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Foreword 

At IIASA there is a long history of developing methodology for decision support. There is 
also a lot of experience of applying such methodology to practical problems. The present 
paper summarizes the experience with multi-objective optimization methods at IIASA 
and explains different features of applying such methods. It is emphasized that decision 
support systems should be developed for particular decision environments with the help 
of modular tools. Several modular tools are described. 



Abstract 

Decision making often requires the analysis of large amount of data and complex relations. 
Computerized tools designed and implemented for such purposes are called Decision Sup- 
port Systems (DSS). A DSS, which is typically a problem specific tool, usually helps in 
the evaluation of consequences of given decisions and may advise what decision would be 
the best for achieving a given set of goals. In such cases, an analysis of a mathematical 
model can support rational decision making. 

The paper provides an overview of the methodology of the design and deals with 
practical aspects related to implementations of model-based decision support systems. 
In particular, different approaches to the analysis of a model using simulation and opti- 
mization are summarized. Various optimization techniques are discussed in this context, 
including multi-criteria optimization used for a model analysis. The paper summarizes 
also problems of hardware selection and of software development. Modular software tools 
applicable to DSSs, including a tool for data interchange, are characterized. Selected 
issues of implementations of modular solvers and of applications of artificial neural nets 
to decision support are also presented. 

Key Words: decision support, multi-criteria programming, aspiration-led decision sup- 
port, linear programming, regularization, applications of multi-criteria programming, ar- 
tificial neural nets. 
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Design and Implementation of 
Model-based Decision Support 

Systems 

Marek Makowski 

1 Introduction 
Decision Support System(s) (DSS) are computerized tools used to aid in decision-making. 
Such tools have wide coverage in theoretical research and are applied for supporting 
decision making in diverse situations in various fields, including management, engineering 
and medicine. The variety of situations includes making strategic decisions at a corporate 
level, strategic and operational planning of means aimed at improving environmental 
situations, operational water management and solving engineering design problems. DSS 
that serve such diversified purposes have obviously very different features. Even more 
confusion is created because of DSS that are designed and applied for similar purposes in 
different scientific communities are often called differently. Sometimes different terms like 
Management Information Systems (MIS), Strategic Information Systems (SIS), Expert 
Systems, Intelligent Decision Support Systems or DSS are used for similar methodology 
and/or type of application. On the other hand, very often the DSS name is used for very 
different met hods and/or tools. 

This paper focuses on selected topics of design and implementation of a DSS. The 
aim of this paper is not to present this particular application, but rather to use it as an 
illustration for the discussion of problems that are of a broader interest. The selection of 
topics for the discussion is based on lessons learned from several applications of different 
types. An attempt has been made to discuss issues that are common to a relatively 
numerous class of problems for which DSS have been or can be developed. The remaining 
part of this paper is organized as follows. 

A general characteristic of DSS is summarized in Section 2.1, and a role of a DSS 
within a decision making process is discussed in Section 2.2. Model based DSS are dis- 
cussed in Section 2.3. This includes issues of model specification (Section 2.3.2) and an 
outline of two basic techniques for a model analysis, namely simulation and optimization 
(Section 2.3.3). In Section 2.4 the role of optimization in decision support is discussed. 
Although linear programming (LP) problems are considered classical, there are still some 
useful extensions of the traditional formulation of LP problems. Such extensions are 
presented in Section 2.4.1. An outline of multi-objective optimization, which is nowa- 
days a basic methodology used for model examination in model-based DSS, is given in 
Section 2.4.2. Section 2.5 summarizes applications of Artificial Neural Nets (ANN) to 
decision support. 

The second part of the paper is devoted to the discussion of problems related to 
design and implementation of a DSS. Hardware and software considerations related to 
implementation of a DSS are discussed in Sections 3.1 and 3.2, respectively. Selected 
problems related to development and implementation of modular software tools that can 
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be used for building a DSS are presented in Section 3.3. One of the discussed implemen- 
tation issues is related to data handling. It has been observed that the only de facto 
standard for LP problems (MPS format) is not efficient and does not provide complete 
information for an LP problem. Therefore a modular tool LP-DIT that provides efficient 
data handling is also briefly characterized in Section 3.4. Next, some experiences with 
development and applications of modular solvers are presented in Section 3.5. Finally, 
Section 4 contains conclusions. 

Decision Support Systems (DSS) 

2.1 General remarks 

The books related to various issues connected to the design and implementation of DSS 
number in dozens whereas a list of such issues would even be longer. Therefore we have 
to restrain ourselves to a small subset of basic problems. 

The term Decision Support System (DSS) is widely used both in research and in many 
applications, but there is no agreement about its meaning. We will not contribute to 
this terminological discussion. Instead of discussing the large set of problems related to 
the possible definitions of a DSS, we refer the reader to such discussions presented e.g. 
in [And89, Dav88, Eme87, FlJ91, Jan92, Hop88, LeW89b, Mei76, Nag90, Si191, Thi88, 
Thi931) and we will quote here only the definition proposed by Emery ([Eme87]): 

A DSS provides computer-based assistance to a human decision maker. This 
offers the possibility of combining the best capabilities of both humans and com- 
puters. A human has an astonishing ability to recognize relevant patterns among 
many factors involved in a decision, recall from memory relevant information on 
the basis of obscure and incomplete associations, and exercise subtle judgments. A 
computer, for its part, is obviously much faster and more accurate than a human in 
handling massive quantities of data. The goal of a DSS is to supplement the decision 
powers of the human with the data manipulation capabilities of the computer. 

Handling massive quantities of data should be understood not only in a traditional 
sense (as data processing done by a Data Base Management System) but it can also ana- 
lyze a large amount of logical relations and/or solve mathematical programming problems. 
Therefore, Operational Research (OR) is one of the key research fields for DSS. However, 
we would like to stress one key problem expressed by many authors (cf e.g. the sum- 
mary given by Davis in [Dav88]). Namely that the misunderstanding and misuse of the 
DSS concept may eventually result in its demise as a distinctive management tool. This 
concern is well expressed by the already famous statement published already in 1979 by 
Ackoff (cf [Ack79]): 

More and more people are coming to realize that optimization of all the quan- 
tities of life does not optimize the quality of life and that is a limiting objective. In 
addition, there is a widespread belief that much of the accelerating rate of change 
is getting us nowhere. [...I Those of us who are engaged in helping others make 
decisions have the opportunity and the obligation to bring consideration of quality 
of life - style and progress - into their deliberations. OR [Operational Research] 
has virtually ignored both the opportunity and the obligation. 

This statement is far from being generally accepted in the OR community (cf e.g. a 
constructive discussion of the role of OR by Chapman [Cha88, Cha921 and by Raderma- 
cher [Rad94]). Also many applications (examples of different types of applications are dis- 
cussed and further references are given e.g. in [EK090, HoW93, KaZ89, Kee92, KOCZ93, 
KMW92, KLW91, LeW89a, Makglb, Nak94, SpW93, Ste86, Ste92b, Tur93, WeW931) 
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demonstrate wide possibilities of the application of OR for DSS. However the statement 
by Ackoff should not be forgotten since it serves two purposes: as a perfect warning 
against misusing OR methods and as a stimulation for using optimization methods in 
ways that are better suited for solving real-life problems. 

In order to avoid possible misunderstandings it is necessary to present the basic char- 
acteristics and features of the class of DSS we will be dealing with. Let us start with 
a brief discussion of the environment in which a DSS may be used. The key person in 
this consideration is an individual who uses a DSS in real-life situations. By convention 
such a person is called a Decision Maker (DM). By this term we mean both a person who 
makes real decisions (depending on an application it may be a manager or an engineer 
or an operator) or an expert who may be his/her advisor. Decisions are made within a 
Decision Making Process (DMP), which, in situations that justify usage of a DSS, is a 
rather complex sequence of tasks. We assume that a final decision is to be made by the 
DM and a DSS does not serve as a replacement or control of a DM. In other words, a 
DSS is not aimed at  the automatic selection of decisions. 

The following characteristic of a DSS implicitly defines a class of DSS we will be 
dealing with: 

A DSS is a supportive tool for the management and the processing of large amounts 
of information and logical relations that helps a DM to extend his habitual domain 
(cf [Yu90]) and thus help him/her to reach a better decision. In other words, a DSS can 
be considered as a tool that, under full control of a DM, performs the cumbersome task 
of data processing and provides relevant information that enables a DM to concentrate 
on this part of the DMP that can not be formalized. 
A DSS is a problem dedicated system designed for a specific DMP and its environment. 
The functioning of a DSS should be consistent with the actual environment of a DMP. 
A DSS is often tuned for a specific DM. 
A DSS is not a black box type tool. The structure and functioning of a DSS (including 
explicit and implicit consequences of assumptions adopted for its design) must be such 
that a DM understands and accepts them. The user interface of a DSS is designed in 
such a way that a DM may obtain, from the DSS, information and answers for questions 
that he considers to be important for a DMP. 
A DSS is not intended to solve a decision problem. Therefore it should not support 
reaching a single or unique decision nor should it restrict a possible range of decisions. 
A DSS should support a user during a DMP by providing two main functions. First, 
it allows for examination of consequences of any (feasible) decision. Second, it helps in 
finding decisions that are the best for attaining goals specified by a user. 

A DSS is useful in complex situations for which specification of attainable goals and 
of rational decisions is impossible. Let us briefly outline a use of a DSS for the example of 
Regional Water Quality Management (RWQM) problem1. A DM may want to consider 
different measures to improve water quality, the related costs and various standards of 
water quality. The multicriterion's version of the DSS for the RWQM has less than 
100 binary variables but the number of all feasible combinations of the corresponding 
technologies is far from being manageable. Therefore the DSS for RWQM helps a DM in 
finding a set of technologies whose implementation would result in achieving conflicting 
goals expressed by selected aspiration values for economic and environmental criteria. The 
specified goals are typically not attainable, therefore the DSS finds a solution closest to the 

'The RWQM is aimed at the design and implementation of a DSS for supporting a selection of a set 
of alternatives for waste water treatment plants in order to improve the water quality of a river basin, or 
of a larger region consisting of a number of river basins (cf [MSW95] for details). 
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specified goals. This in turn usually motivates a DM to change aspiration values for the 
goals and to repeat the calculations. From time to time a DM may want to check the effect 
of applying a given (by him/her) selection of technology. Of course, the corresponding 
solution will not be optimal in the sense of mathematical programming, but nevertheless 
it is an important function of any DSS to provide also simulation capabilities because a 
user may not only want to check the effects but sometimes may also want to apply such 
a solution (e.g. due to its other properties that are not included in the specified goals). 

Hopple [Hop881 suggests that "The human-machine symbiosis is a hallmark of a gen- 
uine decision support system". The above listed brief characteristics are the necessary 
main conditions for such a symbiosis. By no means they are sufficient conditions. There 
is no general specification of sufficient conditions for the implementation of a DSS since 
this obviously depends on a particular environment of a DMP. The key element of this en- 
vironment is the habitual domain of a DM (cf [YugO]). Recognition and understanding by 
a DSS developer of the DM'S habitual domain is essential for design and implementation 
of a DSS. 

2.2 DSS - a support for a Decision Making Process 

Making a rational decision often requires access to and the processing of a large amount 
of data and logical relations which (due to the nature of the problem) cannot or should 
not be replaced by intuition. In many situations it is not a small task to examine even the 
possible range of feasible alternatives. Using computers for processing usually results in 
implementing a DSS. Many different functions that can or should be provided by a DSS 
can be divided into two sets: 

Data processing in the traditional sense: These functions provide selective retrieval 
and presentation of information previously stored in a data base. Such functions are 
typically supported by a Data Base Management System (DBMS) and are useful for 
many every-day managerial activities such as producing various reports (e.g., periodical 
and exception), answering ad hoc queries, presenting information in different forms, etc. 
Model processing: Quite often, it is desired to predict consequences of some actions (for 
example implementing a decision or making a choice) or events (actions that are not 
controlled by a DM). In such cases, a mathematical model for a real situation is built 
and such a model is used for analysis of predicted consequences. 

A DSS that supports only functions from the first set is called a data-oriented DSS. Model 
processing functions require a model-based DSS that typically contains also most of the 
functions of the data-oriented DSS. 

We will consider a model based DSS2 which uses an underlying mathematical model. 
Such a mathematical model is built for a part of the Decision Making Process (DMP) 
for which it is possible to implement an abstract (mathematical) model that is good 
enough to represent the available (often quite complex) knowledge and experience of 
a user in order to support his/her intuition. A user is a Decision Maker (DM) or an 
analyst but in this paper we will use the terms user and DM interchangeably. Therefore 
such support for decision making is conceptually distinct from the more traditional data- 
oriented perspectives of decision support. We don't claim that the approach discussed 
in this paper is better than this more traditional approach. We simply point out that 
quite often the DMP requires not only data processing in the traditional sense but it also 
requires the analysis of a large number of logical or analytical relations and processing - 

2F'urther on in this paper, DSS means model based DSS, unless explicitly stated otherwise. 
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in the sense of solving3 an underlying mathematical model - a large amount of data. In 
such situations a properly designed and implemented model-based DSS not only performs 
cumbersome data processing, but it also provides relevant information that enables a DM 
to concentrate on those parts of the DMP that cannot be formalized. 

A key issue for a model-based DSS is its relation to the actual DMP. Especially in 
managerial situations, a DM is typically confronted with problems that are dependent of 
each other and a DSS covers only a subset of problems that are considered within the DMP. 
Part of the DMP is often not representable in the form of a mathematical model. Dealing 
with a mathematical model is often considered to be hard system thinking as opposed 
to the soft system thinking. Relations of these two types of approaches are discussed 
e.g. by Flood [FlJ91] and Wierzbicki [Wie92c]. The Shinayakana approach proposed by 
Sawaragi (cf [SaNgl]) also combines hard and soft system approaches. Another important 
issue for a successful implementation of a DSS, is the paradigm of rational choice (cf 
Section 2.3.1). 

To end this brief overview of the common issues let us just point out two important 
problems. First, decision making is not a point event even in situations when 
it is realistic to assume that the problem perception does not change during 
the DMP. Therefore the possibility of using a DSS in a learning and adaptive mode 
is a critical feature. Secondly, in many complex decision situations, the availability of 
information may not always be consistent with the authority of using this information for 
implementing appropriate decisions. The analysis of the accident of the Challenger space 
shuttle (cf [vG91]) is a good example of related problems. 

Relations between the DSS and the whole DMP should be clearly identified and be 
understood both by the team that implements it (cf [Makgl b]) and by the DM. Therefore 
mutual understanding - between the DM and the analysts and researchers who design 
and implement a DSS - is one of necessary conditions for each implementation. The DM 
must understand consequences of assumptions adopted for a particular DSS, and analysts 
and researchers must understand the DMP well enough to identify those consequences. 
However, this condition is not always fulfilled. Quite often a general DSS tool is applied 
without careful analysis of the consequences. We hope that the arguments collected in 
this section clearly show that such an approach is unlikely to be successful. 

2.3 Model-based DSS 

2.3.1 General concepts 

For the discussion of the model based, aspiration-led DSS concept, let us assume the 
following decision making situation: 

A well-defined part of a DMP (for which a DSS is to be implemented) can be repre- 
sented in the form of a mathematical programming model. Decisions have quantitative 
characters and therefore can be represented by a set of the model variables, hereafter 
referred to as decisions4 x E Ex, where Ex denotes a space of decisions. 
The model defines a set of feasible decisions Xo C Ex. Therefore x is feasible, iff x E Xo. 
The set Xo is usually defined implicitly by a specification of a set of constraints that 
correspond to logical and physical relations between the variables. The feasibility of 
decisions given by a DM should be assessed. Decisions computed by a DSS should be 

3The word solving is used here for two approches to the analysis of mathematical models, namely 
simulation and optimization. See Section 2.3.3 for more details. 

4For the sake of brevity we call decision variables simply decisions. 
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feasible, if a feasible solution exists. 
The model can be used for predicting the consequences of decisions proposed by a DM 
or computed by DSS. The prediction of the consequences can usually be represented 
by a mapping y = f (x )  E E,, where E, is a space of consequences (outcomes) of the 
decisions. 
The consequences of different decisions x can be evaluated by values of criteria q E Eq, 
where Eq is a space of criteria (sometimes referred to as outcomes, goals, objectives, 
performance indices, attributes, etc.). Usually E, is a subspace of E,, that is, the DM 
might select some criteria qi between various outcomes yj. Sometimes also some of the 
decision variables x are used as criteria. A partial preordering in E, is usually implied 
by the decision problem and has obvious interpretations, such as the minimization of 
costs competing with the minimization of pollution. However, a complete preordering in 
E, cannot usually be given within the context of a mathematical programming model. 

The decision problem boils down to a selection of the best, among all feasible decisions, 
decision 2. The key problem here is to understand what the best means for a DM who 
actually makes a decision. The problem of a rational choice of a decision has been exten- 
sively discussed in a number of publications. A discussion of different approaches to this 
problem is given e.g. by Keeney [KeR76, Kee921, Rapoport [Rap89], Sawaragi [SaNSl], 
Stewart [Ste92b], Wierzbicki [Wie92c, Wie92a1, Yu [Yu90]. 

Before discussing the multi-objective based approaches, we briefly comment on the 
most strongly established rationality framework that is based on the concept of maxi- 
mization of the multiattribute utility (MAU) (cf e.g. [Fis64, KeR76, Yu851). The MAU 
concept, often also referred to as multiattribute value function, assumes that it is possi- 
ble to construct a function that maps elements of the criteria set E, into R1 in such a 
way that a larger number corresponds to a stronger preference. There are many funda- 
mental and technical difficulties related to the identification of the value function that 
adequately reflects the preferences of a DM (cf e.g. [Fis79, Rap891). Moreover, it has 
been observed by many researchers (cf e.g. [Mac85, TvK851) that a DM learns about 
the decision problem during an interaction with a DSS and quite often changes his/her 
preferences or specifies them inconsistently during this learning process. But an even 
more important reservation for applications of the MAU concept to decision support was 
given by Simon [Sim57], who pointed out, against all traditional economic concepts, that 
people look for satisficing solutions instead of one that maximizes the expected utility. 
Also Galbraith stressed in [Ga167], that satisficing behavior corresponds to the culture of 
big industrial organizations. 

Simon formulated in [Sim58] another rationality framework, called bounded rational- 
ity or satisficing decision making. This framework has been extended further by many 
researchers (cf e.g. a summary given by Lewandowski and Wierzbicki in [LeW89b]). One 
of the main directions in that field was set by Wierzbicki [Wie80], who formulated the 
principle of reference point optimization in multiobjective optimization and decision sup- 
port. That principle has been extended by Wierzbicki (cf [Wie82, Wie84, Wie861) to 
principles of quasisatisficing decision making and has been extensively used both in re- 
search and in applications (cf [LeW89a]). Parallelly, Nakayama also developed a sim- 
ilar method called the satisficing trade-off method (cf [SNT85]). Similar approaches 
and their extensions have also been elaborated and applied by many other researchers 
(cf e.g. [GrW94, KLW91, KoW90, KMW92, LeW89a, LAP94, Mak94b, MiS92, Nak94, 
Sak93, SeS88, Ste86, WeW931). 

The first natural approaches to the model analysis have been based on simulation 
and on the application of classical single-criterion optimization. However, it has become 
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obvious that the specification of a single-objective function, which adequately reflects 
preferences of a model user, is perhaps the major unresolved difficulty in solving many 
practical problems as a relevant single-criterion optimization problem. Multiobjective 
optimization approaches make this problem less difficult, particularly if they allow for an 
interactive redefinition of the user preferences. 

In a typical decision situation it is reasonable to evaluate results of a decision by 
more than one criterion. Since the classical LP formulation allows for the formulation 
of only one criterion (goal function), the main objective is selected as the performance 
index whereas other objectives are converted into constraints whose values are treated as 
parameters. Although parametric optimization is a sound idea for OR-oriented users, in 
practical applications it is very difficult to be used. For such problems it is natural to 
formulate and deal with interactive multiobjective optimization. 

From both methodological and practical points of view, it is rational to discuss and 
to implement a DSS in two stages: 

First, to build a core model that implicitly defines a set of feasible solutions Xo. The core 
model should include all logical and physical relations between variables but should not 
contain any constraints corresponding to a preferential structure of a user. Specification 
of a core model is discussed in Section 2.3.2. 
Second, to provide a methodology and tools for analysis of the model. This can be 
done in different ways, e.g. by simulation (cf Sec. 2.3.3), by some extensions of single- 
criterion optimization (cf Sec. 2.4.1) or by one of the implementations of multiobjective 
programming (cf Sec. 2.4.2). 

The first stage is of a more technical nature, that requires modeling skills and knowledge 
of the problem. The resulting model defines a set Xo that contains all feasible solutions. 
Clearly most of the x E Xo are not acceptable. However, acceptability of a solution should 
be assessed only by a DM. Including acceptability conditions or preferential structure into 
a definition of Xo quite often results in implicit rejection of a large number of feasible 
solutions. Such a narrowing of Xo is misleading a user, because in such a case he/she 
cannot evaluate all feasible solutions. Therefore, a clear distinction between the feasibility 
and the acceptability of a solution should be maintained in any DSS. 

2.3.2 Model specification 

When a model-based DSS is desired (cf Sec. 2.2), it can be achieved only for a problem 
that is understood sufficiently well to build a mathematical programming model5, which 
can adequately represent a decision situation. To represent a decision situation means 
that the model can be used for predicting and evaluating consequences of decisions. Such 
a model - that implicitly defines a set Xo (cf Sec. 2.3.1) - is typically composed of (cf 
e.g. [WiM92]): 

decision variables that represent actual decisions (alternatives, choices, options etc.), 
potential objectives (goals, performance indices) which can be used for evaluation of 
consequences, 
various intermediate and parametric variables (balance and/or state variables, resources, 
external6 decisions), 

5Mathematical programming model is a mathematical abstraction and should not be confused with 
programming computers (although building and using the model inevitably requires programming of a 
computer). 

'That means not directly controlled by a DM. 
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constraining relations (inequalities, equations, etc.) between variables that indirectly 
determine the set of admissible (feasible, accepted) decisions. Some of the constraints 
may reflect the logic of handling events represented by variables. 
outcome relations that define goals as functions of decision variables. 

Building a mathematical programming model is usually a task that requires good 
understanding of the problem and good knowledge of model building methodology. The 
process of specifying the requirements to be met by the modeling process or establishing 
the specifications that the modeling process must fulfill is called metamodeling and one can 
also examine a metamodel (through the modeling process - cf [vG91]). There exist many 
books and articles related to practical problems of modeling (cf e.g. [HuJSO, Wie92a, 
Wi1901. Specification of a model that will be used in a model-based DSS should meet 
additional requirements. Such requirements are discussed in more details in [Mak94b]. 

It is usually not possible to specify uniquely a model that can yield a unique solution 
reflecting the preferences of a DM. For example, very often it is practically impossible 
(even for a good analyst or an experienced DM) to specify e.g. values for a group of 
constraints that would cause a feasible solution to be also acceptable. In order to illus- 
trate this point let us consider the example of the Regional Water Quality Management 
(RWQM) problem. A DM may want to consider different waste water treatment technolo- 
gies and the related costs, as well as standards for water quality. However he/she knows 
that specification of constraints for a group of (either ambient or effluent) water standards 
may lead to solutions that are too expensive. On the other hand, assuming constraints 
for costs (with water quality standards being goals) could result in an unacceptable water 
quality. Values of constraints are in such cases formally parameters in a corresponding 
optimization problem. But those values are in fact decisions that reflect the preference 
structure of a user. Setting constraints' value too tight would result in restricting the 
analysis of the problem to a (possibly small) part of feasible solutions (often making the 
set Xo empty). A typical advice in such situations is to specify two types of constraints, 
so called hard and soft constraints (cf Sec. 2.4.1) which correspond to must and should 
types of conditions, respectively. But, in fact, dealing with soft constraints can easily be 
done within multiob jective model analysis (cf [Mak94b] for details). 

Therefore, the specification of a model that defines Xo should not include any relations 
that reflect conditions for acceptability of a solution by a user or a preferential structure 
of a DM. In the RWQM, both costs and water quality standards are treated as goals 
(criteria). This provides flexibility of examining trade-offs between costs and water quality. 
Hence, the so-called core model accounts only for logical and physical relations between all 
the variables that define the set Xo of feasible solutions. The specification and parameters 
of the core model are not to be changed after a verification and validation of the model is 
done. All other constraints and conditions that implicitly define acceptability of a solution 
by a user and those that represent a preferential structure of a DM will be included into 
an interactive procedure of the model analysis. Therefore a mathematical programming 
model that is solved is composed of two parts: 

A constant and usually large core model. This part is built and verified before an actual 
analysis of a problem starts. 
A part that corresponds to a current specification of goals and conditions set by a user. 
This specification is interactively being changed, often drastically, by a DM. 

A proper implementation of such an approach makes it possible for a DM to analyze feasi- 
ble solutions that correspond to a his/her preference structure. Changing this structure is 
the essence of the model analysis and of the model-based decision support. An additional 
bonus is due to the fact that there always exists a feasible solution of the underlying 
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mathematical programming problem, which is a prerequisite for an analysis of complex 
models. 

Finally, we should point out that building of a model requires collection, processing 
and verification of data. The famous saying "garbage in garbage out" implies that the 
problem of data accuracy should not be underevaluated. A user need not worry about 
possible ranges of quantities (which usually have an impact on computational problems) 
because this should be accounted for by the DSS. A designer of a DSS should make 
sure that only all substantial elements are included into the model (see a more detailed 
discussion on a specification of a model e.g. in [Mak94b]). 

The value of a mathematical model as a decision aid comes from its ability to ad- 
equately represent reality. Therefore, there is always a trade-off between the requested 
accuracy (realism) of the model and the costs (also time) of its development and provid- 
ing the model with data. Hence the requested accuracy should be consistent with the 
accuracy really needed for the model and with the quality of the available data. 

2.3.3 Simulation and optimization for decision support 

There is a general agreement (cf e.g. [Sim9O]) that model-based DSS are generally of two 
types that correspond to the two ways of a model analysis: descriptive (sometimes called 
predictive) and prescriptive (normative). The descriptive DSS are used for prediction 
of the modeled system behavior without an attempt to influence it. The prescriptive 
DSS are aimed at providing information about controls (in managerial situations called 
decisions) which can result in a desired behavior of the modeled system. This desired be- 
havior is usually evaluated with the help of goals (objective values, performance indices, 
etc.). In other words, a descriptive DSS helps to answer a question such as "what will 
happen if" whereas a prescriptive DSS supports answers for questions like "what decisions 
are likely to be the best". For the prescriptive type of DSS, optimization techniques are 
widely considered (especially in the OR community) as good tools for selecting (out of an 
admissible set) a solution (part of which is composed of the above mentioned controls) 
which is considered "the best". The term "best" corresponds to a solution that provides 
best value of a performance index (goal function, objective, criterion) or a set of such 
indices that are used for evaluation of the expected consequences of implementing corre- 
sponding decisions (controls). A commonly accepted (by OR community) approach is to 
assume that a mathematical model corresponds well to reality and it is possible to define 
a performance index that reflects well the preferences of a DM; hence, an application of 
an optimal solution for the mathematical model will cause in reality "the best" results. 
However, as we will show later in Section 2.4, such a conclusion is often erroneous and 
optimization alone usually does not provide "the best" solution. 

Therefore it is desirable to use a model-based DSS in both (i.e. descriptive and pre- 
scriptive) modes interchangeably. For example, before even trying to find prescriptions, 
one should verify the model also in the descriptive mode. The model should not only 
conform to the formal specification but also all discrepancies between intuitive judgment 
of a DM and analytic results obtained from the model must be resolved. In other words, 
such inconsistencies show that either the model (assumptions, specification, data) or the 
DM'S intuition is wrong. Conflicts between results provided by the model and what is 
perceived by a DM must be resolved before the DM may trust the model, which is ob- 
viously a necessary (but often forgotten) condition for the actual use of a DSS. This 
applies, in particular, if the model used in a DSS is not restricted to substantive aspects 
of the decision situation but incorporates also some preferential aspects, that is, it tries 
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to implicitly represent the preferences of the DM. 
Simulation is one of the tools useful for running a model in a descriptive mode. For 

simulation, one may use random values for variables (cf [GoW91] for different techniques 
and examples) or assign values basing either on DM'S intuition or on a heuristic (possibly 
based on information from a knowledge base). So-called inverse simulation (cf [Wie92a]) 
is a very useful technique for examination of decisions in situations, when specification 
of a set of feasible decisions is not easy. Obviously, a mixture of these techniques can 
be used for two groups of variables since values of the variables selected (into the group 
of simulated variables7) can be temporary fixed. Various simulation techniques applied 
in the descriptive mode may provide information not only for model verification but also 
may lead the DM to modification of selected constraints or goals. 

The usage of simulation and optimization can be compared as follows: 
In simulation mode decision variables are inputs and goals are outcomes. Therefore this 
technique is good for exploring intuition of a DM, not only for verification of the model 
but also for providing a DM with information about consequences of applying certain 
decisions (for example, what would be the value of goals and constraints). One can 
also consider simulation as an alternative-focused method of analysis that is oriented to 
identify (examine) the alternatives. 
Optimization can be considered as a goal-oriented (value-focused) approach that is di- 
rected towards creating alternatives. Optimization is driven by hope to reach a set 
of goalss (objectives). Therefore goals are a driving force and the values of decision 
variables are outcomes. This is very appealing. However, one should not forget about 
disadvantages that are consequences of the two facts. First, usually not all real ob- 
jectives are included into the goals formulated for the optimization (cf Section 2.4). 
Second, an optimal solution is found on a set of feasible solutions and a DM might 
prefer to change (usually implicitly) this set, if he knew that, for example, a substantial 
increase of a goal considered to be of secondary importance may result from a relatively 
small change of one of goals that is represented in the model as a constraint. 

Therefore, an interchangeable use of both (simulation and optimization) techniques has 
obvious advantages, especially in the learning phase of using a DSS. In particular, a DSS 
should be armed with options of changing selected constraints into goals, fixing values of 
some variables, etc. 

2.4 Optimization in DSS 

Let us concentrate in this Section on the role of optimization in DSS. It has been observed 
(cf e.g. [Ack79]) that many DSS are driven by optimization techniques, which means that 
a user has only partial control of the way in which analysis of the model is being done. 
This observation justifies not only the demand of using techniques of descriptive DSS as 
an equally important option in a prescriptive DSS, but also calls for the rethinking of 
problems related to using optimization within a DSS. To simplify the discussion, let us 
assume for a moment that we deal only with single-objective optimization. This is not 
a restriction since all the following arguments are also valid for multi-objective optimiza- 
tion. 

From the (traditional) OR perspective, it is natural to formulate a mathematical 

7~ariables for which values are set by a user. 
'Not in the sense of goal programming - cf Section 2.4. 
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programming problem in the form: 

i = arg min F ( x )  
xEXo 

and solve it. A concise formulation of (1) may be misleading for those who don't know 
that very often solving a mathematical programming problem is a challenging task. One 
should be aware of both the scientific values and of the resources required for finding and 
implementing an algorithm that can provide (using possibly small computer resources) a 
(correct !) solution i from a set Xo that minimizes the objective F (x ) .  

However, a DM has a completely different perspective. Let us briefly summarize 
some elements of this perspective (typical for non-engineering applications of DSS) which 
differ to the traditional OR way of formulating and solving a mathematical programming 
problem: 

A unique specification of both a mathematical model and of one performance index is 
very difficult, if at  all possible, for most real-life situations. Therefore, a series of cycles 
composed of analysis of the results provided by a solution of the model and modification 
of the preference structure of the DM (expressed, for single criterion optimization, in the 
form of one objective and constraints for selected quantities representing other goals) is 
a typical desired activity, not only for the initial stage of using a DSS. 
Models are simplifications of reality, and optimization is limited to the model that 
includes an objective that is always a simplification of a preferential structure of the DM. 
Therefore, optimal solution of a model may not necessarily be optimal in reality, as 
perceived by a DM. It may be desirable to modify an "optimal" solution, in order to 
take into account some factors yet not accounted for in the underlying model (very 
often some of them are not included deliberately). A DMP is composed of subproblems 
analyzed/solved independently; therefore, overall optimum is usually not composed of 
optima computed for each sub-problem separately. 
DM usually prefers to be sure that his sovereignty in making decisions (for which he 
is responsible) is not jeopardized by a computer. The main reason is psychologicals. 
Therefore it is important that a DM - who rarely is also a computer guru nor does 
he/she want to devote substantial amount of time to dig into hundreds of pages of 
software documentation - understands well enough all important functions of the DSS. 

Adding this perspective to the discussion presented in the previous section, it is clear that 
optimization in DSS should have quite a different role than the function of optimization 
in some engineering (especially real-time control problems) applications or in very early 
implementations of OR for solving well-structured military problems. This point has been 
clearly made by Ackoff in [Ack79]. 

Optimization would be better accepted outside the OR community, if users would 
be able to treat optimization as a tool for selecting a number of solutions that have 
certain properties and if a support for comparing (from various perspectives preferred 
by a DM) such solutions would be widely available. This is, however, not only contrary 
to a traditional way of using OR methods (cf e.g. [Cha92]) for solving a problem in the 
following five stages: describe the problem, formulate a model of the problem, solve the 
model, test the solution, implement the solution. It is also contrary to another traditional 
OR perspective that implies that an optimal solution is also the best available solution 
which in turn implies that there is neither much need nor room for human decision making. 

'It is a commonly known fact that even the developers of DSS's supporting choice (out of a given set) 
of an alternative do not necessarily follow optimal solutions suggested by their own DSS when solving a 
personal problem. However, they use the DSS for an analysis of the problem. 
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Also text books on DSS addressed to managers (e.g. [Eme87]) often treat optimization 
merely as a tool for providing the solution. To make the situation even worse, many 
of such books still present only single-objective optimization, whereas multi-objective 
optimization, when properly used, remarkably softens this perspective. 

Let us try to summarize some basic conditions that can make optimization techniques 
more useful in DSS: 

Optimization should be implemented in such a way that a user considers it as just an 
option that facilitates an analysis of the problem by selecting solutions having certain 
properties represented by the, interactively modified, goals or preferences. Designers of 
a DSS should never forget that the aim of a DSS is not at  all to discover an optimum 
solution, but to help DM to improve the DMP. This implies that optimization should 
be just an element of a DSS, which sometimes may play a central role, sometimes is 
only an additional tool and sometimes is not used. 
Simulation should be at  least as important an option as optimization. A DM should 
not be "driven" towards an optimization option until he/she clearly recognizes a need 
for using it. 
Optimization should be well combined with simulation. This should include possibilities 
of fixing values of variables and/or goals, modification of a set of goals (both treating 
goals as soft constraints and vice versa as well as changing definitions of goals), and 
looking for a suboptimal solution with certain additional properties. Fixing values 
should not be implemented as constraints. Rather the regularization or the so-called 
inverse simulation techniques should be used (cf Section 2.4.1 for more details). 
A DSS should provide information and tools for making it possible and easy to un- 
derstand consequences of a decision. A decision might be a result of a choice made by 
a DM, but it might also be a suggestion computed as an answer to an explicit or implied 
selection of goal(s) used as the driving force for optimization. 
In some applications, it might be reasonable to refrain from providing an optimization 
option. For example, in situations where a DM has better intuition in selecting values 
of decision variables (for simulation mode) than in selecting goals. 

2.4.1 Extensions of the traditional formulation of LP problems 

We have selected for the discussion the classical LP problem but a similar approach can 
easily be adapted and used for non-linear and mixed-integer problems. The purpose of 
the discussed extensions is to make the examination of various properties of an LP model 
easier, especially those related to suboptimal solutions with additional properties and 
those related to  feasible set of solutions. 

Let us consider some possibilities of extending the traditional formulation of a linear 
programming problem (LP): 

min cx (2) 

to the following framework form: 

k 

min WO* < C,X > + C w ;  * f;(x,v) 
i=l 
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where b = b + Iv,  I - is a diagonal selection matrix, v 2 0 is a vector of auxiliary 
variables. The selection matrix I contains binary elements with values set to one for 
elements corresponding to the constraints that are treated as soft constraints. Therefore, 
the vector 6 corresponds to the right hand side vector where the auxiliary variable v 
enters a modified objective function in order to provide a mechanism for minimizing the 
differences between the original right hand side values b of constraints and the values - 
b which are generated by converting hard into soft constraints. Note that the problem 
(5)-(7) boils down to the original LP problem (2)-(4), if the selection matrix I has all 
elements set to zero and wo = 1, wj = 0 Vi > 0. The problem (5)-(7) is formulated in 
a way that is convenient for discussion. In an actual implementation, one can obviously 
generate only appropriate variables and constraints that correspond to a particular soft 
constraint or to a group of soft constraints that should be treated in a similar way. One 
can also convert bounds (4) into soft bounds that would be a modification of (7) by the 
same approach as is used for constraints. 

We will now consider several possibilities of actual specifications of the objective tem- 
plate (5) and will briefly discuss the interpretation of the corresponding mathematical 
programming problem. For the sake of brevity we will use the following notation: C is a 
selected positive number and )I . I( is L2 or L" norm (possibly for a subvector of x, which 
would correspond to a group of variables that should be dealt with using a corresponding 
modification). Using the L2 norm is for many applications more appropriate than using 
the L" norm, but then the resulting problem is no longer an LP problem. However, 
some LP solvers (e.g. HYBRID - cf [MaS93b]) are also capable of solving the resulting 
linear-quadratic programming problems. 

Let us consider four possible approaches that can often be useful during an examination 
of an LP problem. The following modifications can easily be implemented by extending 
capabilities of the software that is used for generating an LP problem. For the sake of 
simplicity, we will not consider possible mixtures of the presented modifications. 
1. Quite often, especially in the initial stage of an examination of an LP problem, a 

solver reports that no feasible solution exists. It is a commonly known fact that the 
corresponding information (about inequalities that are infeasible at the point when the 
algorithm is stopped) is usually not sufficient to trace the real source of the problem 
(mainly because most LP algorithms have no robust way to specify a set of infeasible 
constraints and in addition, for many problems such a set is not unique). In order to 
make the examination of the problem feasibility easier, the objective defined for an LP 
problem may be specified using the following definition of parameters and functions in 
the template (5): 

wo = 0, w; = 1, f; =I[ (Ax - b)+ + ( b  - r - Ax)+ 11 (8) 
where (u)+ denotes the vector composed of components max(0, u;). One can use this 
approach also for preselecting candidates for a set of soft constraints. 

2. One can easily generate a series of problems that correspond to different selections of 
a group of constraints that should be treated as soft constraints by assuming 

wo = 1, wj = C;, f; =I1 V; 11 (9) 
and using different selection matrices I. The values of C; (which might be different 
for different groups of constraints) provide control of the trade-off between the orig- 
inal objective and the other objective of narrowing the gap between the values that 
correspond to the soften and the original hard constraints, respectively. 
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3. An LP problem may have non-unique optimal solutions. Although this is theoretically 
rare, in practice many problems actually have a large set of widely varying basic solu- 
tions for which the objective values differ very little (cf e.g. [Mak80, Sos81, MaS89al). 
In most cases, an optimization algorithm stops when a current solution is recognized 
as optimal for a given set of tolerances. For problems with a non-unique optimum, 
the first optimal solution found is accepted, so that one may not even be aware of the 
non-uniqueness of the solution reported as optimal. Thus, in practical applications, 
we are faced with the problem of choosing an optimal (or, in most cases, to be more 
accurate, a suboptimal) solution that possesses certain additional properties required 
by the user. This problem may be overcome by applying an approach called regular- 
ization. Regularization (Tikhonov's type) is a way of finding the optimal solution with 
either minimum norm or minimum distance from a given reference point. This can be 
achieved by setting in (5): 

w o = l ,  w i + o + ,  f i= l lx -c r I (  (10) 
where cr will be replaced by one of the following three terms: 5, O., sf, respectively. 
The choice depends on the desired properties of the solution. If one knows the desired 
values of decision variables, then those values should be used for defining the vector 5 
and the first choice should be applied. The second choice corresponds to a preference 
of the minimum norm solution, whereas the third choice serves mainly for numerical 
stabilization of some algorithms without any preferences for additional properties of 
the solution. The notation " + 0+ " means that during the computation one uses a 
sequence of positive numbers that converges to zero. For the interpretation of final 
results (and also for some applications) this sequence can be replaced by " 6 " (which 
is by convention a small positive number). 

4. In some situations it might be desirable to look for a solution which - besides a mini- 
mization of the given objective - would have values of selected variables possibly close 
to given "reference" values. The corresponding problem can be generated by setting 
in (5): 

Wo = 1, W1 = C, fi = I 1  x - 5 11 (11) 
where 5 is composed of the corresponding reference values and the parameter C serves 
for the control of the trade-off between the original objective and the other objectives 
(i.e. finding a solution possibly close to a given point). This option is equivalent to 
the so-called inverse simulation (cf [Wie92a]), if wo = 1, C = 1 and the vector x is 
composed of all decision variables. The inverse simulation is very helpful in simulation 
of models that are likely to have no feasible solutions for values of decision variables 
that a DM would like to examine. 
The above presented ways of extending the traditional formulation of mathematical 

programming problems towards a better meeting of the requirements of using a mathe- 
matical model within a DSS are not new to many of those who are involved in real-life 
applications. However making these approaches more popular and combining them with 
multi-objective optimization would widen the acceptance of OR methods. Optimization 
can and should be a very useful component of a DSS provided that it does not pretend 
(nor make an impression of doing so) to be a governing way for selection of "the best" 
solution. 

2.4.2 Multi-objective model analysis 

Many commonly known shortcomings of single-objective optimization have led to the 
development of methodology and techniques for application of multi-objective program- 
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ming (MOP) to analysis of a model used for decision support. Different MOP techniques 
and experiences from applications (cf eg [LeW89a, HoW93, KaZ89, KeR76, KMW92, 
KLW91, LAP94, MiS92, Sak93, SeS88, Ste92b, Vin89, WeW93, Yu851) make it possible 
to remarkably increase the usefulness of optimization in DSS. We will briefly summa- 
rize only one MOP technique, which seems to be the most natural method that best 
corresponds to a real-life DMP. This is the method based on the aspiration level (some- 
times referred to as reference point) concept. Following [OgL92] we will use for this 
method the acronym ARBDS (Aspiration Reservation Based Decision Support). The 
ARBDS method is an extension of the reference point method proposed by Wierzbicki 
in [Wie80]. Several other extensions or similar approaches have been proposed and imple- 
mented (cf [LeW89a, LAP94, Nak94, SNT85, SeS88, Ste861). The differences between the 
approaches presented in those publications are discussed and a modular implementation 
of ARBDS approach is presented in more details in [Mak94b]. Here we only outline the 
ARBDS method. 

The basic concepts of multiple criteria optimization are well described in the above 
listed publications. We recall only those that are needed for characterization of the 
ARBDS: 

Consequences of a decision x E Xo (cf Sec. 2.3.1) are evaluated by values of criteria 
q E RN, where N is a number of criteria selected by a user. Each criterion can be 
maximized, minimized or stabilized (a deviation from a given target value is minimized 
for each stabilized criterion). 
A solution x E Xo is called a Pareto-optimal solution, if there is no other feasible 
solution for which one can improve the value of any criterion without worsening the 
value of at least one other criterion. A Pareto-optimal solution is also called an eficient 
solution. A solution x E Xo is called a weakly Pareto-optimal solution, if there exists 
no other feasible solution that has better values of all criteria. Weakly Pareto-optimal 
solutions are easier to be computed than an efficient solution, but often have no practical 
meaning. Most practical in applications are properly Pareto-optimal solutions with a 
prior bound on trade-off coefficients (see [Wie86]). Therefore, a proper method should 
be implemented to avoid reporting a weakly or not properly Pareto-optimal solution 
as an efficient solution. This is a purely technical problem (see [Mak94b] for details). 
Therefore, for the sake of brevity we will refer to properly Pareto-optimal solutions as 
to Pareto or efficient solutions (unless otherwise mentioned). For N minimized criteria 
one can define P E Xo as a Pareto-optimal (efficient) solution by the following condition: 

135 E Xo # P :  {q;(x) 5 q;(P) Vi E [I, ..., N] and 

3k E [I, ...,N] : qk(x) < qk(5) } (12) 
A Pareto-optimal point is composed of values of all criteria for a corresponding Pareto- 
optimal solution. 
The utopia and nadir points are composed of best and worst values out of the set of all 
Pareto-solution for each criterion respectively. One should note that finding an utopia 
point can be done from a pay-off table, however finding a nadir point maybe a difficult 
problem (cf e.g. [IsS87, Mak94bl). Utopia and nadir (or a good approximation of a 
nadir) provide valuable information about ranges of values (for all efficient solutions) of 
each criterion. 

The ARBDS approach may be summarized in the form of the following stages: 
1. The DM selects, out of the potential objectives, a number of variables that will 

serve as criteria for evaluations of feasible solutions. In typical applications there are 
2-7 criteria. For an LP problem, a criterion is often a linear combination of variables 
but criteria may also have a specific form for an actual application (cf e.g. [MaS87]). 
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2. The DM specifies (with a help of an interactive tool) an aspiration and reservation 
levels q = {m,. . . , qN}, g = {gl,.  . . ,gN}, where N is a number of criteria and a and 
q. are desired values and worst acceptable values for each criterion, respectively. 

3. The problem is transformed by a DSS into an auxiliary parametric single-objective 
problem. Its solution gives a Pareto-optimal point. If a specified aspiration level 
q is not attainable, then the Pareto-optimal point is the nearest (in the sense of a 
Chebyshev weighted norm) to the aspiration level. If the aspiration level is attainable, 
then the Pareto-optimal point is uniformly better than q. Properties of the Pareto- 
optimal point depend on the selection of the reference point (aspiration and reservation 
levels) and on the resulting weights1° associated with criteria. 

4. The DM explores various Pareto-optimal points by changing the aspiration and/or 
reservation levels q and q, respectively. The underlying (done by a DSS) formulation 
of the problem is minimGation" of a (piece-wise linear) achievement function that can 
be interpreted as an ad- hoc non-stationary approximation of the DM'S value function 
depending on the currently selected aspiration and reservation levels. 

5. The procedures described in points 2, 3 and 4 are repeated until a satisfactory solution 
is found. Additionally, the user can temporarily remove a criterion (or a number of 
criteria) from analysis or convert selected criteria into stabilized criteria. This option 
results in the computation of a Pareto optimal point in respect to remaining "active" 
criteria, but values of criteria that are not active are also available for review. The 
utopia and nadir points help to define reference points in the procedure outlined above 
because it is reasonable to expect values of each criterion to lie between utopia and 
nadir points. 
The ARBDS method can be considered as an extension of the commonly known 

technique called Goal Programming (GP) originally proposed by Charnes and Cooper 
in [ChC67]. One can compare GP to using all goals as soft equality constraints, while 
ARBDS approach includes also soft inequalities of both signs (for maximized or mini- 
mized objectives) as well as soft equality constraints (for stabilized objectives). Thus, 
the ARBDS approach produces Pareto-optimal solutions, while the traditional GP fails to 
produce them, if aspirations are attainable. The detailed comparison of the two meth- 
ods is provided by Ogryczak and Lahoda in [OgL92]. All functionality of the GP can 
be provided by the ARBDS method and computational complexities of both methods are 
comparable. Therefore the ARBDS seems to be a good replacement for the GP method. 

A more formal presentation of the mathematical background of the ARBDS method 
can be found e.g. in [Wie92b]. The reference point and ARBDS methods have proved to be 
useful in many applications (cf [LeW89a, Mak9:LbI for a summary) in different areas. The 
software packages described in [MaR91] implement this methodology for different types 
of mathematical models. A modular software too:[ LP-M U LTI, which is an implementation 
of the aspiration led multiple-criteria model analysis, is documented in [Mak94b]. 

''weights in the achievement scalarizing function should not be confused with using weights as a tool 
for conversion of a multi-criteria optimization problem into a single-objective problem. Different ways 
of definition of those weights (which are in fact scaling coefficients for criteria) are the main differences 
between the various approaches listed above (cf [Mak94b] for the discussion of related problems). 

"It can be also formulated as maximization problem, depending on the interpretation of the achieve- 
ment function. 
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2.5 Applications of Artificial Neural Nets in decision support 

Artificial Neural Net(s) (ANN) are being recently applied in many fields such as engi- 
neering, computer sciences, management. Therefore ANN are more widely applied also 
to decision support. One can distinguish two main groups of such applications: 

Applications of ANN for solving different types of mathematical programming prob- 
lems. In such cases, an ANN replaces a traditional implementation of an algorithm for 
solving a well-defined mathematical model of the underlying decision problem. A N N  
can be used for solving different types (linear, nonlinear, discrete, combinatorial) of 
optimization problems, for linear algebra problems, for estimation, identification and 
prediction problems. For example, an overview of implementations of ANN in those 
fields is given by Cichocki and Unbehauen in [CiU93], implementation of ANN to exact 
classification can be found in [AZW92], and theoretical foundations for sorting with 
ANN are presented in [ZAWgl]. 
Applications of ANN to  solving problems that are too complicated to  be adequately 
well formulated and/or solved as a corresponding mathematical programming problem. 
In such cases, an ANN is a kind of black-box (cf Aarts et.al. [AWZ93]) that can be tuned 
(trained) in order to mimic a rational behavior. Problems of this type include production 
planning (cf [ZvKAW91]), spatial analysis (cf [Fis92]), land use planning (cf [YiXgl]), 
elicitation, representation and utilization of the decision maker's preference information 
(cf [SSS93]). 

We will briefly discuss only one new possibility of ANN application for decision sup- 
port. The interactive multicriteria model analysis outlined in Section 2.4.2 requires, for 
each specification of aspiration levels, solution of an underlying optimization problem. An 
efficient LP solver is capable of solving a medium size problem in a time still acceptable 
for an interactive procedure. However, times required by best available solvers for solving 
large problems (cf the example in Section 3.5) make it practically impossible to apply 
an interactive procedure. In such a case an implementation of an ANN would be useful 
because an ANN would be capable to solve the corresponding LP problem in a much 
shorter time. In order to illustrate this statement, let us consider a possibility of using 
ANN for the solution method used by the HYBRID solver (cf [MaS93b]). 

For solving a linear programming problem, HYBRID uses a non-simplex algorithm - a 
particular implementation of the proximal multiplier method. This method differs from 
the ordinary multiplier method by adding a quadratic form to the augmented Lagrangean 
function and making the function strongly convex with respect to primal variables. The 
minimized function is strongly convex and provides a unique minimizer. 

In the proximal multiplier method, the LP problem is solved by minimizing a sequence 
of piece-wise quadratic, strongly convex functions, subject to simple constraints (lower 
and upper bounds). This minimization is achieved by using a method that combines 
the conjugate or preconditioned conjugate gradient met hod and an active constraints' set 
strategy. As an option for solving the problem of minimizing piece-wise quadratic function 
a numerically stable method that combines the proximal multiplier method and an active 
set algorithm with QR factorization or Cholesky factorization is implemented. In these 
methods we solve a sequence of minimization quadratic functions without constraints. 
After a finite number of steps, a set of indices of constraints, which are active in the 
solution, is found. 

The LP problem that has to be solved for each selection of aspiration levels during the 
analysis of an LP model can be treated as a special case of the following general linear 
programming problem (cf [Mak94b] for details on solving a multiple criteria LP problem 
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using the achievement scalarizing function): 

min cx (13) 

We introduce the following notation: llxll denotes L2-norm of x and (u)+ denotes the 
vector composed of components max(0, u;). 

The following scheme describes a modification of the proximal multiplier method for 
the linear programming problem (13)-(16): 
1. Select initial vector of multipliers yo = (y;, y;) (e.g., yo = 0) and pk, 7k E R, pk, +yk > 0. 
2. For k = 0,1, .  . . determine successive xk+', yk+l = (yftl ,  TJ;+') where 

x k + l  = 1 
arg min L(x, yk) + -11s - xk112 

l<x<u 2P 7 
and 

where 
1 k k  1 

~ ( x ,  Y k )  = ( l l ~ ~ ) ~ ~ + ~ l l ( ( l l P  ) Y l  + ~ l x - b l ) l l ~ +  2 1 1 ( ( l l ~ k ) ~ 2 * + ~ 2 x -  b2)+ 112(20) 
until a stopping criterion is satisfied. 
The theoretical justification of this algorithm can be found in [MaS93b]. The tests 

made with over hundred examples (including all commonly used examples from the Netlib 
collection) show that the algorithm rarely needs more than 3 multiplier iterations. There- 
fore the crucial point of the method is the problem of minimization of piece-wise quadratic 
functions (17). The quadratic term in (17) is needed for application of a numerically stable 
minimization method for piece-wise quadratic strongly convex function. However, it can 
be dropped, if high accuracy of solution is not required. In such cases one can minimize 
(in k- th multiplier iteration) the function 

which is a trivial modification of (20). 
The ordinary or preconditioned conjugate gradient algorithms can be used for finding 

the minimum of (21). The details of such algorithms can be found in [MaS89a]. An 
implementation of such algorithm by an ANN can be done in a way similar to the im- 
plementation proposed in [CiU93] for solving LP problems using the classical (ordinary) 
penalty function. The basic advantage of the shifted penalty function method imple- 
mented in HYBRID (over the ordinary penalty function) is due to the fact, that the later 
one requires the penalty coefficient pk -+ oo while the shifted penalty function guarantees 
an exact solution for a finite (usually smaller than 1000) value of p. Therefore the tuning 
of an ANN designed for the proposed algorithm will be much easier. However, such an 
application of ANN will become rational when neural nets with hundreds of thousands' 
perceptrons will be available. 
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3 Design and implementation of a DSS 

The problem of a DSS design and application has been well covered by many conferences, 
books and articles. The topic itself is far too broad and complex to be fully presented 
and discussed within a paper. An overview of three groups of related problems, namely 
requirement analysis, features of a DSS, and an implementation process, as well as a large 
list of references is provided in [Makglb]. Below we briefly summarize a few issues related 
to hardware and software considerations and to development of reusable software tools. 

3.1 Hardware considerat ions 

Appropriate selection of the computer hardware should be made by taking into consider- 
ation the hardware currently being used by a DM and taking into account both the com- 
putational requirements12 and the software tools provided by specific computer hardware 
(one should however be aware of portability issues - cf Section 3.2). Prices for computer 
hardware are rapidly decreasing, and computer hardware capabilities are rapidly increas- 
ing. In order to illustrate this trend, let us present in Table 1 a summary of a panel 
di~cussion'~ on the future of hardware. The summary has a form of the forecast of the 

1991 1996 2001 
Memory 16-64 MB 64-256 MB 256-1 GB 
CPU speed 20 MIPS 200 MIPS 1000 MIPS 
Disk space 200 MB 1 GB ? ? 
Price lOOOO$ 3000$ below 1000$ 
Network throuput 10 MB/sec 100 MB/sec lGB/sec 

Table 1: Forecast (made in 1991) of capabilities of a typical workstation. 

basic characteristic of a computer that poses the computing capabilities corresponding to 
those of a typical (in 1991) workstation. The prices refer to a configuration that will be 
an equivalent of the 1991 configuration given in the Table 1. 

Many researchers confronted in 1991 with the forecast did not consider it to be realistic. 
Today the development of hardware seems to be even faster than that forecasted three 
years ago. 

The decision about selection of hardware (although is crucial) can be, for most appli- 
cations, easily reached as a result of cooperation of future users and experienced software 
developers. Usually the hardware related costs are just a small fraction of all costs related 
to the development of a DSS. Therefore hardware is nowadays no longer a limitation for 
development and using of a DSS. 

3.2 Software considerations 

Software related problems are key components of any decision related to design and im- 
plementation of any DSS. This is due to three mutually related reasons: 

12This should definitely include inevitable extensions of requirements for DSS functions; therefore, one 
should make sure that the requirements are not underestimated. 

1 3 ~ h e  discussion was held during the Seminar on Symbolic Mathematical Computation organized by 
IBM Europe Institute in Oberlech, Austria, on 29 July - 2 August, 1991. 
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Costs: Software development and maintenance is a major cost component of probably14 
any DSS. Direct costs of development of any dedicated software are higher than those 
of purchasing a ready from the shelfpackage whereas the relation of their function- 
ality are the opposite. Direct costs of software development may be remarkably 
reduced by two factors: first, using appropriate software tools (both as parts of a 
DSS and for software development), second, by reusability of the developed soft- 
ware. There are two key principles that allow for the re-use of software. First, the 
software should have a modular structure and should be well tested. This implies 
that the popular "quick and dirty" programming technique should never be used in 
DSS development (no matter how far behind schedule the project is). Second, the 
software should be developed in such a way that it is portable between many possible 
architectures (this will almost be necessary, if one considers arguments presented in 
Section 3.1). 

Implementation: The general belief is that software is "never" ready on time. This 
is expressed both by users (cf e.g. [Eme87]) and by software developers (the latter 
formulated in the so called 5% principle which says that the last 5% of the scheduled 
development time usually takes about 50% of the real development time. Very often 
the testing phase of software development is under evaluated despite the commonly 
known fact that there is probably never enough software testing. Therefore quite 
often either the software is not ready on time or that an inadequately tested version 
of the software is released. Emery (cf [Eme87]) provides a very critical overview of 
quality of software and mismanagement in software development for MIS (Manage- 
ment Information Systems). Ackoff (cf [Ack67]) even suggests that MIS stands for 
Management MISinformation Systems. 

Credibility: There is probably not one bug-free software package15, therefore it is im- 
portant to use software engineering techniques that ease the software development 
and result in better end products like the modular structure of each DSS component 
and the application of object oriented programming languages, as well as utilization 
of well-tested software tools. Reliability of a DSS is obviously a key condition for 
its usability. 

The above arguments can be summarized with general advice that one should prefer both 
the programming languages and tools that allow for fast development of software that 
is robust (reliable), reusable and portable. If one considers also arguments presented in 
the previous sections, then the software should allow for fast prototyping, modifications, 
testing and also be used easily and efficiently. 

Since there are such diversified objectives for software development, there exists no 
single set of rules that should be followed. However, it is sensible to make a list of issues 
that should be considered in all cases. Let us first briefly summarize software trends 
formulated together with the hardware forecast presented in Section 3.1: 

Slow programming languages' drift will continue with increasing share of object oriented 
programming (OOP) languages. This implies a rapid increase of usage of the C++ 

14Probably refers only to situations when a ready software package can be purchased and provided that 
this package fits well enough to the problem. Well enough means that costs for learning, customizing and 
upgrading the package and indirect costs of using it are negligible. Indirect costs are due to the difference 
of time that is required from a user for using a ready from the shelfpackage and that required by learning 
a dedicated DSS. 

15Therefore almost all software packages sold on the market contain various disclaimer statements 
within the license agreement. 
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1anguagel6. 
Network and data share will become universal. This will result in making popular 
computing on the move and - with usage of the cellular communications - collaborative 
computing will also be more popular. 
There are significant challenges of integration of symbolic and numerical (parallel) com- 
putation and visualization in order to provide tools that will ease development of soft- 
ware in different computing environments and for specific problems. 
There will be more powerful tools (especially for symbolic computation). However, one 
should be aware that the more powerful a tool is, the less probable is its full control, 
and tracing of a bug is more difficult. 
There will be a rapidly increasing demand for guaranteed software, i.e. a software that 
is guaranteed to function according to a given (much more rigorously than nowadays) 
specification. 

One can consider (cf [Si19:l.]) the DSS development as composed of a three layers' 
structure. On the first layer, there are software tools that are developed by a "tool smith". 
On the second layer, a DSS builder uses those tools and a DSS generator generates a 
problem specific DSS. On the third layer, the DSS is used by a user. It is usually difficult 
and not practical to separate the first two layers because the generation of a DSS often 
requires development of a new tool. However, one should try to make such tools reusable 
whenever sensible. 

Software tools are generally of three types: programming languages, general purpose 
tools (like utilities for development of the user interface or for handling typical data 
structures) and tools specific for a given category of problems (either mathematical pro- 
gramming problems or substantial problems). 

Let us first briefly discuss a few problems related to  software tools. Usually it is 
sensible to use a set of general purpose tools that fit well to a software development 
environment and which conform to a requirements set for a DSS. Tools specialized for 
specification and generation of a specific type of model can also be very useful, but 
here a more careful analysis is needed. One can distinguish two extreme situations. 
First, when a general purpose or a specialized tool is available for a developer who is 
(or can easily become) familiar with this tool. Sometimes, a reasonable approach to 
generate a core model is to use an integrated modeling environment (e.g. AIMMS [BiE93], 
AMPL [FGK93], GAMS [BKM88]). In other situations, using a problem oriented tool 
remarkably improves the design and implementation of a DSS (cf [Wesgl, Wes931) and 
thus allows for saving substantial amount of resources. EXSPECT, which is a specialized 
tool for production planning problems (cf [vdA92]), is a good example a such a tool. 
Second situation occurs, when the time needed for mastering a general purpose model 
generator (to the extent needed for more complex models and problems related to  the 
model verification and update within the integrated environment of the DSS) justifies 
implementation of a specialized model generator, which can easily be written by a system 
analyst. Also requirements for data handling and user interface quite often make usage 
of existing general purpose modeling tools not practicable, especially for many complex, 
real-life applications when specific requirements (like access and processing of data, user 
interface) are difficult to be fulfilled by an integrated modeling environment. Development 
of specialized tools is a resource and a time demanding task, but the example of EXSPECT 
shows that it might be sensible to do it in a situation when a similar type of DSS will be 
generated many times. 

''Note that this forecast was made in 1991. The number of programmers who use C++ in 1994 may 
serve as confirmation of this forecast. 
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One specific type of tools are 4GL (fourth generation languages). 4GL are non- 
procedural languages that are often considered to be more productive than traditional 
(procedural) programming languages. The main argument is that for 4GL it is enough 
to define "what to  do" whereas procedural languages require additionally programming 
of "how to do". This, however, does not necessarily mean that 4GL are always a better 
choice than a procedural programming language. A 4GL is in fact a prespecified special- 
ized (for certain task) tool. Therefore, an extension of its functionality (beyond tasks for 
which it was designed) is usually difficult, if at all possible. An example of 4GL is the SQL 
(Structured Query Language) which is typically provided by most DBMS. Development 
of a typical data handling application is much easier with an SQL tool but incorporation 
of such a tool into a model-based DSS might be more resource-consuming than using 
another tool for data handling. 

It is important to use software engineering techniques that ease the software develop- 
ment and result in better end products. These techniques include the modular structure 
of DSS components and utilization of well-tested software tools. All DSS software compo- 
nents that have to be developed should be developed preferably by using object-oriented 
programming languages. The consequences of selecting a programming language usually 
last for years. However, it should be pointed out that software and data structures which 
are designed properly make it possible to use different programming languages even in 
one program. A more detailed discussion of topics related to the development of software 
for DSS is far beyond the scope of this paper. Guidelines for development of such software 
are proposed in the separate paper (cf [Makgla]). Here we will shortly comment only on 
the following five issues: 

Software robustness and reuse: Software robustness is understood as its ability for 
functioning according to the specification and to the needs of the user. This also 
includes proper behavior for possibly any data supplied for the program, any action 
of the user and for typical hardware problems. Software for DSSs should obvi- 
ously have a high level of robustness. The softwarerobustness is also the necessary 
condition for the software reuse, and justifies the careful design and testing of all 
software components. A large part of the software should be reusable both in dif- 
ferent applications and by different teams without the necessity of any modification 
of the available software. This requires some additional programming effort, but it 
is enough to consider how much time is necessary to debug and test new software 
to justify this effort. This reusable software should be carefully designed, tested 
and converted into libraries that are well documented. The reuse of some specific 
software (e.g. solvers) requires an additional agreement on the common structure of 
data for a specific class of mathematical programming problems. 

Software portability: The portability is an important issue, especially for the software 
developed within the DOS environment. In the past, DOS may have been considered 
as a good operating system17 for prototyping and small scale applications, however, 
for many real-life applications, more powerful operating systems (mainly Unix) are 
more appropriate. Unfortunately, too many DSS software packages developed under 
DOS are hardly portable to any other operating system because non-portable ex- 
tensions of programming languages were widely used. Nowadays, there exist many 

1 7 ~ a i n l y  because, in the last few years, it has been one of the very few widely available operating 
systems. However, because of the recent change in the price structure for computer hardware, the Unix- 
based workstations are becoming more readily available and are likely to replace PC's for many DSS 
applications. 
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portable tools18 for software development. Therefore, portability is now mainly a 
question of a careful design of the software and of a proper selection of software 
tools used for implementation of a DSS. 

Software modification: Well-designed and implemented software should be easily mod- 
ifiable for specific purposes. This includes e.g. modification of the user interface for 
a specific decision making problem or translation to another spoken language or 
extension for supplying additional options. 

Software efficiency: A choice of an algorithm for solving a problem is critical for soft- 
ware efficiency. The classical example of simple improvements of a simple algorithm 
(for selecting prime numbers) that finally result in the cutting execution time by a 
factor of several thousands can be found in [Ben88]. A well known "rule of thumb" 
says that 20% of code accounts for 80% of execution time. This critical part of 
the code may be easily identified with the help of a profiler. Those two arguments 
(together with continuous improvements of code optimization provided by compil- 
ers) suggest that implementing various programming tricks (which often decrease 
maintainability of programs) is not recommended. 

New approaches: Combining knowledge based and algorithmic approaches can be a 
sensible method also for design and implementation of tool for generation of both 
models and scenarios. Also application of artificial neural nets (cf Section 2.5) is a 
relatively new, in DSS area, but promising field of research. 

3.3 Modular software tools 

Several modular software tools are being developed by the Methodology of Decision Anal- 
ysis (MDA) Project and within the scientific cooperation between the MDA Project and 
different research institutions in Poland. The software has been developed for IBM com- 
patible personal computers (running MS-DOS) and for Sun Workstations (running So- 
laris 2.3). Currently, the modular software tools include: 

FT - A prototype implementation of the methodology proposed by Granat and Wierz- 
bicki in [GrW94] for interactive specification of user preferences in terms of fuzzy 
sets (cf [GrM95] for details). Currently this tool is operational only under MOTIF 
running on SunOS and on Solaris 2.3. However, a portable and distributable version 
for MS Windows and for Solaris 2.3 should be available in beginning of 1995. 

LP-DIT - Data Interchange Tool for Linear Programming Problems (cf [Mak94a] for 
details) is a prototype implementation for handling data that define a MIP or LP 
problem. LP- DIT provides an easy and efficient way for definition and modification 
of MIP problems and interchange of data between a problem generator, a solver and 
software modules that serves for problem modification and analysis of a solution. 

LP-MULTI - Modular tool for multiple criteria problems (cf [Mak94b] for details) is a 
prototype implementation of a tool for generation and interactive modification of 
a multiple criteria problem. It currently uses LP-DIT for data handling and FT 
for interaction with a user. Therefore a distributable version of LP-MULTI will be 
available together with the FT Tool. 

18Especially for Graphical User Interface (GUI), which was the main cause for non-portability of the 
software developed under DOS. 
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HOPDM - An efficient implementation of the Interior Point method for solving LP prob- 
lems (cf [AlG93, Gon941). HOPDM is especially efficient for solving large LP prob- 
lems and was applied at IIASA as a solver for land-use models (cf [GoM95]) and 
energy models (cf [NGI+93]). 

Hybrid - A modular LP solver (cf [MaS89a, MaS89b, MaS93b]), which uses a non- 
simplex method that combines the proximal multiplier method and an active set 
algorithm. Hybrid is used as a solver in the currently distributed version of the 
RAINS model (cf [ASHSO]). 

Simplex - A pilot implementation of a modular solver based on the simplex method 
(cf [Swi94]). This package is used for finding an optimal solution of a relaxed MIP 
problem thus providing a good starting point for the Momip solver. 

Momip - Modular Optimizer for Mixed Integer Programming (cf [OgZ94] for details). 
Momip is an efficient solver that is being successfully used in the RWQM DSS 
(cf [MSW95]). 

DIDAS-N - is a new modular implementation of modular modeling and optimization 
system for nonlinear problems (cf [GKPS94]). A pre-release version of DIDAS-N is 
being currently tested and the package will be ready for distribution in the beginning 
of 1995. 

HOPDM, Hybrid, Momip and Simplex use the LP-DIT Tool for efficient data handling 
but each of these packages can also input data in the standard MPS format. 

The MDA Project distributes the software (both the above listed packages and the 
software described in [MaR9:I.]) under the following conditions, which correspond to the 
proposal formulated by S teuer in [S te92al: 
1. The software will only be used for research or educational purposes provided that the 

usage is non-commercial. For any commercial usage of the software a separate written 
agreement is necessary. 

2. The software can be used only by individuals or institutions who were issued a li- 
cense either by IIASA or by the authors of the software; redistribution of the software 
and/or manuals requires written permission from IIASA or from the authors. No part 
of the software can be modified or incorporated into other software without written 
permission from the authors. 

3. The user agrees to cite the software, if used, by giving references to the documentation 
that accompanies the software package and by mentioning that the software has been 
developed in cooperation with IIASA. 

4. In no event shall IIASA or the authors of the software or the institutions that employee 
the authors be liable for any damages whatsoever (including, without limitation, for 
loss of profits, business interruption, loss of information, or other pecuniary loss) arising 
out of the use of or inability to use the distributed software. 

5. The user will contact the authors directly in case of any problems with the software 
(except of possibly damaged diskettes) or if the software requires modification for 
her/his application. The MDA Project would appreciate it, if - at some point - the 
user will share with us his/her critical evaluation of the software. 
The above listed software is currently distributed free of charge. A great deal of effort 

has been made to make the distributed software robust and reliable, but the programs 
cannot be - outside IIASA - serviced or supported in any way. However, comments, 
suggestions and bug reports are welcome. 
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3.4 Linear Programming Data Interchange Tool: LP-DIT 

Many model-based research and applications require formulation, solution, analysis and 
modification of mathematical programming problems. This is especially important for 
model-based DSS, where a sequence of related problems is generated, solved and analyzed. 
The typical model-based DSS is composed of several software modules that serve for a 
generation of a core model, an interactive analysis of the model and a solver. These 
modules are complex pieces of software (which also typically have modular structure) that 
are usually developed by different research teams. Each module processes large amounts 
of "private" data, but the amounts of data that have to be exchanged between modules are 
quite often also large. Internal (private) data structures are different, quite often also for 
solvers that use a same method for solving a given type of a mathematical programming 
problem. In order to couple those modules, an efficient way of data interchange is needed 
for providing efficient access to data without restricting actual implementation of the 
internal data structure. Finding a commonly accepted way of data interchange is an 
important issue for practical applications of Operations Research tools developed by teams 
specialized in different fields. 

One of the attempts to stimulate activities in the direction of establishing a widely 
accepted way of data interchange was the proposal for a Data Interchange Tool for Math- 
ematical Programming (cf [MaS93a]). Since applications of LP (Linear Programming) 
and MIP (Mixed Integer Linear Programming) problems constitute a substantial part of 
optimization problems, a pilot implementation of a data interchange tool LP- DIT has been 
made for LP problems. 

The LP-DIT, which is documented in [Mak94a], serves two mutually related purposes: 
To propose data structures and declarations of functions that can easily provide efficient 
data processing commonly needed for interchange of LP problem data between different 
modules. 
To provide a pilot implementation of those data and function specifications in a form 
of a public domain tool (fairly easy to implement and efficient to use) which allows for 
LP problem data interchange between different software modules. 

In other words, LP-DIT provides an alternative for using the MPS format to access to, 
and modification of an LP problem data. Additionally, LP-DIT provides efficient and 
flexible functions for a full definition (which includes information contained both in the 
MPS format [including commonly used extensions] and in a specification file) of an LP 
problem, its modifications and solutions. 

3.5 Modular solvers of mathematical programming problems 

Software tools described.in Sec. 3.3 include four solvers of LP problems. There exists also 
a number of commercial and public domain LP solvers. Solving an LP problem is not a 
problem nowadays. However, if our aim is not to find an optimal solution but to support 
a model analysis, then there are several issues worth to be discussed. We will not deal 
here with issues of robustness and of numerical stability of solvers, since we assume that 
a solver used in a DSS is well tested and robust. 

We will summarize experiences from several applications of different solvers in order 
to provide some suggestions for improvement of solvers' design and implementation. Most 
of the following suggestions are of technical nature that are minor (and therefore often 
overlooked) problems for a stand-alone solvers, but are important for applications of 
a solver as a part of a DSS: 
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Preprocessing: It has been observed that a presolve analysis can substantially reduce 
the size of an LP problem. Therefore efficient presolvers are implemented in contem- 
porary solvers (cf e.g. [Gon94, LMS941). As the result a smaller problem, having the 
same solution as the original one, is solved. A good presolver can also often detect 
infeasibility or unboundness of a problem. However, a design and implementation 
of a modular presolver that would fit as a part of a DSS is still an open issue. 

Uniqueness of optimal solution: For many LP problems there exist many solutions 
for which the goal function values differ very little from the optimum, while corre- 
sponding solutions are quite different. Therefore it is reasonable to introduce a way 
of selecting a (possibly sub-optimum) solution that has additional properties. For 
this, an old technique called regularization can be applied. Such an implementation 
has been done in HYBRID (cf [MaS89a]) but it can also be easily applied in most of 
other LP solvers. 

Dual solution: Many researchers apply dual solution for sensitivity analysis. However, 
it should be pointed out that the results of such analysis might be misleading. 
The reasons of problems are threefold. First, many problems have no unique dual 
solution. Second, some solvers do not provide robust dual solutions. Third, the 
dual solution has a well-defined interpretation only in a neighborhood of the optimal 
solution. This neighborhood is not directly available from the standard output of 
a solver and commonly known observations show that users tend to extend the 
interpretation of dual solution (shadow prices for LP problems) far beyond the 
region in which it is valid. This issue is far beyond the scope of this paper. A 
reader interested in problems related to dual solutions may consult e.g. [GdHR+93, 
J'dJRT931. 

Infeasibility: A properly generated problem should have a feasible solution, but in prac- 
tice problems are often formulated in such a way that there is no feasible solution. 
Solvers rarely provide all available information that can help in tracing source of 
infeasibility. 

Input of the model formulation: Generation and processing of medium size LP prob- 
lems in the form of the MPS format input file consume a lot of computer resources 
(disk space and time). Therefore solvers should have well separable functions for 
input the model formulation that can easily be modified for accepting more efficient 
ways of a problem formulation, such as LP-DIT. 

Hot start for modified problem: A solver is used within a DSS for solving a sequence 
of modified problems. The modifications quite often involve generation of new, 
and/or deletion of old, variables and/or constraints. In order to shorten the time 
required for interactive analysis of the problem, appropriate techniques for an effi- 
cient use of a previously obtained solution should be implemented. 

Access to results: Typically only a small fraction of a solution is used by a DSS. There- 
fore a selective and efficient access to a solution is an important practical problem 
(cf an example below). LP-DIT (cf Section 3.4) provides an efficient way for handling 
a solution of an LP problem. 

Other technical issues: Information provided by solvers during the optimization pro- 
cess is often of very technical nature and therefore it is useless for a casual user. 
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Messages are designed and implemented (often printed directly on a screen) in a way 
that corresponds to needs of solver developers. However, those needs differ from the 
expectations of a DM. Some solvers generate a core dump in case of problems. Such 
a dump is useless for anyone but the developer and often is a source of confusion 
and technical problems. 

As an illustration of issues typical to large LP problems, we provide a characteristic 
of the world energy model (cf [NGI+93]). The problem has (depending on the scenario) 
about 36,000 rows, 33,000 columns and 221,000 elements. The MPS format file of this 
model has about 10 MB, a text solution file has about 6 MB. It requires about 10 hours 
of cpu time (of Sun SparcCenter 1000) to find an optimal solution by Cplex (cf [CPL93]) 
while HOPDM solver [GoT94] (with processing input data by the LP-DIT) takes about 
40 min. of cpu. The presolver included in HOPDM has found an infeasibility (in one of 
the first versions of the model) in few minutes whereas an attempt to solve this infeasible 
problem by Cplex took several hours of cpu. This is by no means a claim that HOPDM is 
a better solver than Cplex; it is just an argument for trying, especially for large problems, 
different solvers and to use efficient tools for handling the model formulation and its 
solutions. 

4 Conclusions 
The developments of DSSs create new challenges in many fields - mathematical program- 
ming, game theory, decision theory, psychology, computer science, etc. There are many 
theoretical and methodological problems in those scientific fields that have been stimu- 
lated by the development of DSS for real-life applications. A number of these problems 
still remain to be solved by scientists collaborating in these fields despite of many advances 
in mathematical programming in recent decades. However, there is a common agreement 
that many of those advances have resulted from needs created by applications. 

A DSS is a problem specific software tool that requires a careful design, implementa- 
tion and testing. This process has to be done in close collaboration between developers 
and users of a DSS. Although each DSS is a unique system of software modules, the de- 
velopment of a DSS is much easier if reusable software modules are available. Therefore 
reusability and portability of software are one of critical issues. 
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