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1. Introduction.

The statement of a calculation problem of a development

program and its involvement in general planning for social­

economic systems was discussed in [lJ. Difficulties of

solving the problem are due to its essential non-linearity

(combinatorial character) and high dimension.

Attempts to solve similar problems by using dynamic

programming techniques are well known to be inefficient and

1mIlractical.

Therefore we need to develop and apply other various

approximate and heuristic methods to deal with these problems.

In particular, the idea of utilizing indirect methods of

optimal control theory seems very promising to us.

In this paper we consider a model in differential form,

and also some approximate and heuristic techniques for solving

optimization problems on the basis of the model.

2. The Problem Statement.

Given a list of operations (jobs, actions) P, the perfor-

mance of which leads to achieving the system goals. Let these

operations be numbered.

The state of the operation i at the given moment t we

characterize by the number zi(t). We assume zi(t) is a

portion of the completed section of the operation at the

instant t. The action i is terminated if

iz (t) =1, i=l, ... ,N (1)

where N is a number of jobs in the program. We designate
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the moment t when (1) is completed by ti.
The initial state of the i-th operation could be

assumed equal to zero:

Zi(O) = 0, i = l, ... ,N (2 )

i
The mark or job number z increases during its performance.

i iThe rate or intensity of z we denote by u. So we have the

relationship

dz i i
dt (t) = u (t), i = l, ... ,N

The performance of jobs is usually subjected to con-

straints of two kinds.

(3 )

Group (a) is a group of logical constraints. It includes

constraints to the sequence in which some of the operations

are performed. These constraints are performed by the pre--

scribed partial ordering of operation performance. For

instance, figure 1 shows the logical sequence of a certain

program.

Figure 1

The representation in the figure means that operation 4 must

be completed before the two independent operations 5 and 6

e.ould start. We have assumed that operation numbers are

placed within circles and predecessor relations among the
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activities are shown by arrows.

Group (8) includes resource constraints and some others.

For instance, various conditions may be imposed on maximum

and minimum intensity of the job performance.

The (8) constraints we express in the following way:

n
l:

j=i
j = l,2, .•• M (4 )

where Rj is the inflow intensity of the type j resource, and

rt is the intensity with which the type j resources are con­

sumed while performing the i-th job with unit intensity. The

Ri and r~ we assume to be given for each instant t.
J

i = l, ... ,N (5 )

where hi(t) is maximum feasible intensity of the job perfor-

mance at the instant t.

In the model we consider z(t)

phase vector and the vector u(t) =

1 n
= (z (t), ... ,z (t) asa

1 n(u (t), ... ,u (t)) as a

control. We define the best control, or the best schedule

*u as the one in which a certain objective function I(u) is

minimized.

Remarks

Note that the model presented is quite general and

overlaps a wide range of scheduling problems. Below we

consider some of them. It is also a dynamic model because

the program development is considered over time and space,

all operations may change their intensities while being
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performed, and the inflow intensity is an arbitary function

of time.

3. Some Examples of Dynamic Scheduling Problems

Problem A:

Min T

subject to

(2), (3),

(a), (13)

z (T) ~ e, (6 )

Where e = N-dimensional vector with all components equal to

the uni t (e= ( I , I, ... , I) ) .

The problem is to perform the program for a minimum

time. In that case I(u) = T. T is the time of completing

the program. We shall say the program is completed if all

its operations are completed.

Problem B

s.t.

where

Min I Iz (T) - Zf I I

(2), (3),

(a), (8),

(7)

T given period of time (the period of planning);

I Ix-YI I - the distance between two points x and y in

N-dimensional space for some given metric.

For instance, the preference of some program states may be

given in form
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(8)

s.t.

A. = relative "weight" of j-th job in the program.
J

Problem c:

Min c (u, z)

(2), (3)

(a), ([3),

(6) •

The problem is to determine the time T of c;;ompleting

the program and tne schedule which minimize capital

(direct and/or indirect) costs of program performance

c(u, z).

Problem D:

Min

s.t. (2), (3)

(a), ([3)

(6) •

The problem is to minimize maximum deviation between the

time t~ (when the corresponding job is completed) and the

jdue time which is designated by t D. Where the fun~tion (x)

is defined as follows

) {o, x < °(x =
+ x, X > °
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Problem E:

s.t.

Min I Iu - u * I I
(2), (3)

(a), ((3).

(6) •

The problem is to minimize the deviation between a given

*plan u and actual modified control, which may be realized

under actual available resources. For instance, the

function may be defined in form.

TN. *. 2

l l: ].1. (uJ (t) - u J (t)) dt
j=l J

Where ].1. > 0 are relative "penalties" for the deviation.
J -

Problem F:

s.t.

where

*F (t)

*Min II F - F (u) II
(2), (3), (a), ((3), (6).

- certain given (desirable) resource consumption

by the program;

F(u(t)) = resource consumption under given constraints.

For example the objective function may be assumed as

T M Nf l: (fi(t) - l:
o i=l j=l

In a similar way many other problems may be stated and also

all objective functions described may be combined.
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To simplify the discussion we shall consider the solution

of Problem B. It should be emphasized that some of the problems

A-F are interconnected, in the sense that the solution of a

problem may be obtained on this basis of the solution of another

problem. For instance, instead of the time minimization problem,

*a set of problems B with fixed time T < T may be solved, where

*T is the optimal time of carrying out the program (i.e. an

optimal solution of the Problem).

*If T > T , there is an infinite set of ways to carry out

the program and problem A degenerates. But this difficulty is

easily overcome by the introduction of a fictitious *) job,

which can start when all the final actions of the program have

terminated. The intensity of this job should be assumed to be

constant and equal to liT.

The optimal time for performing this "lengthened" program

*will be greater than T and also greater than T. (T is chosen

in advance. Now, instead of the minimization problem for the

objective function (8) for the initial program, the minimization

problem can be solved for a similar objective function for the
"-

"lengthened" program, that is for extended vector z = (z, zN+l).

If the fictitious job has not started its performance at

* N+la given T, then T < T. On the other hand, if the number z .

*of the fictitious job becomes non-zero, then T > T. Thus

during computation, a dual upper and lower estimate is obtained

for the optimal time of performing the program.

*) We define a fictitious job as one which has non
zero duration and does not consume resource.
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4. Solution of Problem B

Let us consider the solution of the following problem:

1
N

zj(T))2Min I(u) - "2 E L(l - (9 )
j=l J

s.t. (2) , (3 )

(a) , ( S) , (6 )

Note that most of the computational methods for obtaining

optimal solution can be treated as a utilization of penalties.

In some cases, there is a IIfeed-back ll between the deviation

from the optimal solution and sixe of the penalty. This feed-

back is realized by means of the solution of a dual problem.

Here we use penalties of a discontinuous kind for violation

of the (a) constraints. Instead of system (3) with logical

constraints of (a) type, introduce the system (modified system)

1) 8 (1 (10)

with the (a) constraints and the condition (6) deleted.

Now every job can be performed (the corresponding u j may

be positive) until the previous operations have been completed,

or after zj has reached its final value 1. But the mark (job

number) zj will not increase under these conditions. The

intensity of performing an operation which has terminated or

is inadmissible under the (a) conditions can take values in an

interval [0, h (t)] ,( t E: [0, TJ). To avoid this lack of unique-
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ness, at such instants we shall choose u
j

= 0 from the set

of permissible values.

Under these conditions the problem B is equivalent to

the modified problem:

1
N

zj(T»2Min 2" 1:: A. (1 -
j=l J

s.t. dz j
u j 8 (1 zj) IT 8+ (z k 1) , zj (0) = 0

dt = - -
kEI' -:

J (11)

N
r~(t) u j (t) R

j (t)(8) 1:: <-
j=l

The difference between this problem and ordinary control

theory problems is due to discontinuous multipliers in the

right-hand sides of the equations (10). Nevertheless the

maximum principle is valid in this case. The necessity of

maximum principle conditions for @ore general problems with

discontinuous right-hand sides of equations has been proved by

by V.V. Velitchenko in [2J. Moreover the maximum principle

conditions are (locally) sufficient for this problem. The

proof can be found in [3J.

These conditions can be written as follows. Let the

*control (schedule) u (t) maximize, on the phase trajectory

defined by it, the hamiltonian function

N
H(u, z, p) - l: u j (t)pj(t)8+(1

j=l
zj (t) ) n e (zk - 1)

kEf
(12)
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with respect to all admissible (S) constraints on the controls.

Where
*p(t) = corresponding to u (t) vector of dual (or conjugate)

variables (Lagrange multipliers) p(t) is a solution

of the conjugate system:

(13)

with jump conditions for the instants coinciding with

the instants at which the operations terminate.

Pj(t~ - 0) - Pj (t~ + 0) =

,1, 1: P R., (t~ + 0) u R., (t~ + 0) _ e _ (t~ - t ~ )
uJ(ti-O) R.,Er+ kErR.,

(14)

and boundary conditions

p.(T) = 1..(1 - zj(T))
J J

j=1,2, ... ,N

(15 )

It is clear that all Pj are piecewise constant functions.

The aim of the method is to find controls u(t) and corres-

ponding p(t), which satisfy conditions (13) - (15) and maximize

function H(u, z, p). Similar methods are usually called indirect

optimal control methods [4J.

The following algorithm, based on the method of succesive

approximations, will be used for solving the problem.

(i) Given any admissible control u (1) (t), t e: [0, Tl.

We may always use u j (1) (t) = 0, j=l, ••• N, t e: [0, rrJ.
For a given u(l) system (10) is integrated from

t = 0 to t = T. Simultaneously we determine the

value t~(l~
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We denote this trajectory by z(l) (t).

(ii) Substitute u(l), z(l), til) into the system (13)

- (14) and integrate it from t = T to t = 0 for

the given "initial" conditions (15) •

(iii) Determine approximation of control
(k+l)

a new u

using the condition

H(u \ t) (k+1), z (k) (t), P (k) (t)) = Max H (u , z (k), p (J~) )

where the maximum is taken under (B) constraints.

(iv) Compare I(k) and I(k+l) **)

If

I (k) < I (k+l)

then replace u(l) by u(k+l) and pass to (i).

If

I (k) > I (k+l)

(v) Calculate new control as follows

u (t) = u (k) (t) + P (u (k+l) (t) - u (k) (t) ) ,

(16 )

'V
(u(t) belongs to admissible control domain, because

this domain is a convex set). Pass to (vi).

**) We denote I(k) as the value of the objective

function I (u), when u = u(k). 1(1) is assumed to be equal

+ 00 •
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(vi) Calculate I (~) a:i1d compa.re witl! I Ck) •

If

(k+1) 'V
then set u = u

Otherwise, if

p = 1 and pass to (i).

then reduce p (for instance, one may set p = p/2)

and pass to (vii).

(,,-ii) C01llpare p and £ (£ is the external parameter, small

positive number). If

p < £

we assume the iterative process to be finished and

consider u(k) to be the solution of the problem.

Otherwise, iJ:

p > £

pa.ss to (z).

The proof of algorithm convergency is similar to

the one in [5J.

The specific character of the problem and its solu-

tion by the method should be outlined.

When integrating the system (10) (i) the following

linear programming problem (LPP) is to be solved
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at every time-step:

s.t.

(6) constraints

(17)

The coefficient attached to u j in the Hamiltoniau fuuctlon

is zero for those jobs which do not satisfy (a) constraints or

have terminated. Hence the corresponding u
j

may be made equal

to zero without changing the values of the Hamiltonian. Thus,

the maximwu can be sought only with respect to the u
j

for which

the jobs have not been performed and which are admissable by

the network logic. This essentially reduces the dimension of

the LPP. In the problem the number of variables is equal to

the number of logically admissable operations at the instance.

The number of linear constraints at each time-step is

equal to a nmaber of different resources, which are consumed by

these logically admissable jobs.

The choice of the time step length could be easily autom-

ated in the algorithm. Indeed one need not solve LP problem (17)

at every time step, but only at the instants, when one of the

following events takes place:

(i)

(ii)

resource inflows have changed,

i gi. (t)resource consumption (functions r. (t),
J J

have changed,

(iii) one (or more jobs) has been completed.
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The difference between the time when one of these events

occurs and the current instant determines the length of the

next time step.

The positive features of the method are as f0ll0ws;

(i)

(ii)

(iii)

the usage of the standard procedures (for example,

simplex algorithm);

the simplicity of the computer program;

a relative small number of computations at every

iLeration;

(iv) "high speed" work of the algorithm (as a con­

sequence of (i)-(iii), due to the fact that

scheduling problems and LP problems are not to be

solved with high precision) ;

(v) th8 ap~roAimate solution obtained at every inter­

mediate iteration always belongs to the feasible

control set;

(vi) the algorithm can easily be extended to incorporate

nonlinear relationships betweeD re~OULce consump­

tion and the performance intensity of a job.

Some generalizations of the model are discussed below.

The shortcomings of the algorithm are:

(i) in general the algorithm enables the obtainment

of a solution which corresponds to a local minimum

of the objective function;

(ii) noneconomical usage of computer memory (the al­

goritr~ i5 expected to store program trajectories
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obtained at the two adjacent iterations).

These shortcomings can be easily removed. The first one

will be discussed in section 5 The second on8 may be re-

moved by nonessential sophistication of the computer program.

5. Additional Constraints on Program Performance

1. In previous sections we described the algorithm which

guarantees obtaining the local optimal solution of the schedul-

ing problem. Note that the problem is a multiextremal one by

its nature.

Let us modify the initial problem by introducing the ob-

jective function

'feu) = I(u) + Ellu 11
2

=

instead of I (u) .

T N

I + E f I
j=lo

(u j (t) ) 2 dt (18)

*Where E > 0 is a sufficiently small number.

In this case the Hamiltonian

N
H(u) = I

j=l

is a strictly concave function.

*It is easy to verify that E is subje~teu to the following

constraint

{

c, (t)
M ' JE < ln .,

- l<:i.<N hJ(t)
t"ELO,T]

Min
l<i<M

1 ¥ r~(t)c. (t)l
Ri (t) j =1 J J §

Where

and

c j (t) - the coefficient at u
j

in the Hamiltonian (12),

c. (t) > 0
J

ir. (t) > 0
J
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Thus the problem

H(u) -+ Max

s.t. un
has a single (global) solution. Consequently the initial

modified problem has a single solution.

To solve the modified problem we a.pp:i..y tile Si:1IIle algorithm.

However, now one needs to solve a nonlinear (quadratic) pro-

gramming problem at every time step. The dimension of the

problem is the same as in the linear case (see (12)).

2. Storable ries0ur~es. In section 2 we considered the case

when a program consumes only unstorable resources. The problem

may be generalized by including constraints to storable resources.

As usua.l, d rebource is called storable if the residue of it

can be utilized at subsequent instants.

The (S) constraints on the storable resources can be

written as

N

I
j=l

where

t
Uj(T) dT < f Qk(T) dT

o
k = 1,2, ••• ,N2

(19)

g~ (t) - the intensity with which the type k storable

resource is consumed at the instance t when

performing the j-th operation with unit intensity;

Qi (t) _ the intcns.i.ty cf inflow of the type i storable

resource, released for performance of the program

at the instant t;
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N
2

~ the number of different storable resources.

Let us extend the phase vector by introducing additional

h . bl N+i (. 1 2 ) Th t' f thP ase varla es z 1 = , , ... ,N
2

• e equa lons or ese

variables are written in the following form:

dzN+i N
2 i

u j= I q.
dt j=l J

i = 1,2, ... ,N
2

Denote functions Fi(t) as

·t

Fi(t) = I Qi(T) dT

o

ZN+i(O) = 0 (20)

(21 )

Then, in accordance with (20), (21) the constraints (19) may

be written as

ZN+i (t) < F i (t) i = 1,2, ... ,N2 (22 )

Thus we get the control problem with phase constraints.

Co~sider one simple approach for its solving. Again,

we modify equations (10) by introducing additional discontinuous

terms to its right-hand sides. Instead of equations (10) and

constraints (22), consider the system

dz
j j(

~-= u @_(l-

zj (0) = 0

N
2 ~zj) a 8+(zJL - 1) - L y .. 8 (zN+i(t) - Fi(t))

- lJ -JL£f. i=l
J

(23)

j = 1,2, •.• ,N
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\o'lhere

I: if
i

0q. -
J

y .. =lJ iif q. f. 0
J

Similar to 3 it may be shown that maximum principle

conditions are necessary and sufficient for control optimality

in the problem B, when phase equations are (20) and (23).

In this case the Hamiltonian is as follows

N
zj)

N _pi)))H(u,z,p) = ~ (P.(8_(1 - n _8+ (z - 1) - ~ 8( N+iy.. z
j=l J Q.E:r. i=l lJ

N2
J

i
0i (t)) u

j+ L q. (t)
i=l J

Where

p, - conjugate to zj variable, which satisfies the
J

conditions (13) - (15);

0,:: conjugate to zN+i variable, which satisfies
1

equations

do.
1

dt = 0

boundary conditions

0, (T) = 0
1

and jumps conditions

N
L y .. PJ' (tH

j
+ 0) u

j
(tH

j
+ 0)

= j=l lJ

Y q~(tH - 0) u
j (t~ - 0)

j=l J

(24)
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where we denote t j
H as the moment when

ZN+l(t) = Fi(t)

and

d N+i
z > 0

dt

i.e. the moment when the phase trajectory intersects outward

with the surface F(t) = (Fl(t) , ... ,FN2 (t». Whenever this

occurs, conjugate variable o. is subjected to jumps (24).
1

The algorithm does not change, but one should take into

account the modifications mentioned above.

Similar to p. the conjugate variables o. are piecewise
J 1

constant over time. It allows us to use the computer memory

economically, because to construct the conjugate trajectory

we need to know the values of the jumps and the corresponding

instants only.

3. Constraints on Minimal Intensity of Job Performance

Consider the case where constraints are imposed upon the

minimal performance intensity for all or some jobs of the

program. In particular, one of these constraints is that the

job is to be carried out without interruptions (for example,

technological processes in the chemical industry cannot be

interrupted).

Constraints of this kind can be taken into account in the

model in the following way

(25 )
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where

sj (t) _ minimal admissible intensity of carrying out

the job j at the instant t.

This means that if the job performance has begun and is

not completed (0 < zj (t) < 1) its intensity should be no less

than sj (t). If the job has not begun (zj (t) = 0) or has been

completed, formula (25) reduces to

i.e. the job may remain in one of these states for an indefin-

ite time.

Multiplying both sides of (25) by 8_(1 - zj) n 8+ (z~ - 1)
~e::r,

J
and integrating them from l = 0 up to l = t we get

zj (t)
t '

(z j ) - zj) n _ ~
> J sJ (t) 8 8 (1 ~ (z - l)dt (26 )-

0 ~E:r,
J

Here we used equation (10) •

It is convenient to introduce auxiliary phase variables

N+'
Z J, which satisfy the system

ZN+j (0) = 0

j = 1,2, ..• ,N

~
8(z - 1) (27)

Note that constraints (26) are equivalent to

. N+'
zJ(t) - z J > 0 (28)
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Instead of (10) and (28) we consider the system of equations

(29)

The maximum principle conditions for this (modified) problem

are as follows

* * * * *Max H(u, z (t), p (t» = H(u (t), z (t), p (t» (30),

where

H(u, z, p) = - 1)

Pj (t) = Lagrange multipliers (j=l, ... ,N)

which satisfy equations (13), boundary conditions (15) and jump

conditions

P j (t~ - 0)
j + 0) 1 ( L: +

j + O)Ui(t~ + 0)- Pj(tf = Pi(t fu j (t j -0) iEr.f J

- OJ (t~ + O)sj (t~ + 0) , (31)

p. (t j - 0) p. (t j + 0) 1 p. (t j + O)uj(t j + 0)- =J q J g u j (tj-O) J q q
,

q (32)

( 33)

t j - the first moment when the trajectory zj achieves theq

boundary of the domain
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o. - conjugate to zj (j=N+l, ... ,2N) variables, which
J

satisfy the following equations

do.
---.l = 0
dt

boundary condition

o.(T} = 0
J

and jump conditions

o. (t
j - O) - 0 (t

j + O) =
J q q

{34}

We have denoted the va~ues corresponding to optimal

control with a star.

The variables 0 can be treated as "indirect" penalties

for violation of conditions {28}. We need not change the

algorithm to solve the modified problem. Additional inform-

ation includs information of auxiliary variable trajectories,

of the instants t j and of the jumps (31) - {34}. Theq

dimension of the LP problem, which is to be solved at each

time step, does not increase.

4. Constraints on Simultaneous Performance of Jobs

If some operations should be performed simultaneously and

cannot be shared, one may consider them as one operation with

an extended vector of resource consumption. The elements of

the vector are intensities of resource consumption for all jobs

which are combined. Note that components corresponding to the

same resource type should be added.
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Conversely, some jobs may be subjected to the restriction

of sharing their performances over time; for instance, job j

cannot be performed simultaneously with job k.

These restrictions are also taken into account by introd-

ucing appropriate discontinuous multipliers into the right-

hand sides of the equations. In our case the modified equat-

ions are written in the form

dz j
u j (8_(1 zj) IT 8+(z

t 1) 8_(zk) 8 (1 zk) )::= - - - -dt -tEf.
J

dz K
k zk) IT (zj) zj»

::= U (8_(1 - mdt 8+(z - 1) - 8 8 (1 -mEf k

The maximum principle holds and the algorithm does not change.

In a similar manner many other restrictions could be combined

with the observed restrictions and included in the model.

5. Other Approaches to Solving the Problem

Note tnat the method used to deal with (a) constraints

in previous sections is not the only feasible one. In this

section we briefly discuss some other techniques for solving

the problem which are generalizations and complements of the

method under discussion.

Tne first group of methods introduces penalties (not

necessarily of the discontinuous type) on the intensity of

performing an operation.
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(a) constraints could be written in the form:

zj (t) (1 - z£(t» = 0 £Ef.
J

u j (t) (1 - z£(t» = 0 £Ef.
J (35 )

(1 zj) k
0 +- z = kEf.

J

u j k +z = 0 kEf.
J

This means that the j-th job cannot be performed until all

immediately preceeding jobs have been completed, and its

performance breaks off after the immediately consecutive jobs

are in operation.

Instead of the initial equations (3) and conditions (35),

consider

where

dz j
J'= f (z, u,

dt

j = 1,2, ••. ,N

(36)

f j _ function of phase coordinates, controls and the

vector of parameters ~ with the following properties.

(i)

(ii)

(iii)

f. < 1
J -

if (a) constraints are satisf ied, then

f. = 1
J

if (a) constraints are il,l.fringed then

f. -+ ff? < 0
J J -

as parameters tend to certain limits.
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If we consider the problem A we obtain

* *T ()1) ~ T

where

*T ()1) _ minimum time in the modified

problem (36) under (8) constraints;

*T = minimum time in the initial problem under (a)

and (8) constraints

Indeed, tne set of all solutions of system (36) subjected to

(S) constraints includes all solutions of system (3) subjected

to (a) and (8) constraints. The penalty functions may be

constructed in such a way that

* *T ()1) -+ T

with a certain variation of tne parameters )1.

For example, take the penalty functions

or

f. (z, )1) = 1 - L )11 8_ (1 - zR-) - L + 11~ 8_ (zk)
J R-£f~ k£f.

J J

where jl~(i, j = l, ... ,N) are large positive numbers and )10

is and odd positive integer. Violation of (a) constraints

will lead to reduction in the job number zj.

Another group of methods uses a penalty for infringing

(a) constraints, introduced into the objective function.

Instead of the initial objective function I, a "penalized"
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function of one of the following typical kinds is minimized:

T N
zj j.l j (1 zR.)dtI +f L: L: -

iJ j=l R.Ef. R.
J

I + J ~
U j=l

J ~
o j=l

T N
I + J L:

() j=l

J ~ u j
L: +

j.lj 6_(zk)dt (37)
o j=l kEf. k

J

The utilization of smooth penalties allows us to apply

direct optimization methods to solve the problem [4J and

rationally combine them with the indirect methods described

above.

6. Some Heuristic Approaches to Solve the Problem

It should be emphasized that the conjugate variables in

our problem could be termed the objectively stipulated estim-

ate of the operation (or "shadow price" of the job). The

intensity u j of performing a job depends on the value of the

coefficient in the hamiltonian. In the case of uncompleted

jobs satisfying (a) constraints, it is equal to P. and
J
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characterizes the "weight" or importance of performing the

job at a given instant. The weight of the job vanishes at

t = T, if the job terminates at this instant. If the job

is not completed (terminated) its weight is non-zero and

equal to A. (1 - zj (T)). (15)
J

The zero value of p. at the instant of terminating the
J

job (t = t~) is increased by a jump (14). This increase is

larger, the greater the weight of the jobs immediately

following the j-th, and the greater the intensity of perform-

ing these jobs (at previous iteration of the algorithm). It

is smaller, the less intensively the j-th action was perfor­

med at the instant t~. We may treat it as the i-th job immed­

iately following the j-th makes a claim for an increase in the

intensity of performance of its immediate predecessors, by

increasing their weight at the next iteration of the algorithm.

Notice that the job i, immediately following job j,

increases the weight of job j only if it is started immediately

after action j, i.e. u j (t~ + 0) ~ 0, and if all the other

preceding jobs i are completed at this instant (zk(t) = 1,

k£fi).

Though the weight of each job is increased at the expense

of the job illlmediately following it, the increase becomes more

marked as the time lag of the following actions becomes greater.

For the weight of a job is increased to a greater degree as

weights of the immediately subsequent jobs are increased. In

turn, the weights of the following jobs become greater, the
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greater the weights of the jobs following them, etc. Thus all

the actions lagging behind a given job accumulate in the weight

of the given j.

Everything stated above about conjugate variables (Lagrange

mUltipliers) can serve as a starting-point for various heuristic

algorithms, in cases where joint solution of the direct and dual

problems is impossible for some reason. The reasons to construct

such approaches are, for example, on one hand excessive high

dimensions (one hundred thousand variables) of the problem, and

on the other hand the necessity to obtain a solution in an

extremly short time. The latter takes place in short-term

planning for fast proceeding processes. Heuristic procedures

could also be used to obtain rough upper bounds for a length

of the schedule.

Here we consider the approach, which is based on the util-

ization of conjugate variables as job priorities.

The most labour-consuming operation in the algorithm is

the solution of the LP problem at each time step. If one solves

it by using the simplified component-wise descent method the

following procedure is used:

(i) Choose the maximal positive coefficient in the hamiltonian

(12). Let it be p ..
J

(ii) Set the corresponding u j (t) equal to

min
1

r·fO
J

{R~ (t) , ••• , RNl (t) ,

r~ (t) rt:Jl (t)
J J

(37)
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Pass to th~ next choice within the other positive coefficients,

(i) - (ii). Note that if the coefficient is equal to zero

(that means the performance of the corresponding job is not

admissible by (a) constraints or is completed) we assume the

corresponding u
j

is equal to zero.

Thus we have obtained a well-known priority method. The

idea of the method is to assign each job some number (priority)

which defines the relative weight of the job. Then at every

instant one appoints the performance of the job which has the

maximal priority. If resources are available to perform the

job, the intensity is set equal to (37), maximal admissible

intensity otherwise - zero. Then pass to the next job and so

on. Regarding Lagrange multipliers as priorities one has the

following rule to calculate them.

Let us consider the problem A. We assume the problem has

a solution. That is, there exists T < + 00, for which

z(T) ~ e

where e = (1, ... ,1) is a vector with N components.

Then for all j

p.(T) = 0
J

except for final fictitious job N+l.

According to (14) the jumps for final jobs, which complete

at the instant T are as follows

. N+l j
6P j = PN+l (T + OJ u (T + O)/u (T - 0)
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We may assume the intensity and the weight of final fictitious

job to be arbitrarily positive numbers (due to homogenity of

the conjugate system (13) - (15)). Consequently, without loss

of generality one may let

PN+l (T + 0) uN+l(T + 0) = 1

Thus we get

{ l/u
j

(T - 0) if t j = Tf
p. = D.p. =

J J t
j

< T0, if f

wnere j is a number of final jobs in the program.

Then considering the jobs of the next job layer in the

grapn of the program (beginning from the end), we calculate

priorities for these jobs as

0 if t
j

< t
i . r+

~E .f 0 J

p. =
J

1
L +

i if t j
t

i

u j (t j )
Pi u i (to) =

iEr. f 0
f J

and so on.

(Where t
i is the starting time for job i) .0

Note tnat priorities are recalculated at every iteration in

(38)

accordance with the II new ll u(t), t f and to.

Similarly one may construct priorities, which take into

account the distance between t~ and t~, iEr;. Then instead

of (38) we get
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. r+J.E .
]

where x is a fixed parameter (x > 0). Thus we take into

account all the so called "subcritical" jobs.

In particular,for constant intensities u j (t)

have

and

0 0 t
j

t
j 1

T. - =
] f 0

u j
0

0 is the duration of job performance.T.
J

Note that if none of the jobs

mance directly after completion of

of r: begins its perfor­
]

j-th job (Ui(t~ + 0) = 0,

. +
J.Er.),the priority of the j-th job equals zero. In other

J

words the job has zero priority if it does not delay performance

of its successors. In this way one may evaluate how critical

the job is. From (38) we obtain the following priority

o rr+
J
.] 1

Pj = '( j L

where [r;}l is the number of immediately subsequent jobs for

j-th job. This priority is a generalization of a well known

priority "the longest operation"

Using conjugate variables in the problem when penalties
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are given in form (37) we get the following priority rules

That is the most preferable job of the set which is admissible

with respect to (a) constraints is the one which has the long-

est duration and the largest number of successors. Moreover,

the priority of the job is greater, the shorter the duration

of each of its successors.

If we use penalties for violation (a) constraints in

form

we immediately get the following priority rule for our

particular case:

where n T. is the production of durations of all successor
1.

jobs.

In a similar way we may obtain a number of other various

priority rules.

It should be emphasized that the "price" for such simplif-

ication of the algoritjhm is the solution quality change for

the worse. Despite this fact the heuristics developed (as it

follows from a preliminary testing) allows one to obtain much

better solutions than well known rules-of-thumb algorithms

(for example CPM technique) .



-33-

7. Example

In this section we consider a simple example to illustrate

the algorithm.

Let the program consist of seven jobs. The 7-th job is a

fictitious one. The graph of the program ( (a) constraints)

is shown in figure 1.

(S) constraints are as follows:

where (see also figure 2)

4, if t < 1-
2, if 1 < t < 3R(t) = -
3.5, if 3 < t < 7-
5, if t > 7

The constraints on maximal performance intensities are given

in the form:

0 < ul(t) < 0.33- -
0 < u 2 (t) < 0.50-
0 < u 3 (t) < 0.50- -
0 < u 4 (t) < 0.25- -
0 < u 5 (t) < 0.33- -
0 < u 6 (t) < 0.50- -
0 < u 7 (t) < 0.10- -

In this case equations for phase variables are written as
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dz l
u l 8 (l - z 1)=dt

dz 2 2 8_(1 - z2)
dt = u

dz 3 3 8_(1 - z3) 8+(z
1 - 1)dt = u

dz 4
4 8 (1 z 4) 2 - 1)= u 8+(zdt

dz S 5 8 (1 - zS) 8+(z
3 - 1) 8+(z

4 - 1)= udt

dz 6 6 8
6

8+(z
4 - 1)dt = u (1 - z )

dz 7 7
8+(z

5 1) 8+(z
6 1)dt = u - -

We have the following expressions for the jump conditions of

the conjugate variables

l1p = 1 1 + 0) U3(t~ + 0) 1 + 0) u4(t~ + 0))
u

l (t~)
(P3(t f + P4(t f1

l1P2
1 2 + 0) u4(t~ + 0)= P4(t f

u
2 (t~)

l1P3
1 3 + 0) uS(t~ + 0)= PS(t fU3(t~)

l1P4
1 4 + 0) u

4
(ti + 0) 4

U
6

(ti= (PS (t f + P6(t f + 0) + 0))
u

4
(ti)

l1PS
1 5 + 0) u

7 (t~ + 0)=
US(t~)

P7(t f

i

l1P6
1 6 + 0) u7(t~ + 0)= P7(t fU6(t~)

l1P7 = 0
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We consider T = 11 and objective function

I(z(T))
1 7

= 2 L:
j=l

The interval [0, IlJ is divided into 11 equal parts. Let

ua = 0.1 (j=1, ... ,7i k=l, ... ,ll) is the starting point.
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Below we exhibit the results of calculations at every

iteration.

1-st Iteration

Intensities:

time 1 2 3 4 5 6 7
u u u u u u u

1 0.10 0.10 0.10 0.10 0.10 0.10 0.10

2 0.10 0.10 0.10 0.10 0.10 0.10 0.10

3 0.10 0.10 0.10 0.10 0.10 0.10 0.10

4 0.10 0.10 0.10 0.10 0.10 0.10 0.10

5 0.10 0.10 0.10 0.10 0.10 0.10 0.10

6 0.10 0.10 0.10 0.10 0.10 0.10 0.10

7 0.10 0.10 0.10 0.10 0.10 0.10 0.10

8 0.10 0.10 0.10 0.10 0.10 0.10 0.10

9 0.10 0.10 0.10 0.10 0.10 0.10 0.10

10 0.10 0.10 0.10 0.10 0.10 0.10 0.10

11 0.10 0.10 0.10 0.10 0.10 0.10 0.10

Job marks:

time 1 2 3 4 5 6 7z z z z z z z

1 0.10 0.10 0.00 0.00 0.00 0.00 0.00

2 0.20 0.20 0.00 0.00 0.00 0.00 0.00

3 0.30 0.30 0.00 0.00 0.00 0.00 0.00

4 0.40 0.40 0.00 0.00 0.00 0.00 0.00

5 0.50 0.50 0.00 0.00 0.00 0.00 0.00

6 0.60 0.60 0.00 0.00 0.00 0.00 0.00

7 0.70 0.70 0.00 0.00 0.00 0.00 0.00

8 0.80 0.80 0.00 0.00 0.00 0.00 0.00

9 0.90 0.90 0.00 0.00 0.00 0.00 0.00

10 1.00 1.00 0.00 0.00 0.00 0.00 0.00

11 1.00 1.00 0.10 0.10 0.00 0.00 0.00
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Objective Function: I :::: 2.31

2-nd Iteration

Intensities

time u1 u 2 u 3 u 4 Us u 6 u 7

1 0.33 0.50 0.00 0.00 0.00 0.00 0.00

2 0.33 0.25 0.00 0.00 0.00 0.00 0.00

3 0.33 0.25 0.00 0.00 0.00 0.00 0.00

4 0.00 0.00 0.50 0.06 0.00 0.00 0.00

5 0.00 0.00 0.50 0.06 0.00 0.00 0.00

6 0.00 0.00 0.00 0.25 0.00 0.00 0.00

7 0.00 0.00 0.00 0.25 0.00 0.00 0.00

8 0.00 0.00 0.00 0.25 0.00 0.00 0.00

9 0.00 0.00 0.00 0.12 0.00 0.00 0.00

10 0.00 0.00 0.00 0.00 0.33 0.50 0.00

11 0.00 0.00 0.00 0.00 0.33 0.50 0.00

Job Marks:

time u 1 u 2 u 3 u 4 Us u 6 u 7

1 0.33 0.50 0.00 0.00 0.00 0.00 0.00

2 0.67 0.75 0.00 0.00 0.00 0.00 0.00

3 1.00 1.00 0.00 0.00 0.00 0.00 0.00

4 1.00 1.00 0.50 0.06 0.00 0.00 0.00

5 1.00 1.00 1.00 0.12 0.00 0.00 0.00

6 1.00 1.00 1.00 0.37 0.00 0.00 0.00

7 1.00 1.00 1.00 0.62 0.00 0.00 0.00

8 1.00 1.00 1.00 0.87 0.00 0.00 0.00

9 1.00 1.00 1.00 1.00 0.00 0.00 0.00

10 1.00 1.00 1.00 1.00 0.33 0.50 0.00

11 1.00 1.00 1.00 1.00 0.67 1.00 0.00

Objective function: I :::: 0.56
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3-rd Iteration (Optimal Solution)

Intensities

time u l u 2 u 3 u 4 u 5
u 6 u 7

1 0.33 0.50 0.00 0.00 0.00 0.00 0.00

2 0.33 0.25 0.00 0.00 0.00 0.00 0.00

3 0.33 0.25 0.00 0.00 0.00 0.00 0.00

4 0.00 0.00 0.25 0.25 0.00 0.00 0.00

5 0.00 0.00 0.25 0.25 0.00 0.00 0.00

6 0.00 0.00 0.25 0.25 0.00 0.00 0.00

7 0.00 0.00 0.25 0.25 0.00 0.00 0.00

8 0.00 0.00 0.00 0.00 0.33 0.50 0.00

9 0.00 0.00 0.00 0.00 0.33 0.50 0.00

10 0.00 0.00 0.00 0.00 0.33 0.00 0.00

11 0.00 0.00 0.00 0.00 0.00 0.00 0.10

Job Marks:

time zl z2 z3 z4 z5 z6 z7

1 0.33 0.50 0.00 0.00 0.00 0.00 0.00

2 0.67 0.75 0.00 0.00 0.00 0.00 0.00

3 1.00 1.00 0.00 0.00 0.00 0.00 0.00

4 1.00 1.00 0.25 0.25 0.00 0.00 0.00

5 1.00 1.00 0.50 0.50 0.00 0.00 0.00

6 1.00 1.00 0.75 0.75 0.00 0.00 0.00

7 1.00 1.00 1.00 1.00 0.00 0.00 0.00

8 1.00 1.00 1.00 1.00 0.33 0.50 0.00

9 1.00 1.00 1.00 1.00 0.67 1.00 0.00

10 1.00 1.00 1.00 1.00 1.00 1.00 0.00

11 1.00 1.00 1.00 1.00 1.00 1.00 0.10

Objective function: I = 0.40

Gant diagram corresponding to the optimal solution is presented

in figure 3. A computer program of the algorithm has been

wri t:.h~n in FORTRAN.



-39-

R ( t )

6

5

r
:l~LJ

1

0 TIME
0 1 2 3 4 5 6 7 8 9 10 11

FIGURE 2

JOB
NUMBER

7

~
6

5

4

3

2

1

0 1 2 3 4 5 6 7 8 9 10 11 12 TIME



-40-

REFERENCES

[lJ Zimin, LN., "On Some Optimal Control Problems Arising

from Project Management", IIASA, WP-75-6,

January 1975.

[2J Velitchenko, V.V., "On Some Optimal Control Problems

with Discontinues Right-Hand Sides in Dynamics

Equations", Vol. 27, No.7, 1966, (in Russian).

[3J Zimin, LN. and Ivanilov, Yu. P., "Solution of Network

Planning Problems by Reducing them to Optimal

Control Problems", Zh. vychisl. Math. and mat.

Fiz., Vol. 11, No.3, 1971 (in Russian).

[4J Moiseev, N. N., "Computational Methods in Optimal

Control Problems, "Science", Moscow, 1971.

[5J Beiko, 1. V. and Karpenko, M. R., "Solution of Nonlinear

Optimal Problems by Successive Approximations

Method", Doklady A.N., UK SSR, No. 12, 1964.

(in Russian).


