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REGULATION OF OSCILLATORY SYSTEMS 
SUBJECTED TO VIABILITY CONSTRAINTS 

Kathar ina  Miillers * 

Abst rac t  : Regarding forcing terms of oscillatory systems of second-order differential equations 
as controls, we look for feedback (set-valued) maps governing the evolution of solutions satisfying 
viability or state constraints. We give a condition ensuring the existence of minimally forced 
solutions: the oscillation is unforced as long as viability is not a t  stake. Finally we compare 
"minimally forced oscillations" with free oscillations. 

Key words: Controlling oscillations, differential inclusions, viability theory. 

1 Motivation and introductory example 

In our paper, we study forced oscillations 

as control problems. We regard the forcing term y as a control for keeping 
the state x(.) in a given constraint set K. The first restriction we impose is 
a bound on the forcing term 

for all t  2 0, where cp is a positive continuous function. In other words, the 
set of feasible controls a t  time t  and state ( z ( t ) ,  z l ( t ) )  is given by the set 
~ ( t ,  z ( t ) ,  z l ( t ) )B ,  where B  denotes the unit ball in the state space. This is 
a differential inclusion: 

(3) ~ " ( t )  + w(z( t ) ,  ~ ' ( t ) )  E $44 ~ ( t ) ,  zl(t))B1 

where ( z ( t ) ,  z l ( t ) )  E K for all t  2 0. 
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To explain the main questions, we consider the following simple example 
of a two dimensional linear oscillatory differential inclusion: 

xU(t) - 2ax(t) + w2x(t) E [-c, c], 

where 

The parameter 0 < a < w defines the oscillation, b > 0 the constraint set 
and c > 0 the bound of feasible forcing terms. If the forcing term is equal 
t o  0, the solution x(.) has the form 

where K = d m  and where a and 0 depend on the initial condition. 
Therefore all unforced oscillations starting from (xo, xb)) # (0,O) "explode", 
and the trajectories x(.) leave the intervall [-b, b] in finite time. The only 
unforced solution remaining "viable" in the interval. [-b, b] is the equilibrium 
solution x = 0. 

When we allow the forcing term to  vary in the interval [-c, c], the set D 
of all initial conditions from which starts a solution of (4) viable in [-b, b] is 
much bigger (see figure 1). All solutions starting outside of D have t o  leave 
the constraint set in finite time. For all initial conditions in the interior of 
D ,  we can find a solution regulated by a minimal forcing term, i. e., a forcing 
term equal to  0 as long as the viability of the solution is not a t  stake. Figure 
1 shows such a solution: it oscillates freely until arriving a t  the boundary of 
the set D ,  where it has to  be forced with maximal force Icl not to  leave D 
and thus, not t o  leave the constraint set. 

In our paper, for the general oscillatory differential inclusion (3), we shall 

characterize those closed sets of initial conditions from which starts a t  
least one solution of (3) viable in K ,  

characterize the solutions remaining in Ii by a differential equation or 
inclusion, 

find a feedback regulation map defining the forcing terms providing a 
viable evolution, 



Figure 1: 

1 

establish the existence of solutions regulated by a minimal forcing 
term, i. e., a forcing term equal to  0 as long as the viablity of the 
solution is not a t  stake, 

look for "free oscillatory cells", i. e., subsets of li from which a viable 
unforced oscillation is possible. 

In the previous example, the free oscillatory cell contains only the equi- 
librium (0,Q).  In general, it can be bigger; figure 2 shows the set 21 to- 
gether with its free oscillation cell for another oscillatory differential inclu- 
sion, which will be studied in section 6. 



Figure 2: Free oscillation cell 

2 Some basic definitions 

We shall introduce some basic notations to set the problem in a general 
framework. 

Definition 2.1 A constrainted oscillatory differential inclusion is a second 
order differential inclusion 

where 

The set K is a subset of the phase space X x X ,  the function w : K - X 
describes the dynamic of the system, B denotes the unit ball of X ,  and 
9 : I{ - Ih? defines the set of feasible forcing terms. 

We want to  associate with a constrainted oscillatory differential inclusion 
a first order differential inclusion. This can be realized by introducing an 



auxiliary function u(.)  depending on the state x(.)  and its derivative X I ( . )  in 
the following manner: 

Definition 2.2 A decomposition of the oscillatory differential inclusion (7) 
is a differential inclusion 

under the constraints 

where the functions 29,q, $ satisfy 

for all x, u E X, and where the set-valued map U is defined by 

The set-valued map U is closed whenever IL' is closed, because 29 is 
continuous by assumption. Note that a decomposition always exists; for 
instance, take 29 = 0: 

where the constraint map U is defined by Graph(U) = I ( .  We see that  a 
decomposition of the oscillatory differential inclusion (7) leads to  a special 
case of 

Definition 2.3 An affine oscillatory control system is a system 

where u ( t )  E U ( x ( t ) )  for all t 2 0. Here, the set-valued map U : X - Z de- 
fined on the state X and going to the control space Z defines the constraints, 
B denotes the unit ball in Z ,  the set of feasible forces is defined by cp : 
Graph(U) - IR+, and g : X - X ,  h : X - Z and f : Graph(U) - Z 
describe the dynamic of the system. 



In this differential inclusion, the function u(.) is seen as a control, sub- 
mitted to  the constraints u(t) € U(x(t)) for all t > 0. The forcing term in 
p(x ,  u )B  can be seen as a "metacontrol" regulating the evolution of both 
state and control. The control system is affine in u in the first equation. 

Remark - If the state space X and the control space Z coincide, and 
if the function h is positive, we can associate with a given affine oscilla- 
tory control system a constrainted oscillatory differential inclusion in the 
following manner. We differentiate the state equation, which leads to  

and substitute u(t) = (g(x(t)) - x(t))/h(x(t)) and ul(t) E -w(x(t), u(t)) + 
p(x(t) ,  u(t)) B .  We obtain the oscillatory differential inclusion 

under the constraints 

where the functions p and + are defined by 

for all x ,  XI E X ,  and where the constraint set K is defined by 

for all x, X I  E X .  

Finally, we derive its most general form: 

Definition 2.4 A control system of the form 

where 

(21) u(t) E U(x(t)) for all t 2 0, 

is called general oscillatory control system. 



In the following, we will treat the general oscillatory control system, and 
derive the results for oscillatory differential inclusions or affine oscillatory 
control systems only as examples. 

Remark (Time dependent constraints and time dependent set 
of feasible forcing terms) 

To treat oscillatory control systems where the dynamic, the constraint 
set and the set of feasible forcing terms are time dependent, i. e., 

i. xl(t) = f ( t ,  x(t), u(t)) 
ii. ul(t) + ~ ( t ,  x(t), u(t)) E ~ ( t ,  x(t),  u(t))B, 

under the constraints 

(23 u(t) E U(t,x(t)) for all t 2 0, 

we introduce a second state s by 

i. sl(t) = 1 
ii. xl(t) = f (s(t), x(t), u(t)) 

iii. ul(t) + w(s(t), x(t), u(t)) E ~ ( s ( t ) ,  ~ ( t ) ,  u(t))B, 

where u(t) E U(s(t), x(t)) for all t 2 0. This is again an oscillatory control 
system. If the nonautonomous system is affine, so is the new autonomous 
one. 

3 Application of the Viability Theorem in the 
framework of oscillatory control systems 

We recall the Viability Theorem for differential inclusions. 

Throughout the paper, X and Z denote finite dimensional vector spaces. 
Recall that  the domain of a set-valued map F : X ?.t X is defined by 

Theorem 3.1 (Viability Theorem) [2, th. 3.3.5,th. 4.1.21 Let F : X ?A 

X be a nontrivial, uppersemicontinuous set-valued map with compact con- 
vex images and linear growth, and let K c Dom(F)  be a closed set. The 
following properties are equivalent: 



i. For any xo E I i  there exists a viable solution on [0, oo[ to the difSer- 
ential inclusion 

x t ( t )  E F ( x ( t ) )  for almost all t 2 0 
x ( O )  = xOr 

i. e., a solution of system (25) remaining in li for all t 2 0. 

ii. The set li is a viability domain, i. e., it satisfies the following tangen- 
tial condition 

F ( x )  n T K ( x )  # 0 for all x E I i .  

When I i  is not a viability domain, there exists a largest closed viability 
domain contained in li, called the viability kernel V i a b F ( l i )  of li. 

We now consider the general oscillatory control system 

where u ( t )  E U ( x ( t ) )  for all t 2 0. TO apply the Viability Theorem 3.1, we 
regard the state-dependent constraints on the controls as constraints on the 
state-control pairs: 

We posit the following assumptions 

i. Graph(U) is closed. 

ii. f and w are continuous and have linear growth. 

iii. p is continuous, positive and has linear growth. 

We deduce from the Viability Theorem 3.1 (see also [2, th. 7.2.51) the fol- 
lowing 

Theorem 3.2 (Subregulation- and Metaregulation Map) Let us 
assume that the oscillatory control system (26) satisfies the conditions (27).  
Let R : X - Z be a closed set-valued map contained in U. Then the 
following two conditions are equivalent: 



i. For all initial state-control condition ( x o ,  uo) E Graph(R) ,  there exists 
a state-control solution ( x ( . ) ,  u( . ) )  on [ O ,  oo[ to the oscillatory control 
system (26) starting at ( x o ,  uo) and viable in  Graph(R) .  

ii. R is a solution to the partial differential inclusion 

for all ( x ,  u )  E Graph(R)  satisfying the constraints 

In this case, the map R is called a 9-subregulation map of U. The metareg- 
ulation law regulating the evolution of the state-control solutions viable in  
G r a p h ( R )  takes the form of the system of differential inclusions 

(28)  
2 .  x l ( t )  = f ( x ( t ) ,  u ( t ) )  

i i .  u l ( t )  + w ( x ( t ) ,  u ( t ) )  E G n ( x ( t ) ,  ~ ( t ) ) ,  

where the set-valued map G R  associated to the regulation map R is given by 

and called the metaregulation map associated with R .  
Furthermore, there exists a largest 9-subregulation map R+' contained in  U. 

Let us now consider the trivial decomposition (13) of the constrainted 
oscillatory differential inclusion (7) . We obtain the following 

Corollary 3.1 Let R be a subregulation map of the constraint map U for 
the oscillatory differential inclusion (7'). The metaregulation law regulating 
the evolution of viable solutions takes the form of a second order differential 
inclusion 

(29)  ~ " ( t )  + w ( x ( t ) ,  x l ( t ) )  E G R ( x ( ~ ) ,  x l ( t ) ) ,  

where the metaregulation map G R  associated to the regulation map R defines 
the admissible (feedback) forces providing viable evolutions and is given by 

for all ( x ,  u )  E Graph(R) .  



Remark (Determination of cp-subregulation maps) We have 
several possibilities for finding p-subregulation maps. 

i. The graph of the largest p-subregulation map, which is the viability 
kernel of the graph of U for the oscillatory control system (26), can be 
determinated numerically by the viability kernel algorithm [9] [7]. 

ii. In section 5 we shall determinate the maximal regulation map for a 
large class of two-dimensional systems. 

iii. In the case of inequality constraints, we can use Maderner's results [5] 
[6] t o  find regulation maps. 

Remark (Closed metaregulation map) In some special cases, we 
need the metaregulation map G R  to  be closed, which is not always true. 
Once again, we can use Maderner's results [5] [6]. A second possibility is 
the following one: 

For the oscillatory control system (26), we fix a regulation map R with 
associated metaregulation map GR corresponding to  Theorem 3.2. We con- 
sider for fixed p > 0 the extended control system 

i. xl(t) = f(x(t) ,  u(t)) 

(30) 
. . 

2 2 .  ul(t) + w(x(t), u(t)) = v(t) 
iii. vl(t) E pB, 

under the constraints 

where the set-valued map cR is defined by 

Since Graph(R) is closed, we have Dorn(GR) = Dom(GR) = Graph(R). 
Theorem 3.2 ensures the existence of a largest closed "submetaregulation" 
map GR contained in c R ,  such that  for all (xo, UO, vo) E ~ r a ~ h ( ~ R ) ,  there 
exists a solution (x(-), u(.), v(.)) of the system (30) starting a t  (xo, uo, vo), de- 
fined on [0, oo] and viable in Graph(GR). In particular, we have (x(t),  u(t)) E 
Dom(GR) = Graph(R) C Graph(U) for all t 2 0, so (x(.), u(-)) is a viable 



solution of system (26) .  Hence all solutions regulated by the closed sub- - 
metaregulation map G R ,  i. e., the solutions of 

(33 )  
i. x l ( t )  = f ( x ( t ) ,  u ( t ) )  

i i .  u l ( t )  + w ( x ( t ) ,  u ( t ) )  E e ~ ( x ( t ) ,  ~ ( t ) )  

are viable solutions of the oscillatory control system (26) .  

4 Selection Procedures 

We now want to  look for some explicit dynamical closed loop systems using 
selection procedures of the metaregulation map GR.  A detailed presentation 
of selection procedures can be found in [2,  ch. 61. Let us recall the definition 
and the main theorems. 

Definition 4.1 Let G : X --t Z be a set-valued map. A set-valued map 
S : X --t Z is a selection procedure of G if G r a p h ( S )  is closed, and if 

The main example of a selection procedure for a compact-valued map 
G : X --t Z is given by 

( 3 4 )  minselec(x) := { u  E Z;  llull 5 inf II'U.ll) V x  E D o m ( G ) ,  
CEG(X) 

which provides the minimal selection 

For minselec to  be a selection procedure of G ,  we have to  guarantee that  it 
has closed graph. The following proposition is an immediate corollary of [2, 
Prop. 6.  5. 3.1. 

Proposition 4.1 Let us assume that the set-valued map G : X --t Z is 
lower semicontinuous with compact convex values. Then minselec is  a se- 
lection procedure of G with single-valued minimal selection minselecG. 



We turn back to  the general oscillatory control system (26) ,  fixing a y- 
subregulation map R : X ~.t Z of U. For the following theorem, see also [2, 
th. 7. 6. 51. 

T h e o r e m  4.1 (Se lec t ion)  Let us assume that the conditions (27) hold 
true. Let S be a selection procedure of the metaregulation map G R  with 
convex values. Then for all initial conditions ( x o ,  uo)  E G r a p h ( R )  there 
exists a solution ( x ( . ) ,  u( . ) )  of the closed loop oscillatory system 

defined on [0,  oo[ with x ( 0 )  = xo, u ( 0 )  = U O ,  and viable in  Graph(R) .  

P r o o f  - We consider the set-valued map F defined by 

for all ( x ,  u )  E Graph(R) ,  and the following differential inclusion 

(36)  
(x1(t)7 u1( t ) )  E F(x(t17 u ( t ) ) ,  
where ( x ( t ) ,  u ( t ) )  E G r a p h ( R )  for all t 2 0. 

Since a, p and y are continuous and have linear growth, and since S has 
closed graph and convex values and satisfies 

for all ( x ,  u )  E Graph(R) ,  F is upper semicontinuous with nonempty convex 
compact images and with linear growth. To apply the Viability Theorem 
3.1, we have to  verify that  Graph(R)  is a viability domain of F ,  i. e., 

But this is implied by the fact that  the set G R ( x ,  u )  n S ( x ,  u )  is always 
nonempty. Therefore, for all initial state ( x o ,  uO)  E Graph(R)  there exists a 
solution ( x ( . ) ,  u ( . ) )  to  (36)  viable in Graph(R) .  But this is also a solution 
of (35) ,  because it satisfies 



almost everywhere, and hence 

almost everywhere, which is equivalent to  

almost everywhere 

To state the previous theorem for the minimal selection, we have to  
guarantee that  the metaregulation map GR is lower semicontinuous. We 
obtain as a consequence of [2, Prop. 7. 1. 31 

Lemma 4.1 If the conditions 

i. Graph(R) 3 (XI, u') -v, TGraph(R)(~' ,  u') is lower 

(37) { .. semicontinuous. 

S U P ( x , u ) ~ ~ r a p h ( ~ )  IIDR(x7 u > I I  < 
are satisfied, then GR is lower semicontinuous. 

Corollary 4.1 Let the conditions (27) and (37) hold true. Then for all 
initial conditions (xo, uo) E Graph(R) there exists a solution (x(-), u(.)) of 
the closed loop oscillatory control system 

i. xr(t) = f (x(t), u(t)) 
zz.  ul(t) + w(x(t), u(t)) = minselecG,(x(t), u(t)) 

defined on [0, w[ with x(0) = xo, u(0) = UO, and viable in Graph(R).  

Example - Figure 3 shows a minimally forced solution for the Duffing 
oscillatory differential inclusion: 

(39) 
x1'(t) - 6x1(t) + x3(t) - x(t) E [-C, c], 
where x(t) E [-b,b] for all t 2 0. 

The state-control solution oscillates freely in the phase space until arriving 
a t  the boundary of the graph of the maximal regulation map, where it has 
to  be forced with maximal force Icl not to  leave Graph(R), i. e., not to  leave 
the constraint set. 



Figure 3: Minimally forced solution for the Duffing oscillatory differential 
inclusion 

5 A two-dimensional example 

In the following we want to  characterize the maximal regulation map for the 
special two-dimensional affine oscillatory control system 

(40) 
i. xl(t) = g(x(t)) - h(x(t))u(t) 

ii. ul( t)+w(x(t))  E [-c,c], 

subjected to  the constraints 

(41) Vt 2 0, x(t) E [-by b]. 

The constraint map U is defined by 

(42) V x(t) E [-b, b], U(x) = IR, 

and we assume in the following that 

.I i. g ,  h,w : IR - IR are Lipschitz, 
(43 ' 

ii. h(x) > 0 for all x E [-by b]. 



An efficient tool are monotonic cells, which are presented in [3] [4].  In 
order to  denote the qualitative states and to  characterize the monotonic 
behaviour of the solutions of the affine oscillatory differential inclusion (40 ) ,  
we introduce the three determinate signs +, - and 0 and the indeterminate 
sign i ,  and set 

Definition 5.1 A monotonic cell for the a f ine  oscillatory differential in- 
clusion (40) is a  set 

Ir',,,,, := { ( x ,  u )  E R x R; s ign (g (x )  - h ( x ) u )  = sl and 

s ign ( -w(x )  + v )  = s2 for all v  E [-c, c ] ) ,  

where s l ,  s2 E {+, -, 0 ,  i). 

The monotonic cell IGTo is the set of all equilibria of (40 ) ,  and Ir',,; is the 
whole constraint set. 

Example - Figure 4  shows a partition of the plane in monotonic cells 
for the oscillatory differential inclusion 

where 0 < a < w and c  > 0 are given. We use the symbols t-t for ++, f -t 
for + i  and so on. 

We define the closed sets 

The set Ir'o,o of all equilibria is the curve segment 

g ( x )  
(46 )  I h v o  = { ( x , u )  E R x R; -c 5 w ( x )  5 c  and u  = -1. 

h ( x )  

15 



Figure 4: Monotonic cells 

To describe the viability kernel of G r a p h ( U )  for (40 ) ,  let us consider for 
all ( x o ,  u O )  E G r a p h ( U )  the solutions (xn( . ) ,  un(.)) and ( x b ( . ) ,  u b ( - ) )  of the 
differential equations 

and 

being viable on some intervall [0,  tn] and [0,  tb] respectively. The explicit 
curve equations 

and their respective inverses 

,501 { 7 r  : x  ( x )  7rN(x(t)) = u ( t )  vt E [0, t ' ]]  
7rb : x  ( x )  7rb(x( t))  = u ( t )  vt E [O,tb] 



of the solution curves t  I-+ ( x n ( t ) ,  u n ( t ) )  and t  H ( x b ( t ) ,  u b ( t ) )  satisfy on the 
set In t (Ce l l (1 )  U Cel l (2 ) )  the differential equation 

and on the set In t (Ce l l (4 )  U C e l l ( 5 ) )  

and respectively on the set In t (Ce l l (2 )  U Cel l (3 ) )  

and on In t (Ce l l (5 )  U Cel l (6 ) )  

Let $ be the solution of (51 )  passing through (M, b) and $' the solution of 

(52 )  passing through (H, -b). The functions p b n d  $' being increasing, 

we can introduce their respective inverse functions i f !  = prl and $ = $'-I. 
Furthermore, we fix two points ( x ~ , i f ~ ( x ~ ) )  and ( x b , $ ( x b ) )  on the curves i f !  

and 3 respectively and consider the solutions of (53 )  and (54 )  respectively 
starting there. We posit the following additional assumption: 

(55 )  - b  E Dorn(7;i\) and b  E Darn($), 

so that  both curves T\ and @ do not reach the curve u  = % but the 
boundary of the constraint set. We can hence define for all x  E 1-b, b] 

Note that  n/a,t and nib,,, are well defined and that  they satisfy the respective 
differential equations ( 5 3 )  and (54 )  on the open interval ] - b, b[. 



Proposition 5.1 The viability kernel of Graph(U) for the differential in- 
clusion (40) is the graph of the regulation map R defined by  

Proof - 

i. We show first that  Viab(Graph(U)) c Graph(R) by contradiction. 
We fix (20 ,  U O )  E Graph(U)\Graph(R), we can assume without re- 
striction that  uo < rks t (xo)  < 9. Let (x( . ) ,u( . ) )  be a solution 

h(xo 
of (40) starting a t  (xo ,  uo) and viable on [0, to[ in the interior of the 
constraint set. The curve t  I+ ( u ( t ) , x ( t ) )  having the explicit curve 
equation p : u I+ p(u), p(u(t))  = x ( t )  Vt E [0, to[ satisfies 

for all t  E [0, to[. Hence x ( t )  = p(u(t))  2 p"u(t)) > pa,t(u(t))  for all 

t  E [O,to[ and therefore $$# 2 r!a,t(x(t)) > u ( t )  for all t  E [O,to[. In 

particular when x( to)  = b, we obtain $ = ~ ! ~ , , ( b )  > u(to) .  Since the 
velocity xt( to)  = g ( b )  - h(b)u(to) is positive, the solution is not viable. 

ii. We show that  Graph(R) C Viab(Graph(U)) by constructing partic- 
ular viable solutions, namely the minimally forced solutions. We fix 
(xo,uo) E Graph(R). If uo = with -c 5 w(xO) < c, we can 
take the equilibrium solution x ( t )  = xo, u( t )  = uo. If not, we take the 
solution of 

as long as it remains in Graph(R). When for some time t l  the solu- 
tion curve reaches the boundary of Graph(R), we have to damp the 
oscillation with maximal force Icl. We can assume without restriction 



that  it reaches the boundary in the point (2.1, a ~ , , ( x l ) ) .  Therefore we 
take the solution (XI(.), un(.)) of 

n ranging over the curve uI(t) = s,,,,(x~(t)) which runs in the half space 

set [u < #I. According to  the differential equation (59), we see that  
x(t) increases to b where it arrives at  time t2 with velocity 0, and u(t) 
increases until it arrives a t  the value fi It is sufficient to  show that  

h(b)  ' 

all points (xo, e), where x E [-b,b], are viable. We have to  consider 
three cases: 

(a) If -c 5 w(xo) < c, this is obvious, because (xo, @) is an equi- 
librium. 

(b) Suppose now that  w(xo) > c. Because of condition (55), the 
point xo Lies in ~om(n/ , , , ) ,  and therefore > sas t (xo) .  The 
solution (x(.), u(.)) of 

satisfies hence u(t) > sb,,(x(t)) as long as u(t) < $#. There- 
fore there exists tl > 0 such that  x(tl) = x1 and u1 = u(tl)  = H. If -c < w(zo) < c, we can take the equilibrium solution 

x(t) X I ,  u(t) - u1 for all t >_ tl .  If not, we continue as in case 

(c>' 
(c) Suppose that  w(xo) < -c. Analogously to  case (b), we take first 

the solution of 

which satisfies u(t) < s),,,(x(t)) as long as u(t) > @#. There 

exists t1 > 0 such that x(t l)  = x1 and ul  = u(tl)  = #. If -c < 
w(xo) 5 c, we take the equilibrium solution x(t) - X I ,  u(t) = u1 
for all t >_ t l ,  if not, we go back to  case (b). 



Hence we have shown that  we can construct sucessively a solution reg- 
ulated by an alternating control +c or -c, which remains in Graph(R) 
and which may converge finally to  an equilibrium or oscillate forever. 

Since the functions s/rst and a::', converge pointwise on [-b, b] and hence 
no uniformely to  the functions nlast and n;,OSt respectively when llwlloo tends to  

0, we obtain the following 

P r o p o s i t i o n  5.2 (Convergence o f  viabil i ty kernels)  The viability ker- 
nels Viab,(Ii) of the differential inclusion (40) submitted to the constraints 
(dl) under the conditions (43) converges to the viability kernel Viabo(Ii) of 
the differential inclusion 

where x(t) E [-b, b] for all t 2 0, when llwlloo tends to 0: 

Example (Continuation) - We use the result above to  compute 
the maximal regulation map of the oscillatory differential inclusion (44), 
where x(t) E [-b, b] for all t >_ 0. (See figure 5.) We computed also a 
minimally forced solution starting in the interior of the viability kernel near 
the unstable equilibrium (0,O). It is oscillating with increasing amplitude 
until arriving a t  the boundary of the graph of the maximal regulation map a t  
s k s t .  There it is forced with maximal force c, and remains on the boundary 
until it arrives a t  the point (b, 2ab) , which is not an equilibrium. Starting 
from there it oscillates on the following cycle forever: 

In the first phase, it oscillates freely without forcing until arriving a t  
the boundary of Graph(R) on the upper limiting curve nib,,,. 
In the second phase, it decreases on the curve n!ast to  the point 
(-b, -2ab) forced by minimal force -c. 

In the third phase, it starts from (-b, -2ab) an unforced oscillation, 
until arriving a t  the boundary of Graph(R) on the lower limiting curve 

n 
=last' 



Figure 5: The largest regulation map for the oscillatory differential inclusion 
in the example 

In the fourth phase, it increases on the curve to the point (b, 2ab) 
forced by maximal force c, where it goes back to  the first phase of the 
cycle. 

When w tends to 0, the viability kernel of Graph(U) tends to  the viability 
kernel of Graph(U) under the differential inclusion 

(63) 
2.  xl(t) = 2ax(t) - u(t) 

ii. ul(t) E [-c, c] 

according to  Proposition 5.2. 

6 Free oscillation cells 

In this section, we want to  compare free oscillations to  oscillations regulated 
by a minimal forcing term: the forcing term is 0 as long as the viability of 
the oscillation is not a t  stake. We consider the general oscillatory control 



Figure 6: The largest regulation map for the oscillatory differential inclusion 
in the example, when w tends to 0 



system 

(64)  
i. x l ( t )  = f ( x ( t ) ,  u ( t ) )  

ii. u l ( t ) + w ( x ( t ) , u ( t ) )  E v ( x ( t ) , u ( t ) ) B  

under the constraints 

According to  Theorem 3.2, we fix the largest subregulation map R associated 
with given cp for the oscillatory control system (64).  Besides the control 
system (64) ,  we consider the differential equation 

(66)  
i. x l ( t )  = f ( x ( t ) , u ( t ) )  

ii. u l ( t )  + w ( x ( t ) )  = 0 ,  

where ( u ( t ) )  E U ( x ( t ) )  for all t  > 0. This differential equation describes the 
free oscillations of (64).  According to  Theorem 3.2, we fix the largest subreg- 
ulation map R0 associated with the zero function. The graph of R0 is the vi- 
ability kernel of the differential equation (66)  and is called the free oscillation 
cell of the oscillatory control system (64).  Obviously GTaph(RO) C G i l  ( 0 ) .  

We observe the following behaviour of a minimally forced solution of the 
oscillatory control system (64):  
If for some t l  >_ 0  the solution ( x ( . ) ,  u ( - ) )  enters the subset G ~ ' ( o ) ,  then 
( x ( . ) ,  u( . ) )  oscillates freely. Furthermore, we obtain the following alternative: 

i. If ( x ( t l , u ( t l ) ) )  is contained in the free oscillation cell GTaph(RO),  
then ( x ( t ) ,  u ( t ) )  continue the unforced oscillation for all t  2 t l ,  and 
( x ( t ) , u ( t ) )  remains in the free oscillation cell for all t  2 t l .  

ii. If ( x ( t l ) ,  u ( t1 ) )  6 GTaph(RO),  then ( x ( t ) ,  u ( t ) )  must eventually leave 
~ i l ( 0 )  in finite time [2, prop. 4.1.41. After that ,  the solution ( x ( . ) ,  u( . ) )  
has to  be forced to  maintain viability. 

Example (Van der Pol oscillatory differential inclusion) - 
The figure below shows the largest regulation map of the Van der Pol oscil- 
l a t o ~ y  dinerential inclusion represented in the decomposition 

where x ( t )  E [-b,b] for all t  2 0. The free oscillation set is bounded by 
the a-limit of any free trajectory starting near the stable equilibrium (0,O). 



Figure 7: Free oscillation set of a Van der Pol differential inclusion 

When c tends to  0, the free oscillation set tends - according to Proposition 
5.2 - to the inertial set of the differential inclusion 

(68) 
. xl( t )  = a($  - x )  - u  

ii. ul ( t )  E [-c,c]. 



Figure 8: Free oscillation cell, when the parameter c tends to 0 
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