proposition 4.1 is inverted as follows. 

Proposition 4.2 Every number evolution is the number image of a certain population 
motion. 

We omit the proof of Proposition 4.2. 
Propositions 4.1 and 4.2 show that number evolutions and only they are number images 

of population motions. 

4.3 Number Images under Instant Optimal &Feedback 

Let us focus on number images of "partially optimal" population motions, i.e. those 
generated by control laws where one of the feedbacks is instant optimal (recall that instant 
optimal control laws are equilibric, see subsection 3.3). Our goal is to provide a rational 
interpretation for local transitions of cluster numbers along these motions. Namely, we 
will show that these transitions follow the principle of local increasing of a total payoff; 
current total payoffs have thus the sense of fitness functions ([see Friedman, 19921) guiding 
the populations equilibrically. 

In this and the next subsections we deal with instant optimal feedbacks of the popu- 
lation of buyers (a B-feedback). 

Fix the instant optimal B-feedback (Pi) and take a population motion M generated 
by the control law ((Ps), (Pi)) where (Ps) is an arbitrary S-feedback. Consider the 
number image n(- )  of M. The transition from n(t) to n(t + 6) passes through the three- 
steps procedure described in the previous subsection. The numbers introduced in this 
procedure, satisfy the relationships (2) - (10). The B-feedback (Pi) determines the 
values vkl(t). Recall that vkl(t) is the number of buyers who find themselves - together 
with their partners - in the pre-cluster Ekl(t  + 6), and change their strategies. We put 

where vLyut)(t) and vgec)(t) are the numbers of the above buyers who are activated, re- 
spectively, automatically (by a strategy change of their partners) and through a message 
"decide ". 

Consider the first of the above groups of buyers. 
Recall that the pre-cluster Ekl( t  + 6) is the set of those partner pairs (at t + 6) where 

the seller is ready to play k and the buyer played 1 at t. The fact that a buyer B coming 
from G$(t) to Ekl( t  + 6) notices that her partner plays at t + 6 a strategy differing from 
that played by her partner at t is reflected by i # k. Every such buyer B is automatically 
activated and implements her action pB(t) in accordance with her instant optimal feedback 
Pi. This action is subject to Table 3.1 where is(t + 6) = k and iB(t) = 1. From Table 
3.1 we see that pB(t) = "change" if and only if k = 1. Thus we conclude that the 



buyers coming from G f k k ( t )  to Ekk(t + 6 )  and only they are activated automatically and 
change their strategies. The number of such buyers is qYkk,k(t). Each of them moves 
the corresponding partner pair from the pre-cluster Ekk( t  + 6 )  to the cluster G k Y k ( t  + 6 ) .  
Consequently 

( n u t )  v!?""(t) = 92l,l(t), v12 ( t )  = 0 

A buyer B activated by a "decide" acts "change" if and only if she finds herself - 
together with her partner - in Ekk( t  + 6) .  Hence 

All buyers coming to Ekk( t  + 6 )  from G f k k ( t )  are activated automatically; they were 
already taken into account. All other buyers activated by a "decide" and acting "change" 
come to E k k ( t  + 6 )  from G f k ( t ) ;  their number is no bigger than qkk,k(t). Hence 

Note that if a buyer B travels - together with her partner - from G f k ( t )  to Ekk( t  + 6 ) ,  and 
does not change her strategy, she plays - together with partner - at t +6 the same strategy 
pair as at t .  Due to the regularity condition this can be repeated only a finite number 
of times; finally, at a certain t B is activated (a B's jump implies that B is activated 

as well). At this t B acts "change" yielding v t c ) ( t )  > 0. Thus we conclude that every 
sequence of adjoining times ( where qkk,k(() > 0,  is either empty or stops at a t where 

vLFC)(t) > 0 ( k  = 1,2) .  This property of functions vLFC)(.) will be called nondegeneracy. 
Substituting the obtained values for vk l ( t )  in (8), ( l o ) ,  we get 

We summarize this as follows. 

Proposition 4.3 Let ( P i )  be the instant optimal 0-feedback, ( P s )  be an arbitrary S -  
feedback, M be a population motion generated by the control law ( ( P s ) ,  ( P i ) ) ,  and n(.)  
be the number image of M .  Then the equalities (17), (18) hold where junctions v$:")(.), 
v$:'')(.) are nondegenerate and satisfy (16). 

Backward speculations lead to the reverse conjecture (we omit the proof): 

Proposition 4.4 Let n(.) be a number evolution such that the equalities ( l7) ,  (18) hold 
where functions v$:~')( .) ,  v$:~')(.) are nondegenerate and satisfy (16). Then there exist 
an S-feedback ( P s )  and a population motion M generated by the control law ( ( P s ) ,  ( P i ) )  
such that n ( . )  is the number image of M .  

4.4 Number Images under Instant Optimal B-Feedback 

Let us focus on number images of "partially optimal" population motions, i.e. those 
generated by control laws where one of the feedbacks is instant optimal (recall that instant 
optimal control laws are equilibric, see subsection 3.3). Our goal is to provide a rational 
interpretation for local transitions of cluster numbers along these motions. Namely, we 



will show that these transitions follow the principle of local increasing of a total payoff; 
current total payoffs have thus the sense of fitness functions ([see Friedman, 19921) guiding 
the populations equilibrically. 

In this and the next subsections we deal with instant optimal feedbacks of the popu- 
lation of buyers (a  B-feedback). 

Fix the instant optimal B-feedback (Pi) and take a population motion M generated 
by the control law ((Ps), ( P g ) )  where (Ps) is an arbitrary S-feedback. Consider the 
number image n(.) of M. The transition from n(t) to n(t + 6) passes through the three- 
steps procedure described in the previous subsection. The numbers introduced in this 
procedure, satisfy the relationships (2) - (10). The B-feedback ( P i )  determines the 
values vkl(t). Recall that vkl(t) is the number of buyers who find themselves - together 
with their partners - in the pre-cluster Ekl(t  + S), and change their strategies. We put 

' d e ~ ) ( ~ )  var ( t )  = v!;"')(t) + vkl (15) 

where ~!;"~)(t) and vLfec)(t) are the numbers of the above buyers who are activated, re- 
spectively, automatically (by a strategy change of their partners) and through a message 
"decide ". 

Consider the first of the above groups of buyers. 
Recall that the pre-cluster Ekl( t  + S) is the set of those partner pairs (at t + S) where 

the seller is ready to  play k and the buyer played 1 at t .  The fact that a buyer B coming 
from G:(t) to Ekl(t + 6) notices that her partner plays a t  t + S a strategy differing from 
that played by her partner a t  t is reflected by i # k. Every such buyer B is automatically 
activated and implements her action pB(t) in accordance with her instant optimal feedback 
P i .  This action is subject to Table 3.1 where is(t + 6) = k and iB(t) = 1. From Table 
3.1 we see that pB(t) = "change" if and only if k = 1. Thus we conclude that the 
buyers coming from Gykk(t) to Ekk( t  + 6) and only they are activated automatically and 
change their strategies. The number of such buyers is qlkk,k(t). Each of them moves 
the corresponding partner pair from the pre-cluster Ekk(t  + S) to the cluster Gklk(t + 6). 
Consequently 

v!;""(t) =q21,1(t), V;;Ut)(t)=O 

A buyer B activated by a "decide" acts "change" if and only if she finds herself - 
together with her partner - in Ekk(t + 6). Hence 

All buyers coming to Ekk(t + 6) from Gykk(t) are activated automatically; they were 
already taken into account. All other buyers activated by a "decide" and acting "changen 
come to Ekk(t + 6) from Gfk(t);  their number is no bigger than qkk,k(t). Hence 

Note that if a buyer B travels - together with her partner - from Gfk(t) to Ekk(t + S), and 
does not change her strategy, she plays - together with partner - at t + S the same strategy 
pair as at t .  Due to the regularity condition this can be repeated only a finite number of 
times; finally, at a certain t B is activated (a B's jump implies that B is activated as well). 
At this t B acts "change" yielding v g C ) ( t )  > 0. Thus we conclude that every sequence 



of ajoining times [ where qkk tk ( [ )  > 0,  is either empty or stops at a t where v iFc) ( t )  > 0 
( k  = 1,2) .  This property of functions v k c ) ( . )  will be called nondegeneracy. 

Substituting the obtained values for v k l ( t )  in ( 8 ) ,  ( l o ) ,  we get 

We summarize this as follows. 

Proposition 4.5 Let ( P i )  be the instant optimal B-feedback, ( P s )  be an arbitrary S -  
feedback, M be a population motion generated by the control law ( ( P s ) ,  ( P i ) ) ,  and n ( . )  
be the number image of M .  Then the equalities (1 7), (1 8) hold where functions v$pc) ( . ) ,  

( d e c ) ( . )  are nondegenerate and satisfy (16). v22 

Backward speculations lead to the reverse conjecture (we omit the proof): 

Proposition 4.6 Let n ( . )  be a number evolution such that the equalities (17), (18) hold 
where functions v! : '~) ( - ) ,  v $ $ ~ ) ( . )  are nondegenerate and satisfy (16). Then there exist 
an S-feedback ( P s )  and a population motion M generated by the control law ( ( P s ) ,  ( P i ) )  
such that n ( . )  is the number image of M .  

Consider a number evolution n ( - )  and a population motion M satisfying the conditions 
of Proposition 4.5 (4.6). Compare the numbers nki ( t  + 6 )  of clusters G k l ( t  + 6 )  with the 
numbers m k l  ( t  ) of pre-clusters Ekl ( t  + 6) .  Due to (17),  (18) and ( 8 )  we have 

Moreover, the first two inequalities are strict if either q21(t)  > 0 or v!FC)( t )  > 0,  and the 

second two inequalities are strict if either q12(t) > 0 or v$$')(t) > 0. Hence (recall the 
class of the matrix b) 

K D ( n ( t  + 6 ) )  > K D ( m ( t ) )  (21)  

with the strict inequality holding provided one of the above mentioned conditions takes 
place. Here (see ( 1 ) )  K D ( m ( t ) )  m ( t )  is the collection of numbers m k l ( t ) )  is the payoff the 
population 23 would get at t + 6 if all buyers following M up to t would not change their 
strategies between t and t + 6, and K D ( n ( t  + 6)) is the actual payoff to 23 along M at  
t + 6. 

Thus we conclude that along M ,  at every current state where new partner pairs are 
formed, the resulting action of the population B is such that it improves a current total 
payoff to B. 

A number evolution n( . )  possessing the above property will be called 23-fitting. Sum- 
marize: 

Proposition 4.7 Let ( P i )  be the instant optimal B-feedback, ( P s )  be an arbitrary S -  
feedback, M be a population motion generated by the control law ( ( P s ) ,  ( P i ) ) ,  and n ( . )  
be the number image of M .  Then n ( . )  is 23-fitting. 



Proposition 4.8 Proposition 4.7 is irreversible. Namely, if a number evolution n ( - )  is 
13-fitting, then for every population motion M whose number image is n ( . )  there may not 
exist a S-feedback ( P s )  such that M is generated b y  ( ( P s ) ,  ( P i ) )  where ( P i )  is the instant 
optimal 13 -feedback. 

Indeed, let a number evolution n ( - )  be such that v12( t )  = 0,  v z 2 ( t )  = 0,  and v l l ( t )  
and v z l ( t )  are positive whenever, respectively, m l l ( t )  and m z l ( t )  are positive (we use the 
notations of subsection 4.2). Note that due to ( 1 )  and (10) 

where the first and the second brackets are, respectively, positive and negative; hence, if 

the inequality (21) is satisfied strictly. Assume (22) if both m l l ( t )  and m z l ( t )  are positive, 
and v l l ( t )  = v z l ( t )  = 0 otherwise. Then (21) holds, and consequently n ( . )  is 23-fitting. 

Put  u k l ( t )  = 0 (all sellers act "keep" everywhere), and let nl l  ( 0 )  and nzl(0)  be positive. 
It can easily be shown there are t such that m l l ( t )  and m z l ( t )  are positive. At such a t ,  
by definition v l l ( t )  and v2 l ( t )  are positive, yielding (see (10))  

n21 ( t  + 6 )  < m21(t), n22(t + 6 )  > m22(t) (23) 

Hence n ( . )  is not the number image of a population motion generated by a control law 
( ( P s ) ,  ( P g ) ) ;  indeed, otherwise the inequalities (20) opposite to (23) would hold. 

4.6 Number Images under Instant S-Opt imal Feedback 

Fix an instant optimal S-feedback ( P i )  and take a population motion M generated by 
the control law ( ( P i ) ,  ( P B ) )  where ( P B )  is an arbitrary 23-feedback. Consider the number 
image n ( . )  of M. In the three-step procedure of the transition from n ( t )  to  n ( t  + 6 ) ,  
the 13-feedback ( P i )  determines the numbers u k l ( t )  of sellers from G t l ( t )  acting "change". 
According to the Table 3.6 P i  prescribes 

Ull( t )  = 0, u12(t) = 0 (24) 

The fact that P i  prescribes "change" a t  ( 2 , l )  and the regularity condition imply (like 
in the previous subsection) that every sequence of ajoining times [ where n z l ( [ )  > 0,  
is either empty or stops a t  a t where u p l ( t )  > 0. This property of u z l ( - )  will be called 
nondegeneracy. For the number u ( t )  ( 3 )  of the sellers changing 1 to 2 we have 

u ( t )  = uz1(t) + uzz(t) 2 0 

Referring to ( 2 )  we get 
~ 2 1 ( t >  < n21(t) u22(t) < nzz(t)  

Thus we have 

Proposition 4.9 Let ( P i )  be an instant optimal S-feedback, ( P B )  be an arbitrary 23- 
feedback, M be a population motion generated b y  the control law ( ( P i ) ,  ( P B ) ) ,  and n ( . )  
be the number image of M .  Then (24), (26) are satisfied and the function u ~ ~ ( - )  is 
nondegenerate. 

Backward speculations lead to the reverse conjecture: 

Proposition 4.10 Let n( . )  be a number evolution such that the function u ( . )  is nonde- 
generate and satisfies n21. Then there exist a 23-feedback ( P B )  and a population motion 
M generated b y  the control law ( ( P i ) ,  ( P B ) )  such that n ( . )  is the number image of M .  



Consider a number evolution n(.) defined in Proposition 4.9. 
Fix a t and do the following (imaginary) operations. 
Replace the collection U(t) of values ukl(t) actually formed at the first step of the 

t-to-(t + 6) transition procedure (subsection 4.3) by an arbitrary admissible collection 
U*(t) = (uil(t)),  i.e. that satisfying 

At step 1 of the t-to-(t + 6) transition procedure use U*(t) (instead of U(t)). 
At step 2 take an arbitrary mixture of partner pairs that could, potentially, happen 

at t + 6 (after using U*(t)); this mixture is determined by certain values q;lYk(t) satisfying 
(6) and 

C qt*1,k(t) = Xk.(t + 6) (k = 172) 
i,l=1,2 

(27) 

where X; ( t  + 6) , Xi (t + 6) are given by 

Take arbitrary increments vkl(t) (15) that might occur at step 3 provided (i) a part 
of buyers would be activated at t ,  and (ii) all activated buyers would act in accordance 
with their instant optimal feedbacks. Consider the corresponding collection n*(t + 6) = 
(ni l  (t + 6)) of cluster numbers (resulting in step 3); as it was shown in subsection 4.3, 
(see (17), (18)) we have 

Obtained is a collection of cluster numbers that might occur at t + 6 if U*(t) would 
act at step 1, a certain mixture of partner pairs would be performed at step 2, and all 
buyers would act instant optimally at step 3. Take the corresponding payoff Ks(n,(t + 
6)). Minimize it with respect to all admissible (above described) second- and third-step 
transition indexes qil,k(t) and vkl (t);  denote the obtained infimum by Ks(n(t) ,  U*(t)). 
This value has the sense of the worst payoff that could be provided to the population 
S at  t + 6 if at step 1 all sellers' actions would result in U*(t) and at step 3 all buyers 
would respond instant optimally. Call Ks(n(t),  U* ( t))  the next worst payoff (at n(t)) .  
Observing steps 2 and 3 we easily see that the next worst payoff KS(n(t) ,  U*(t)) depends 
only on the resulting number X;(t + 6) of sellers playing 1 at t + 6 (determined by U*(t) 
through (28), (29) a t  step 1). Taking this into account, use for the next worst payoff the 
notation KS(n(t) ,  X;(t + 6)). 

Consider the passive next worst payoff I(,f(n(t)) corresponding to the case where the 
numbers of sellers playing 1 and 2 are not changed while passing from t to t + 6 (say, all 
sellers play their old strategies). In this case u*(t) = 0, X;(t + 6) = Xl (t) (see (28)); 
consequently 

rc,S(n(t)) = ~ ( ~ ( n ( t ) ,  xl ( t ) )  (32) 



We will show that the actual increment u(t) (3) of the number of l-playing sellers 
resulting step 1 of the t-to-(t + 6) transition procedure along n(- ) ,  is such that the cor- 
responding next worst payoff is no smaller (from time to time strictly greater) than the 
passive one. More accurately, for Xl ( t  + 6) given by (4), first, it holds 

and, second, every sequence of adjoining times 5 where nz1 (5) > 0, is either empty or 
stops at a t where the inequality (33) is strict. A number evolution n(.) posessing this 
property will be called S-fitting. 

Our resulting statement is 

Proposition 4.11 Let (Pi) be an instant optimal S-feedback, (PB) be an arbitrary 23- 
feedback, M be a population motion generated by the control law ((Pi), (PB)), and n(.) 
be the number image of M.  Then n(.) is S-fitting. 

The proposition follows immediately from (32), the inequality u(t)  2 0 (see (25)), 
nondegenerac~ of u21 (.) and the following lemma. 

Lemma 4.1 The next worst payofl ICs(n(t), X;(t + 6)) is strictly increasing in X;(t + 6). 

Let us prove Lemma 4.1. Due to (30), (31) we have 

In order to obtain ICs(n(t),X;(t + 6)), we must minimize the above expression first, 

over ~ $ : ~ ~ ) ( t ) ,  v$$C) ( t) ,  and then over qsYk(t). Perform the first minimization. Recall that 

(dec)(t) are nonnegative and subject to the constraints (16). The inequalities v!fC)(t), v22 
al l  < a12 and a21 < a22 (recall the class of the sellers' payoff matrix a )  yield that KS(n,(t+ 

(dec) 6)) is minimized by ~ $ : ~ ~ ) ( t ) )  = 0, vz2 ( t ) )  = q22,2(t). With these v!teC)(t), v$iec)(t), we 

get 

Taking into account (27) and (28), continue as follows 

Minimize this value with respect to ~ ~ ~ , ~ ( t ) .  From (6), (27) we get the constraint 



Let us show that the equality is admissible. Suppose that the minimum in (35)  equals 
X; ( t  + 6 ) .  Then the numbers 

satisfy the equalities ( 6 ) ,  ( 27 ) ;  consequently the equality in (35)  is admissible. If the 
minimum in (35)  equals n l l ( t ) ,  then ( 6 ) ,  (27)  are satisfied by 

for u * ( t )  1 0 ,  and by 

~ l l , l ( t )  = n11(t) 

q12,1(t) = n12(t) + u*(t)  

~ 2 1 , i  ( t )  = min{n2l ( t ) ,  u* ( t ) )  

~ 2 2 , l ( t )  = max{u* ( t )  - q21,1(t), 0 )  
qil,l(t) = nil@) - qil,l(t) 

for u*( t )  > 0. Thus, indeed, the equality in (35)  is admissible. Coming back to (34)  and 
noticing that a l l  - a12 < 0 we see that (34)  is minimized b y  the maximal q l l , l ( t ) ;  the 
latter is, as it was stated, the right hand side of (35) .  If qll ,1(t)  = n l l ( t ) ,  then 

If qi i , i ( t )  = X; ( t  + S ) ,  then 

Ks(n , ( t  + 6 ) )  = (a l l  - a l z )X ; ( t  + 6 )  + a21N + (aiz - a21)X;(t + 6 )  
= a2lN + (al l  - a z l ) x ; ( t  + 6 )  

In both cases the obtained expression providing K s ( n ( t ) ,  X, ( t+S))  has positive coefficients 
by X,(t  + 6 ) .  By this, the lemma is proved. 

Backward speculations (we omit them) allow to establish 

Proposition 4.12 Proposition 4.11 is reversible. Namely, if a  number evolution n( . )  is 
S-fitting, then for every population motion M whose number image is n ( . )  there exists 
a  B-feedback ( P B )  such that M is generated by ( ( P i ) ,  ( P B ) )  where ( P i )  i s  an  instant 
optimal S-feedback. 

5 Upper-Level Population Game 

5.1 Centralized Feedbacks 

In this section we compare our previous model based on individual decision making with 
a centralized one. The latter assumes that the individuals have no personal interests; 



their goal is to maximize the limit payoff to a whole population. In reaching this goal, 
the centralized decision making pattern seems to be the best. We assume it. Thus, we 
suppose that the sellers (buyers) delegate the right to working out current individuals' 
actions to a Center. The individuals agree beforehand that they perform all commands 
of their Center. Our purpose is to show that the centrailzed control pattern is unable to 
provide a better payoff to a population than the decentralized one. 

In this subsection we describe admissible regulation rules in the centralized pat tern 
(centralized feedbacks). 

It is assumed that a t  every time step the Centers work out their commands to their 
individuals having complete information of a current populations' history. A populations' 
history up to time t is a collection 

where families (is(.) I t ) )  (S E S) and (iB(-) I t ))  (B E B) are histories of strategies 
played by sellers and, respectively, buyers up to, and including, t (the dot stands for the 
past time argument T running from 0 to t ) ,  and P ( .  ( t )  is the history of partner pairs: 
for every past time T P(T ( t )  is the collection of all partner pairs (S, B) occured at T. 

A centralized feedback of the population S (a centralized S-feedback) is a rule to pre- 
scribe a particular action to every seller at step 1 of every t-to-(t + 6) transition procedure 
(subsection 4.2), on the basis of a current populations' history H( t ) .  Working out a 
centralized S-feedback and implementing it is, in accordance with the centralization prin- 
ciple, the task of the sellers' Center. Given a centralized S-feedback IIS and a populations' 
history H( t ) ,  every action preassigned by IIS at H(t) to every seller is performed at step 
1. 

A centralized B-feedback is a rule to prescribe an action to every buyer at step 3 of 
every t-to-(t + 6) transition procedure, on the basis of a current populations' history H ( t )  
and a collection (Ekl(t + 6)) of pre-clusters resulting step 2; pairs (H( t ) ,  (Ekl( t  + 6))) 
will be called extended population histories. Given a centralized B-feedback II" and an 
extended populations' history (H(t ) ,  (Ekl(t + 6))),  the actions worked out by the Central 
Regulation Office of the population B in accordance with II" are performed by all buyers 
at step 3. 

In such a way, a centralized control law being a pair (IIS, II") of a centralized S-feedback 
and a centralized B-feedback, generates a population motion M. 

5.2 Coupling Centralized and Decentralized Feedbacks 

In order to compare centralized feedbacks with decentralized ones, we will consider pop- 
ulation motions guided simultaneously by centralized and decentralized feedbacks. Along 
such a motion, individuals of one population are regulated from the Center, and those 
of the other one behave independently, being activated in accordance with the decision 
making pattern described in subsection 2.1. Recall that this pattern implies that in- 
dividuals are activated by messages "decide" (sellers' strategy changes activate buyers 
automatically). Thus, in a natural way we define a population motion generated by a 
S-centralized control law identified with a pair (IIS, (PB)) where IIS is a centralized S- 
feedback, and (PB) is a (decentralized) B-feedback, and a population motion generated 
by a B-centralized control low identified with a pair ((Ps), II") where II" is a centralized 
I?-feedback, and (Ps) is a (decentralized) S-feedback. 

Recall that previously the decentralized decision making pattern implied that individ- 
uals are activated under the regularity condition (subsection 2.5). We keep the regularity 



condition for a decentralized population playing against a centralized one; this will even- 
tually result in the equivalency of both regulation patterns. 

Thus, we assume the following S-regularity condition: along a population motion 
generated by an arbitrary B-centralized control law, it holds: for every seller S and every 
time t at which S jumps, there is a time ( > t at which S is either active or jumps. 

Symmetrically, the 23-regularity condition is assumed: along a population motion gen- 
erated by an arbitrary S-centralized control law, it holds: for every buyer B and every 
time t at which B jumps, there is a time ( > t at which B is either active or jumps. 

Note that assumptions outlined in Example 2.1 imply the S- and B-regularity condi- 
tions. 

5.3 Upper-Level Population Game 

Now, keeping in mind that all individuals pursue only the long run aims of their pop- 
ulations, we. allow every population choose between the centralized and decentralized 
control patterns. Extension of the number of control patterns - from 1 (centralization) 
to 2 (centralization or decentralization) - by no means decreases expected populations' 
benefits. 

According to which control patterns are chosen, four types of feedback pairs may occur. 
These are control laws occuring if both S and 23 are decentralized (subsection 2.4), S- 
centralized control laws corresponding to S centralized and 23 decentralized, B-centralized 
control laws corresponding to the opposite case (subsection 5.2), and centralized control 
laws occuring in case both populations are centralized. All these types of control proce- 
dures will be called extended control laws. Thus, writing an extended control law as a pair 
(IIS, II"), we imply that each component of it is either a centralized or a decentralized 
feedback of the corresponding population. Population motions generated by extended 
control laws of each of the above classes were defined earlier. We will operate with them 
as well as with their number images defined as in subsection 4.1. Note that in the course 
of a population motion, the Center of a centralized population can not detect (not being 
informed of that directly) whether the other population is centralized or not. 

The long run goal of the population S is maximization of the limit payoff, i.e. the 
limit of Ks(n(t))  where n(t)  = (nkl(t)) is the collection of cluster numbers at time t ,  with 
t going to infinity. If there is no limit, we, like in section 3, deal with the interval between 
the lower and upper limits. The interest of the population 23 is symmetric. Thus, we 
define on the population motions M the multivalued objective functionals JS, J" of the 
populations S and B by 

J'(M) = [lim inf Ks(n(t)),  lim sup Ks(n(t))] 
t-w t+w 

J"(M) = [lim inf KB(n( t ) ) ,  lim sup KB(n(t))]  
t+w t--*w 

where n( .)  is the number image of M. The upper-level population game is played between 
the populations S and B with respect to these functionals. A solution of the game is 
understood as a Nash equilibrium in the class of all extended control laws. 

Call an extended control law (II;f, II:) upper-level (a, b)-equilibric if for every extended 
control law (II:, II:), and every population motion M0 generated by (II;f, II;), it holds 
min JS(MO) > max J'(M*) where MO* is an arbitrary population motion generated by 
(II:, II:), and min J"(MO) 2 max JB(M*O) where M*O is an arbitrary population motion 
generated by (II;, II:). 



We understand now the long-run goal of a population as finding its component of an 
upper-level (a ,  b)-equilibric extended control law. 

5.4 Decentralized Upper-Level Equilibria 

Our main observation is that an upper-level equilibrium is reached in the class of de- 
centralized control laws; moreover, it is provided by instant optimal control laws being 
equilibric in the decentralized game between individuals (Proposition 3.1). This means 
that decentralized regulation where all individuals make their decisions independently and 
instant optimally with respect to their personal interests, is equivalent to best centralized 
regulation. 

The accurate formulation is as follows. 

Proposition 5.1 An instant optimal control law is upper-level (a,  b)-equilibric. 

Proposition 5.2 Let no(-) = (n:/(.)) be the number image of a population motion gen- 
erated by an instant optimal control law. Then ny,(t) = N for all t suficiently large. 

Proposition 5.2 follows immediately from Proposition 3.2. 
To justify Proposition 5.1, we refer to subsections 4.3 and 4.5 where number images 

of population motions guided by instant S- and B-optimal feedbacks were considered. 
Let us take a population motion M0 = ((i%(.)),  (ii(-)) generated by an instant optimal 
control law ((Pi), (Pg)) and a population motion MO* generated by the extended control 
law (n;, (Pi)) where IIs is an arbitrary centralized or decentralized S-feedback. Let n(.) 
be the number image of MO*. Now recall the three-step t-to-(t + 6) transition procedure 
for the number image n(- )  (subsection 4.2) and consider variables vkl(t) (15) and qkl(t) 
appearing at steps 2 and 3. Repeating the speculations which led us to Proposition 4.5, 
we come to the same statement for n(.) (the fact that (Pi) is coupled with, possibly, a 
centralized S-feedback does not matter). The statement claims that the equalities (17), 

(18) hold and functions v!:~')(.), v!:"')(.) are nondegenerate and satisfy the equalities 
(16). Now using Proposition 4.5, we conclude that there exist an S-feedback (Ps) and a 
population motion M = ((is(.)), (iB(-)) generated by the control law ((Ps), (Pi)) such 
that n( - )  is the number image of M. By Proposition 3.1 the control law ((Pi), (Pi)) is 
(a ,  b)-equilibric. Hence (see the definition in subsection 3.1) for every seller S, it holds 

min J S ( ~ O )  > max J'(M) 

Referring to the form of JS (subsection 3.1) and taking in account that the number of 
sellers is finite, we obtain 

a .o > ais( t) iB[t l( t )  - 
~S(t)i0,0,,,(t) - 

for an arbitrary E > 0 and all sufficiently large t ;  here BO[t] and B[t] are the 5"s partners 
at time t along the motions M0 and M respectively. Consequently, at every large t ,  the 
total payoffs Ks(no(t)),  Ks(n(t))  to the population S along M0 and M satisfy 

Passing to the lower limit on the left and the upper limit on the right provides 

min JS(M0) > max J ~ ( M )  - N E  



and, due to  arbitrariness of t, 

min J S ( M O )  > max J S ( M )  

But M has the same number image n( . )  as MO* yielding J S ( M )  = JS(MO*) .  Conse- 
quent ly, 

min J'(M') > max JS(MO*)  

Thus, for ( ( P i ) ,  ( P i ) )  the first property of an an upper-level ( a ,  b)-equilibric extended 
control law is established. 

Similarly, referring to Propositions 4.9, 4.10, we establish the second (symmetrical) 
property. 
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