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Preface 

In many areas in Europe present ambient concentration levels of ozone are considered as a serious 

air quality problem. Current scientific understanding of ozone formation mechanisms suggests that 

only a balanced cut of the major precursor emissions (nitrogen oxides and volatile organic 

compounds) will effectively lead to a decline of ozone concentrations over larger areas. Consequently, 

a systematic framework will be required to explore various strategies to reduce exposure of human 

beings and sensitive ecosystems to elevated ozone concentrations and to identify cost-effective 

approaches. Such an integrated assessment has to incorporate information on emission sources, the 

technical potential and the costs of emission reduction measures as well as an understanding of the 

chemical processes influencing ozone formation. 

This paper, written within IIASA's Young Scientists Summer Programme, provides an initial 

overview on the available information material and associated costs of the major options for 

controlling emissions of volatile organic compounds. Thereby, it makes an important contribution to 

the ongoing development of a tool for the integrated assessment of the tropospheric ozone problem. 
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1 Introduction 

Ground level, or tropospheric ozone, is an air pollution problem that has received increasing 

public attention as its impacts become more noticeable and studied. Ozone is formed in the 

troposphere as a product of a complex set of reactions that involve volatile organic compounds 

(VOCs) and oxides of nitrogen (NO,) (NRC, 1991, p. 163). The ratio of NO, to VOCs, as well as 

timing and meteorological conditions are among the critical factors determining the concentration of 

ozone formed. This complex chemistry creates uncertainty in the percentage of VOCs required to 

reduce ozone formation. The ratio of NO, or VOC concentration to ozone levels is nonlinear, 

meaning that a decrease in either of these precursors doesn't necessarily result in a decrease in ozone 

formation. In fact, a decrease in NO, or VOC emissions can sometimes lead to an increase in ozone 

formation. 

Increased ground level ozone is a health hazard to people, detrimental to plant and animal life, 

and leads to the degradation of materials such as plastic and rubber. For these reasons, ozone is an 

international concern because it, as well as specific VOC species, is transported over long distances 

and knows no boundaries. To address the problem of VOCs and ozone, European countries signed 

a VOC Protocol in November 1991. The protocol proposed a 30 percent reduction in anthropogenic 

VOCs by the year 2000 (Mayeres et al., 1993, p. 108). This action works in conjunction with the 

Sofia Protocol of 1988 which requires that NO, emissions cannot exceed 1987 levels by the end of 

1994 at the latest (Alcamo et al., 1990). 

This report is grounded by the need for policy makers and scientists to explore the costs and 

effects of each control option on the balance of pollutants when considering scenarios for reducing 

tropospheric ozone and working toward the goal of maximizing emission reduction. In addition to the 

numerous sources of VOCs, different control measures reduce VOCs with a range of efficiencies and 

costs. Policy decisions must therefore be weighted by the contribution of the source, the cost of a 

specific control measure, its efficiency for removing VOCs and ultimately its impact on ozone 

concentrations and related other pollutants. These different layers of analysis are necessary in order 

to evaluate VOC control options and their potential outcomes. 

International efforts addressing ozone are related to the experiences shared by many countries 

in efforts to reduce acid rain. The Regional Acidification INformation and Simulation (RAINS) model 

was developed at IIASA to evaluate the impacts and costs of strategies to control acid rain (Alcamo 



et al., 1990, p. 2). The model supports European policy makers in their negotiations of emission 

reductions under the UN-ECE Convention on Long Range Transboundary Air Pollution. The model 

already includes NO, emissions, one component in the formation of both acid rain and tropospheric 

ozone. Therefore, by adding VOCs to RAINS, the impacts and costs of control strategies for ozone 

can also be analyzed. 

A research project at IIASA is currently working on expanding the RAINS model to include 

ground level ozone, potentially utilizing the emission inventory from CORINAIR (COoRdination of 

INformation on the AIR). CORINAIR is part of a comprehensive EC Programme CORINE 

(COoRdination of INformation on the Environment), providing all kinds of environmental information 

(land use, air pollution, waste, water pollution, etc.) in Europe (CEC, 1991). The 1990 CORINAIR 

inventory of atmospheric emissions for Europe is expected to be a primary source of VOC data for 

the RAINS ozone submodel. Linking the structure of the CORINAIR emission data and the RAINS- 

ozone model is important. 

1.1 Purpose of paper 

The purpose of this paper is to give an overview of options, costs and removal efficiencies 

for VOCs in the context of building ozone into the RAINS model. This paper describes the control 

options for each sector and reports information on the cost and effectiveness. Due to the great number 

of VOC species, this paper limits the analysis to VOCs as a single category and does not consider 

characteristics of specific VOC species. This simplification was necessary for this analysis, however 

the treatment of VOCs in the RAINS model as one group or in groupings of species, is still under 

discussion. 

The report proceeds in the following order. Section 2 begins with a break out of the 

contribution of VOCs by source category and explaining the connection between the CORINAIR 

emission data and the proposed RAINS ozone submodel. In Section 3,  control options, removal 

efficiencies and costs are examined for each emission sector. In Section 4, the cost effectiveness of 

control options is discussed with ideas for future efforts in this field. 



2. Emission sources of VOCs 

Volatile organic compounds (VOCs) come from a wide variety of man-made and natural 

sources. Because of the difficulty in controlling natural sources, efforts to reduce ozone focus on man 

made emissions. Consistent with other VOC reports, the term VOC is used in this report to include 

all organic compounds which are capable of producing photochemical oxidants (Rentz et al., 1990, 

p. 3). As a group, organic compounds include hydrocarbon compounds, and methane. However, 

methane is excluded here, as in most analyses of tropospheric ozone, because its influence is expected 

to be minor. 

2.1 Emissions by sector 

There are a number of transboundary VOC emission inventories in Europe (see Olsthoorn, 

1994). The more recent institutional inventories include OECD, CORINAIR (EC), EMEP (UNECE), 

PHOXA, and LOTOS (TNO). Differences that distinguish these inventories are their spatial 

resolution, the type of VOCs distinguished, and the source sectors included (Olsthoorn, 1994). These 

inventories offer information about the emissions sources for VOCs. For this study, emission data 

from OECD and CORINAIR is used. 

As Figure 1 shows, transportation and solvent use are the two most significant sources of 

anthropogenic VOCs in OECD Europe (OECD, 1992). The percentage of VOC emissions from each 

sector will be somewhat different for any individual country. On average, transportation is the largest 

source within OECD Europe, followed by solvent use, other sources, stationary combustion, gasoline 

distribution, refineries, other transportation, and the chemical industry (OECD, 1992). 

Within the transportation sector itself, gasoline passenger vehicles are the greatest contributor 

of VOCs (77 percent) followed by motorbikes (10 percent). Reducing VOCs in the transportation 

sector can be extremely difficult in some places because of the dependence upon the automobile. It 

is estimated that in Germany evaporative emissions from transportation sources make up almost 20 

percent of the sector (CEC, 1991). Heavy duty trucks make up almost nine percent of the 

transportation sector, whereas diesel passenger cars contribute less than 3 percent. Other 

transportation sources, such as ships, planes and rail make up approximately 3 percent of the sector. 
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Figure 1. VOC emissions by sector for OECD Europe in 1980 

Within solvent use, emissions are split between industrial and non-industrial sources, largely 

made up of domestic use. Of the industrial sources, metal surface coating contributes most 

significantly, with about 43 percent of solvent emissions. Degreasing is also an important subsector 

with approximately 3 1 percent of the industrial emissions followed by printing and other solvent uses. 

Domestic sources of VOCs contribute about 55 percent of all non-industrial solvent emissions. 

Commercial and domestic painting emit about 40 percent, and dry cleaning only 4 percent of non- 

industrial emissions. 

The 'other' sources category, excluding natural sources, is the next largest sector of emissions 

for VOCs. These sources, such as agriculture, coking, and waste treatment comprise about 7 percent 

of all VOC emissions. 

The remaining sectors, stationary combustion, gasoline distribution, refineries, and the 

chemical industry each make up 5 percent or less of total emissions. Due to the smaller scale of these 

sources, specific breakdowns are not evaluated here. 



Table I shows the amount of kilotons of VOCs emitted by each of the sectors. The table 

compares the percentage that each sector and subsector contributes. Information from both 

CORINAIR and OECD is included to illustrate the similarities and differences between these data 

sources. At the time of writing this paper, the 1985 CORINAIR information is the most current data 

available on VOC emissions in Europe. 

Table 1. Emissions of VOCs in OECD Europe (1980) and EC (1985) 



2.2 Link between RAINS ozone sectors and CORINAIR emission data 

A framework for applying data from CORINAIR into a RAINS ozone model has been 

suggested by Olsthoorn (Olsthoorn, 1994). As illustrated below in Figure 2, emission data from 

CORINAIR can be aggregated into sectors for the proposed RAINS ozone model. CORINAIR is 

organized into eleven sectors, within which there are three levels of increasing detail. This 

CORINAIR data structure is based upon the system of selected nomenclature for air pollution, known 

as "SNAP". 

In order to simplify the CORINAIR structure for use in an integrated assessment model, 

Olsthoorn recommends a structure of emission sectors different from CORINAIR (Olsthoorn, 1994), 

a structure that is also used as the framework for this paper. This proposed framework includes seven 

source categories: transport, solvent use (industrial and non-industrial), the chemical industry, 

refineries, gasoline distribution, stationary combustion, and other. Olsthoorn also recommends a 

category for nature which is not included in this analysis due to the difficulty involved in controlling 

natural sources as well as the limited information on control costs for this VOC sector. 

The proposed framework connects emission data, sources, and control measures so that 

potential emission reductions can be applied to estimate future changes in emissions. 
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Figure 2. VOC sectors for CORINAIR 1990 and proposed RAINS ozone model 
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Figure 2 (cont.). VOC sectors for CORINAIR 1990 and proposed RAINS ozone model 



3. Review of control technologies and costs by sector 

There are different types of control measures for reducing or eliminating sources of VOCs. 

Control measures that involve altering an existing process or changing a product are considered when 

cost estimates are available. Another category for reducing VOC emissions is enhancing existing 

equipment and control technologies to improve their efficiency. Improving the management of 

currently installed methods with inspection and maintenance is also an option included in this report. 

Applying technologies like condensation or carbon adsorption enables recovery of solvents. Lastly, 

substitutes can be used in place of VOCs and also thereby prevent VOC emissions. 

Control options can be evaluated in different ways. Two strategies are most common: best 

available control technology, and least cost. These strategies will not be considered in this paper but 

such scenarios will be incorporated into the RAINS ozone model. All control options must first be 

considered individually to assess the relative significance of the source and evaluate whether it 

significantly reduces the ozone concentration. For this reason, the total emission of a source, as well 

as the removal efficiency of a control measure, must be taken into account when evaluating options. 

Information on control technologies used in this report has been taken from a collection of 

recent reports, and a variety of sources. Control options are compared with consideration to removal 

efficiency, the percentage of VOC (and NO, in some cases) that is removed with a given control 

option. Costs are compared in terms of the average annual costs, in 1987 European Currency Units 

(ECU) per ton of VOC removed. In order to compare results, where necessary, costs have been 

recalculated into ECUs using 1987 exchange rates. 

3.1 Road transport 

The RAINS ozone submodel will build upon the existing RAINS emissions data for NO, from 

vehicles (Amann, 1989). Included in the transport sector are gasoline passenger cars and light duty 

vehicles, diesel cars and light duty vehicles, heavy duty trucks, motorbikes (and mopeds), gasoline 

evaporation, and other transport. In some cases, controls have already been required for passenger 

cars and evaporative emissions. 

A number of different options are reported to reduce VOCs from gasoline vehicles (Table 2). 



In June 1985, most of the EEC member states agreed to a series of emission limits for automobiles 

and light duty gasoline vehicles, known as the Luxembourg Agreement (Johnson, Corcelle, 1989). 

The limits are established by engine size and reduce both VOCs and NO, by approximately fifty 

percent. Controls under the Luxembourg Agreement include exhaust gas recirculation (EGR), lean 

burn engines and uncontrolled catalytic converters. Lean burn engines typically need oxidation 

catalysts to reduce hydrocarbon emissions to specified limits. Lean burn engines also have the 

advantage of improving the fuel economy of cars, unlike 3-way catalysts which can reduce fuel 

efficiency (Allemand et al., 1990). 

Table 2. Transportation control options, removal efficiencies and costs for gasoline 
automobiles and light duty vehicles 

VOC Control Option 

Gasoline Vehicles 
U.S. 1986 Std (3-way cat.) 
3-way catalytic conv. w/I&M 
3-way catalyst & elec. controls 
3-way catalytic conv. 
Oxidation catalyst 
Oxidation catalyst - LDV 
Oxidation catalyst w/I & M 
Engine modifications w/EGR 

Removal 
Efficiency (%) 

ECUIton 
(1987 ECU) 

1000-2500 (a) 

920-2433 (b) 

2265 (c) 

920 (d) 

1959 (c) 

1896 (e) 

4032 (b) 

15 82 (d) 

(a) Amam, 1989, p. 43 
(b) OECD, 1992, p. 43 
(c) VHB, 1989, p. 30 
(d) ECE, 1990, p. 346 
(e) OECD, 1992. p. 44 

Inspection and maintenance programs (I & M) are another option, and vary in cost and 

effectiveness depending upon how they are organized. I & M programs are beneficial in reducing 

tampering with emission control systems and encourage maintenance of emission control equipment. 

However, reductions can only be realized if inspections are carried out correctly. 

In the United States, I & M programs are just one of the several mandatory programs 

designed to reduce emissions as a result of the 1990 Clean Air Act Amendments. Additional measures 

to comply with air quality standards include: 

the design and manufacture of vehicles with lower tailpipe and evaporative emissions, 

use of less polluting gasoline and alternative fuels, 



transportation control measures to reduce the number of vehicle miles travelled. 

The cost of these requirements vary depending upon the specific mix. One estimate of the emission 

control cost for a low emission vehicle program was calculated at $180 per ton removed (NESCAUM, 

1991). 

Gasoline vehicles and LDVs. The U.S. standard requires a 3-way catalyst which effectively 

reduces the VOC concentrations in exhaust gases using catalytic converters. Three-way catalytic 

converters reduce CO, NO, and VOCs through oxidation to carbon dioxide, H20, and nitrogen, 

whereas oxidation catalysts reduce CO and VOCs. Another control option for gasoline passenger 

vehicles is engine modification in order to burn hydrocarbons in the exhaust, a common product of 

incomplete combustion. Engine modifications include using sensors to control the fuel and ignition 

systems (CONCAWE, 1990, p. 156). In some places, such as the United States, the improvements 

brought by control technologies are only offset by the increasing number of cars and vehicle miles 

traveled (NRC, 1992). 

The cost for 3-way catalytic converters ranges from 920 to 2500 ECU per ton, (see Table 2) 

with 75 - 90 percent removal efficiency. Oxidation catalysts are reported to range in removal 

efficiency from 55 - 90 percent, with costs starting at 1959 ECU and ranging up to almost 9000 ECU 

per ton. Three-way catalysts are reported to be more effective in removing VOCs, using an average 

of the reported efficiencies. Engine modifications are the least effective although comparable in cost 

to some catalysts. Engine modification and EGR are typically used to reduce NO, and are less 

effective in reducing VOCs. 

Diesel vehicles. Diesel vehicles are not as large a source of VOC emissions as gasoline 

vehicles; 3 percent compared to 77 percent of the transportation sector emissions, respectively, but 

are increasing their share. There is also less information about diesel vehicles and trucks compared 

to gasoline. Diesel vehicles emit fewer VOCs, and improvement options center around engine 

modifications or fuel quality. In the existing RAINS model, two options for diesel vehicles are 

considered, however only one reduces VOCs in addition to NO, (see Table 3). The U.S. 1991 

standard involves changes in engine design and combustion systems (Arnann, 1989, p. 25). The other 

option for reducing VOC emissions from diesel vehicles requires changing the quality of the fuel. 

This option does not remove VOCs as effectively as the latest technology for diesel engines. 



Table 3. Transportation control options, removal efficiencies and costs for diesel 
vehicles, heavy duty trucks and motorcycles 

Control Option Removal Efficiency 
% 

Diesel Vehicles 
U.S. 1991 Stds. 50 
Autos - Improved Fuel Quality (IFQ) 15-20 
Light duty vehicles - IFQ 20 

Heavy Duty Trucks 
Cetane improvement by additive 15 
Cetane improvement by process 15 

Motorcycles 
Engine modification & EGR 35 
Oxidation catalyst 55 
Oxidation catalyst w/ I&M 75 

ECUIton 
(1987 ECU) 

1400-6700 (a) 

300 (b) 
324 (c) 

4297 (e) 

4731 (e) 

7562 (e) 

(a) Amam, 1989, p. 43 
(b) ECE, 1990, p. 36 
(c) OECD, 1992. p. 46 
(d) OECD, 1992. p. 48 
(e) OECD, 1992, p. 45 

Options to reduce VOCs for diesel vehicles are neither costly nor very effective. Improving 

diesel fuel quality is one of the less expensive alternatives, however the reported removal efficiency 

is small. 

Heavy duty trucks. Information for control options for heavy duty trucks was found only for 

changes in diesel fuel quality (see Table 3). Other options, however, exist, such as improved timing 

but cost estimates were not found. The cetane number of a diesel fuel is an indication of its ability 

to ignite in the engine. VOC emissions increase with a decreasing cetane number (Allemand et al., 

1990, p. 167). 

Motorcycles. Control options for motorcycles, similar to gasoline vehicles, include engine 

changes and exhaust gas recirculation (primarily to reduce NO,) or oxidation catalysts. Oxidation 

catalysts are more expensive, but considerably more effective for reducing VOCs, ranging between 

a 55 - 75 percent removal efficiency. Oxidation catalyst reduce VOCs and CO primarily. A range of 

removal efficiencies have been reported, with an average of approximately 65 percent (Table 3). 



On-board emission control. Controlling evaporative emissions from motor vehicles is 

important, however the cost effectiveness varies among control methods. On-board emission controls 

are designed to capture VOC released during refueling and evaporative emissions (running and hot 

soak losses). On-board emission controls typically refer to carbon canisters which collect vapors from 

the car's fuel system. Smaller canisters can absorb VOCs from hot soaks and diurnal losses, whereas 

larger canisters also absorb VOCs released during car refueling (Olsthoorn, 1994). 

Reported costs for on-board controls vary (see Table 4) but effectiveness is consistently 

estimated at about 90%. The cost of on-board canisters to collect VOC emissions from fuel tanks and 

engines range between 200 and 1165 ECU per ton VOC removed. The removal efficiency is 

reportedly 90 to 95% effective. This control option can be phased into car production over a short 

period of time. 

Table 4. Transportation control options, removal efficiencies and costs for on-board 
emission controls and other transportation 

Control Option Removal Efficiency ECUIton 
% (1987 ECU) 

On-Board Emission Control 
Large canisters 90 200 (a) 

Evaporative losses (1 liter) 90 290 (b) 

Vapor recovery (8 liter) 95 780 (c) 

Refueling losses 90 1165 (b) 

Other Transport 
Rail - Vapor Recovery Unit 89 1529 (d) 

Ship - Vapor Recovery Unit 90 2823 (d) 

Barge - Vapor Recover Unit 89 3860 (d) 

(a) ECE, 1990, p. 346 
(b) CONCAWE. 1987. p. 12 
(c) OECD, 1992, p. 69 
(d) ECE, 1990, p. 331 

Rail, ships, and barges. Other transportation sources include rail, ships and barges. Fugitive 

emissions and spillage are the greatest source of VOCs from these sources. Control options consist 

of vapor recovery or collection systems that prevent emissions from escaping during transfer and 

reduce fugitive emissions during storage. Emissions from this category can be effectively reduced with 

vapor collection systems. These units range in cost between 1530 and 3900 ECU per ton of VOC 



removed (Table 4). This subsector is not a significant contributor, and therefore these costs may not 

be warranted depending upon the specific country. 

Alternativefuels. A number of alternative fuels are attractive options because they can reduce 

and even eliminate some VOCs and other air pollutants. In the short term, reformulated gasoline is 

the only alternative fuel that can reduce ozone concentrations (NRC, 1991, p. 381). Some of these 

reformulated fuels are already on sale in the more polluted cities in the U.S. However, the 

effectiveness of this reduction strategy is uncertain. In the next 5 to 20 years methanol, natural gas, 

liquified petroleum gas (LPG) and hydrogen are expected to become more viable fuel alternatives with 

further research and investments made toward new distribution systems. Electric vehicles are also 

expected to develop as an option, and offer the greatest improvement in air quality by eliminating 

vehicle emissions (NRC, 1991, p. 430). Cost estimates for these alternative fuels were not found. 

Cost comparison. Within the transportation sector, evaporative emission controls and catalytic 

converters cost less than some other alternatives and have the benefit of high removal efficiencies. 

Three-way catalysts appear to be the most effective in removing VOCs from gasoline vehicle exhaust 

(CONCAWE, 1987). CONCAWE reports that the combination of reduced gasoline vapor pressure 

and Stage I1 controls (systems to reduce fugitive emissions while dispensing automobile fuel at service 

stations) is less cost-effective than on-board canisters (CONCAWE, 1987, p. 10). 

3.2 Solvent use 

Industrial. Industrial solvent use includes paint application, known as surface coating (SC), 

metal degreasing, printing, and other uses. There are several options for reducing VOCs in the 

painting industry depending upon the type of painting, or surface coating, and processes. One well 

documented subsector in the painting sector is automotive painting (see MacDonald, 1991). This 

makes up approximately 40% of all industrial painting. Control options, as outlined in Table 5, 

include thermal and catalytic incineration where VOCs are burned, carbon adsorption and low solvent 

coatings. 

Painting. The least expensive control option for paint application is the use of low solvent 

coatings followed by carbon adsorption. One case reports a 99 percent removal efficiency for carbon 

adsorption. Water-based inks and carbon treatment are more cost-effective and have removal 

efficiencies similar to the incineration options. Commercial water-based coat is not one of the more 



expensive alternatives and in principle has an efficiency close to 100%. This option could be applied 

to reduce emissions in private and commercial surface coating. In a study prepared for Environment 

Canada (VHB, 1989), removal efficiency of 25 percent is given for this option which is due to the 

assumption that only 25% of emissions from this sector could be controlled. As noted in Table 5, 

high solids are reported to be the most expensive option for printing, followed by incineration. 

Table 5: VOC control options, removal efficiencies and costs for industrial painting 

Control Option 

Paint application 
Automotive - low solvent 
Automotive - SC, process change 
Automotive - SC, high solids 
Automotive - SC, incineration 
Automotive - carbon adsorption 
Metal SC - low lolvent 
Metal SC - incineration or CAD 
Water based coatings - commercial 

Removal Efficiency ECUIton 
(1987 ECU) 

189 (a) 
797 (b) 

8958(b) 
28 17(b) 
310 (c) 

189 (d) 

396 (d) 
895 (b) 

(a) OECD, 1992, p. 18 
(b) VHB, 1989, p. 25 
(c) OECD, 1992, p. 70 
(d) Allernand, 1992, p. 123 

Printing. In the printing sector, lithography is the most common technique, followed by 

rotograve (Rentz et al., 1990). There are at least five options to reduce VOCs from the printing 

subsector. First, water-based inks or low solvent inks can be substituted for solvents. Another option 

is activated carbon adsorption, however recovered solvents are not reusable because of the number 

of different species collected (Rentz, 1990, p. 161). Thermal or catalytic incineration reported a high 

efficiency and has the option of a heat recovery unit. Absorption is a final option which is being tried 

in some places (Rentz, 1990, p. 163). 

Control options for printing range in cost from 420 to 7880 ECUs per ton VOC removed 

(Table 6). As with painting, the less expensive alternatives use water-based inks. Carbon treatment 

and process changes cost approximately 700 to 800 ECU per ton removed. Installation of incineration 

processes is again the most expensive alternative due to the investment cost. However, incineration 

with heat recovery is not reported to be any more effective than water-based paints. 



Table 6: VOC control options, removal efficiencies and costs for industrial printing 

Control Option Removal Efficiency 
% 

Printing 
Water-based ink - rot0 & flexography 70 
Carbon treatment 85 
Process change 70 
Incineration 90 
Catalytic incin. wlheat recovery 69 
Thermal incin. wlheat recovery 69 

ECUIton 
(1987 ECU) 

419 (a) 
713 (b) 
797 (b) 
4225 (b) 

5389 (c) 
7881 (c) 

(a) OECD, 1992, p. 76 
(b) VHB, 1989, p. 25 
(c) OECD, 1992, p. 77 

Metal degreasing. In degreasing, solvents are used with alkaline cleaners to degrease metal 

surfaces before soldering, painting, or surface treatment (CONCAWE, 1987, p. 143). Typically, 

machines have open tops for manual use, or are enclosed for mechanical handling (CONCAWE, 

1987, p. 147). Machine design and improper use commonly lead to evaporative emissions. To reduce 

emissions, covers can be automated, freeboards can be heightened and refrigerated, and water-based 

systems can be substituted for the solvents. 

Compared to printing, there are fewer control options reported for metal degreasing. Carbon 

treatment is reported to cost 15 ECU per ton removed with an efficiency of 70 percent. Installation 

of covers on the degreasing machines, chilled freeboards, and carbon adsorption is reported to result 

in a zero cost per ton removed (OECD, 1992, p. 75). 

Other industrial solvent uses. Other solvent control measures can be applied to the solvent 

use in general. Similar to other industrial solvent uses, general options include carbon adsorption, and 

catalytic and thermal incineration. These more general processes appear to be comparable in their 

effectiveness but vary in cost from 193 to 768 ECU per ton (see Table 7), thermal incineration being 

most expensive. 

Cost comparison. In general, the more cost-efficient control options for industrial solvent use 

include: 

carbon adsorption for painting as well as for general use, 

installing machine cover and chilled freeboards for metal degreasing, 



a process changes, such as water-based ink, are least costly in the printing sector, as well as 

carbon treatment. 

Table 7: VOC control options, removal efficiencies and costs for metal degreasing and other 

Control Option 

Metal Degreasing 
Metal cleaning wlcarbon treatment 
Machine covers, chilled freeboard 

and carbon adsorption 

Other 
Carbon adsorption 
Catalytic incineration 
Thermal incineration 

Removal Efficiency ECUIton 
% (1987 ECU) 

(a) VHB, 1989, p. 25 
(b) OECD, 1992, p. 75 
(c) OECD, 1992, p. 71 

Non-industrial solvent use. Non-industrial solvent use includes architectural painting, dry 

cleaning and domestic uses of solvents. Reducing VOCs from architectural painting can lead to 

changing to low-solvent or water-based paints in building and construction (see Table 8). High solids 

paints can contain up to 30 percent solvents and are more expensive than other traditional paints 

(Allemand et al., 1990, p. 29). Reducing solvents in paints and powder coatings are control options 

with low or negligible costs. 

To reduce VOCs from dry cleaning, exhaust treatment systems must be installed. Typically, 

VOCs are emitted from cleaners as a result of poor maintenance or operating procedures. Technical 

controls to reduce emissions are used in enclosed dry cleaning machines and adsorption cartridge 

filters. 

The emission from domestic (household) use of solvents could be reduced either by a process 

change to reduce the amount of solvent content or substitute the solvent ingredient and change the 

product. 



Among these non-industrial control options, water-based paints are most commonly 

considered as an option to reduce VOCs. Some countries, such as Denmark, already have geared their 

paint sector away from the use of solvent and primarily offer water-based products (Allemand, 1992). 

Cost comparison. Control options for non-industrial solvent use are similar to industrial 

solvent uses, however costs are generally less expensive. Reducing solvents and increasing water- 

based paints range in cost between 0 and 896 ECU. Efficiency also is reported to range from 25-100 

percent (see Table 8). Based upon the reports examined, closed systems are the most cost-effective 

controls for dry cleaning (VHB, 1989). Given the equal share of the solvent sector, domestic control 

technologies are generally more cost-effective than industrial options, which carry higher investments. 

Table 8: VOC control options, removal efficiencies and costs for non-industrial solvent use 

Control Option 

Architectural Painting 
Water-based - commercial 
Water-based - commercial 
Low solvent - ind. & domestic 
Water-based for wood 
High solids 
Powder coatings 

Dry Cleaning 
Closed system 
Dry cleaning 
Carbon treatment 

Domestic 
Process change 

Removal Efficiency 
% 

ECUIton 
(1987 ECU) 

896 (a) 
514 (b) 
514 (c) 

0 (4 
0 (b) 
514 (b) 

789 (a) 
1491 (e)  

4390 (a) 

1791 (a) 

(a) VHB, 1989, p. 25 
(b) OECD, 1992, p. 70 
(c) OECD, 1992, p. 18 
(d) OECD. 1992, p. 78 
(e) OECD, 1992, p. 19 

3.3 Chemical industry 

The chemical industry sector includes the solvent use in production, manufacturing and 

processing of chemicals and processes in the organic chemical industry. Some options are available 



for the sector in general, while others pertain to the specific type of chemical production (Table 9). 

Retrofitting existing chemical tanks with floating roof tanks or constructing new tanks with roofs 

prevents the escape of fugitive emissions from the tank as well as during transfer. Incinerating vapors 

is another control option. These methods do not allow for collection and reuse of VOCs. Catalytic 

incineration also burns vapors from the source. 

Cost comparison. At this time, reports contain limited information on the costs of controlling 

VOCs in the chemical industry. Flaring or burning exhaust fumes is one of the least costly 

alternatives. Costs for simple controls are not expensive, however specific controls for chemical 

production were found to be more expensive, such as for formaldehyde (Rentz, 1990, p. 368). 

Table 9: VOC control options, removal efficiencies and costs for the chemical industry 

Control Option Removal Efficiency ECUIton VOC 
% (1987 ECU) 

Internal floating roofs 70-90 - (a) 

Incineration 90 + - (a) 

Flaring 98 12 (b) 
Catalytic incineration 80 230 (c) 
Formaldehyde incineration 98 1133 (d) 

(a) Allernand et al., 1990, p. 144 
(b) ECE, 1990, p. 363 
(c) ECE, 1990, p. 365 
(d) ECE, 1990, p. 368 

3.4 Refineries 

The refinery sector includes the processing and storage of petroleum products. In this sector, 

common methods to control emissions are improving storage facilities, securing valves and leaks, and 

regular inspection and maintenance of equipment (see Table 10). Refineries are not one of the larger 

emission sectors, but can be a significant source depending on the size of the refineries in a specific 

country and fuel sources. 

Fugitive VOC emissions from refineries can be controlled by improved seals and inspection 

and maintenance. Recovering vapors and VOCs from tanks is also an option. Control systems collect 

and usually burn vapors to prevent them from being released to the environment. Floating covers on 

storage tanks (known as Stage IA controls) also help to prevent VOCs from accumulating in the tank 



and then being vented to the outside. 

Another option is reducing the volatility of gasoline, indicated by the Reid Vapor Pressure 

(RVP), to prevent evaporative emissions throughout the product life of gasoline. Reducing gas 

volatility at the refineries also reduces evaporative emissions during gasoline distribution. This option 

is currently being used during the summer months in parts of the United States. The 13 percent 

removal efficiency includes the entire fuel marketing sector, including vehicle refueling. The cost of 

reducing the volatility is only associated with the refinery sector. The benefits are passed on from 

refineries, to distribution, and transportation. CONCAWE reports that reducing the volatility has a 

significant, but less of a reduction of VOCs than other types of vapor control systems (see Table 10). 

Cost comparison. Data collected on refineries has a range in costs from zero to over 10,000 

ECU per ton VOC removed (Table 10). This can be accounted for by the range of simple measures, 

such as inspection and maintenance programs, to more capital intensive options such as floating decks 

on tanks. Reducing gas volatility is the least effective and one of the more expensive options. 

Installing floating covers and secondary seals are a better investment in terms of reducing emissions 

at a lower cost. 

Table 10: VOC control options, removal efficiencies and costs for refineries 

Control Option 

Fugitive emissions-quarterly 
Inspection & maintenance 
Secondary seals 
Floating covers 
Internal floating deck 
Reduced gas volatility 
Retrofit fixed roof wlcovers 

Removal Efficiency 
% 
80 
- 
89 
90 
54 
13 
89 

ECUIton VOC 
(1987 ECU) 

193 (a) 

106 (b) 
163 (c) 

165-643 (d) 

2088 (e) 
2006 (f) 
10435 (g) 

(a) OECD, 1992, p. 18 
(b) Mayers. 1993, p. 123 
(c) OECD, 1992, p. 61 
(d) OECD, 1992, p. 60 and Mayers, 1993, p. 123, respectively 
(e) OECD, 1992. p. 62 
(f) VHB, 1989, p. 25 
(g) ECE, 1990, p. 293 



3.5 Gasoline distribution 

The gasoline distribution sector includes distributing gasoline from refineries and transferring 

and depositing it at service stations. During distribution, VOCs are emitted as vapors are released and 

fuel is spilled. As a result, control options for gasoline distribution focus on preventing evaporative 

losses by improving gasoline lines and seals and installing vapor collection systems, also known as 

Stage IB and I1 controls. 

Stage I1 controls are common for controlling VOC emissions during distribution of gasoline 

at service stations. Estimates of the effectiveness of this vary and depend upon whether the equipment 

is properly installed, used and maintained. The variance in cost can be accounted for by the different 

sizes of service stations and businesses, as well as local prices for labor and materials for installation. 

Vapor Recovery Units (VRU) remove VOCs from the tanks or loading operations typically 

by condensation, liquid adsorption or a combination of these processes. The collected VOCs are 

returned to the tank in liquid form. Estimates for cost and efficiency can vary depending upon the size 

of the service station. 

Another important component of controlling VOC emissions during gasoline distribution is 

the seals and lines of the trucks. There are bottom and top loading vehicles, each of which require 

well maintained equipment to prevent spills during transfer. Bottom loading vehicles are considered 

by some to be more effective than top loading for maximum vapor recovery (CONCAWE, 1990, p. 

57). 

Cost comparison. Secondary seals are reported to have a negative to zero cost making them 

the most attractive control option (see Table 11). In addition, vapor recovery and balancing can both 

be cost-effective options. Larger terminals can achieve greater cost-efficiencies (CONCAWE, 1990, 

p. 57) and thereby potentially reduce estimated costs of controls. 



Table 11: VOC control options, removal efficiencies, and costs for gasoline distribution 

Control Option 

Refinery Dispatch 
Vapor recovery at loading 

Transfer & Depot 
Vapor balancing at transfer 
Secondary seals on tanks 

Service Stations 
Vapor balance 
Vapor balance 
Vapor recovery 

Removal Efficiency 
% 

ECUIton VOC 
(1987 ECU) 

1580  (a) 

5 8 2 0  (d) 

16 (e) 
172 (e) 

(a) OECD, 1992, p. 19 
(b) OECD, 1992, p. 66 
(c) OECD, 1992, p. 65 
(d) CONCAWE. 1990. p. 56 
(e) VHB, 1989, p. 25 

3.6 Stationary combustion 

Stationary combustion includes public power, cogeneration, district heating, commercial, 

institutional, and residential heating, industrial boilers, and refinery processes furnaces. No 

information about methods and costs for reducing VOCs in the stationary combustion sector was 

available. There are changes that would result in a reduction in VOCs. Such options include using 

alternative fuels, for example from coal to natural gas, conserving energy and therefore reducing the 

demand for generating electricity, and improving maintenance programs at power generation 

facilities. 

3.7 Other 

No information about methods and costs for sources in the other category, such as agriculture 

and waste treatment, were found. 



4. Conclusions and recommendations 

Over one hundred control options for reducing VOCs were reviewed for this paper. Many 

of these control options are in the process of being developed and tested while others are 

implemented. This paper provides a preliminary list of the most cost-effective control strategies based 

upon reported estimates. However, the cost figures given are influenced by many factors and are very 

case-specific. The estimates represent order of magnitudes rather than absolute cost estimates. This 

is especially important when discussing cost-efficient emission reduction strategies. 

4.1 Explanation for cost differences 

This paper arrives at two major conclusions: 

Costs of applying the same technical option to reduce VOC emissions in some cases may vary 

widely, and it is not always clear why such large cost differences occur (for example the cost 

of vapor balancing from 16-5820 ECUs, as indicated in Table 11). 

Given the uncertainty in cost estimates it appears that some options are clearly more cost- 

effective means for controlling VOC emissions than others. 

Cost and efficiency estimates have been collected from various sources, mainly studies 

performed by OECD (OECD, 1992), CONCAWE (CONCAWE, 1987, 1990), UNECE (Rentz et al., 

1990), CEC (Allemand et al., 1990, 1992). Given the limited background information in some 

reports, it is difficult to calculate exactly why some costs (and efficiencies) vary. Some possible 

reasons are suggested below. 

Defining costs. The cost-effectiveness of a control option is defined as ratio of annual costs 

per ton emission reduction. The methodology used to calculate costs in reviewed studies is in principle 

the same but several assumptions are different. Some of the differences are: 

Different assumptions on major parameters such as discount rates, plant lifetime, financial 

outlays versus real resource costs. For example CONCAWE assumes 25% charge on 

investment (annual capital charge) (CONCAWE, 1987) while CEC uses 10% (Allemand et 

al., 1990). 

Some of the cost calculations attribute half of the cost of the control technology to NO, and 



VOCs each. This cost separation is not performed for all estimates and not addressed in some 

reports. Whether costs have been calculated for just VOCs, or VOCs and NO,, or all species 

of air pollution, is not always evident. Separating these control costs for multiple kinds of 

compounds is especially relevant for the transport sector1. 

The revenues from recovered hydrocarbons are not taken into account in CONCAWE 

estimates. In CEC studies the value of 0.2 ECUIkg of recovered VOC is assumed while 

OECD estimates savings in some categories of control equipment. 

Technical eflciencies: expected versus actual eflciencies. Removal efficiencies are less than 

expected because people do not properly maintain or operate equipment. One study in the U.S. by 

South Coast Air Quality Management District (SCAQMD) reported that one year (1988) more than 

70 percent of 180 facilities audited had underestimated emissions by an average of 15 percent due to 

poor operations (NRC, 1990, p.87). This was taken into account (to the possible extent) in the study 

of OECD (OECD, 1992) where quoted reduction efficiencies rely as far as possible on data from real 

applications of control equipment in OECD countries. 

The abatement efficiency of control equipment decreases with time especially when it is not 

run and maintained properly. Therefore in some cases in the OECD study (OECD, 1992) costs were 

increased to reflect the measures undertaken to assure continuing good performance of control 

techniques. Some of the abatement techniques are not effective during some periods of operation, 

e.g., start-up or shut-down of facilities, short vehicle trips. This results in decreasing overall emission 

reduction efficiency of control technique and is reflected in some studies in terms of lower efficiencies 

assumed for specific techniques. 

Different materials change costs. In combustion engines, catalysts for reducing VOCs use 

different metals, such as platinum-rhodium, which increase the cost of the pollution control 

technology. As technologies develop, substitutes for expensive components will be replaced with less 

expensive alternatives. Examples of this include the decreasing costs of electronic sensors used to 

monitor temperature and emissions, and ceramic components, as used in engine blocks to allow higher 

operating temperatures. 

Economies of scale. Cost-effectiveness varies depending upon the size of the facility and on 

Estimated costs for three-way catalyst are 2390 ECUIton of NO, and VOC abated (OECD. 1992) but these costs would 
be only 670 ECUIton when abated CO would be added. 



the expense of retrofitting existing equipment or installing new technologies. This specifically applies 

to solvents, chemical plants, refineries, and gasoline stations. Different studies tend to make different 

assumptions. 

4.2 Cost-effectiveness of control options 

Bearing in mind the above range in cost estimates and removal efficiencies, Table 12 lists the 

control strategies from each sector with the lowest cost and removal efficiency of at least 90 percent. 

These control options appear to be the most cost-effective, meaning least cost for greatest removal 

efficiency. 

Table 12: Summary of least expensive VOC control options by sector with at least 90 
percent removal efficiency 

Sector 

Gasoline 
distribution 

Chemical 

Refineries 

Ind. solvents 

Transport 

Non-industrial 
solvents 

Control Option 

Secondary seals on tanks 

Flaring 

Floating covers on wastewater separators 

Carbon adsorption (general use) 

On-board emission controls 
(large canisters) 

Powder coatings 

Cost 
(1987 ECUIton) 

200 (e) 

514 (f) 

(a) OECD, 1992, p. 65 
(b) ECE, 1990, p. 363 
(c) OECD, 1992, p. 60 
(d) OECD, 1992, p. 71 
(e) ECE, 1990, p. 346 
(f) OECD, 1992. p. 70 



Examining alternatives across all sectors, the control options that appear most cost-effective 

commonly require less investment and infrastructure. The ten control options with the lowest cost 

are illustrated below in Table 13 [see Appendix for a complete list of alternatives, sorted by least cost 

and highest removal efficiency]. 

Table 13: The ten VOC control technologies with lowest cost 

Control OptiontSector 

Secondary sealstgasoline dist. 
Water base wood painttsolvent use 
Machine coverstind. solvent use 
High solids painttsolvent use 
Carbon treatmenttind. solvent use 
Vapor balancetgasoline dist. 
Cetane fuel additivettransport 
Flaringtchemical industry 
Secondary sealstrefineries 
Floating covers on wastewater 
sep. /refineries 

VOC Removal 
Efficiency (%) 

Avg. Cost 
(ECUtt on) 

-338 (a) 

0 (b) 
0 (c) 
0 (dl 

15 (el 
16 (el 
109 ( 9  
123 (9) 
163 (h) 

(a) OECD, 1992, p. 65 
(b) OECD, 1992, p. 78 
(c) OECD. 1992, p. 75 
(d) OECD, 1992, p. 70 
(e) VHB, 1989, p. 25 
( 9  OECD. 1992, p. 48 
(g) ECE, 1990, p. 363 
(h) OECD, 1992, p. 61 
(i) OECD, 1992, p. 60 

4.3 Recommendations for further research 

Determining cost-effectiveness of various abatement techniques requires well documented 

information on emissions, reduction efficiency, investment and operating costs. Several available 

studies as well as ongoing projects provide necessary information but often are poorly documented 

and consequently incomparable. There is a need for further improvement in emission factor estimates 

(based on measurements) as well as consistent documentation of applied methodologies and 

assumptions in cost calculation. 



Determining how the control costs for different air pollution species were allocated in 

existing studies is another issue for further research. 

Including other pollutants in the analysis might result in decrease or increase of cost- 

effectiveness estimates. Further collection of costs, increasing experience and information in the field 

will improve the accuracy and availability of estimates. Likewise, as more countries implement 

pollution control policies and regulations, new estimates will be documented. It is important to 

recognize that analyses limited to only specific pollutants might produce different recommendations 

as compared to those studies where other (all) pollutants are considered. 

As the examples of control options illustrate, the range in some estimates makes it difficult 

to prioritize different control alternatives. For example, vapor balancing at service stations is reported 

to cost between 16 to 5820 ECUs per ton VOC (see Table 11). More precise information for these 

estimates will be required in order to evaluate control options and make policy recommendations in 

the future. 

Uncertainty of cost-effectiveness estimates depends on quality of data on emissions, abatement 

efficiency and costs (including credits from solvent recovery) and has not been assessed in this report. 

In the reviewed studies the accuracy of cost estimates is given very seldom. One of the examples is 

the OECD study (OECD, 1992) where the accuracy of cost data for lean concept engines and three- 

way catalytic converters was assessed at plus or minus 30 to 50 percent. This is possibly because the 

presented costs reflect consumer prices, not real resource costs and therefore they are most likely 

higher than real economic costs. The uncertainty of emission or abatement efficiency estimates is 

given more often and for various sectors. As long as the error is systematic across all sectors it is not 

critical from the cost-efficiency calculation viewpoint. However, some studies suggest that uncertainty 

in emission estimates differs substantially for various sectors2 (Winiwarter, 1993). There are several 

studies where uncertainty of traffic emissions has been assessed (Eggleston, 1993; Croes and Fujita, 

1993; Vlieger, 1993) and the results are similar giving values around 30%. This might suggest that 

uncertainty of cost estimates of abatement techniques in various sectors is most likely different. More 

research is required to estimate the uncertainties of both emission and cost estimates especially on an 

international basis as the figures might vary considerably among different countries. The country- 

specific information is very important for development of cost-efficient emission reduction scenarios. 

For example: domestic combustion - 66%. industry - 1 1 % ,  transport - 30% 



Further research in this area is critical in the effort to reach the goal of gathering the 

necessary inputs for a RAINS ozone model. The following steps are recommended: 

Reduce the number of control options, based upon objective criteria; 

Collect necessary statistics or other relevant information in order to perform aggregation of 

detailed information for sub-sectors into categories distinguished in the RAINS ozone model; 

Develop a national cost curve for at least one country as an example of ranking emission 

control options; 

Focus on greatest potential reductions from control options. Apply emission factors to each 

sector and evaluate where the greatest emission reductions can be achieved; 

Collect appropriate information to develop emission projections; 

Perform sensitivity analyses to other parameters in order to assess the ranges of uncertainty. 
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Appendix 

VOC Control Technology and Costs 

VOC 
Removal 
Efficiency 

Sector Control Option (%I 
1 Gasoline distr: Transfer & depot rim-mounted sec. seals on tanks 97 

2 Non- Ind. Solvent - Architectural water base paint for wood 65 
3 Solvent Use - Metal Degreasing machine covers, chilled frbd & c ads. 60 

4 Non- Ind. Solvent - Architectural high solids paint 45 

5 Solvent Use - Metal Degreasing ind. metal cleaning. carbon treat 70 

6 Gasoline distr: Service stations vapor balance 95 

7 Transport - Heavy Duty Trucks cetane improvement by additive 15 

8 Chemlcal Industry flaring 98 

9 Refineries: Stor. & Handling storage. secondary seals (gas prod) 89 

10 Refineries: Stor. & Handling floating covers on wastewater sep. 90 

11 Gasoline distr: Service stations vapor recovery (fuel markt) 98 

12 Solvent Use - painting low solvent coatings for vehicle repair 70 

13 Solvent Use - industrial carbon adsorption 

14 Refineries: Stor. & Handling fugitive emission - quarterly 

15 On board emission control Ig canisters (all evap. emiss) 

16 Chemical Industry ink and paint manufacturing 

17 Chemical Industry catalytic incineration 

18 Gasoline distr: Transfer & depot Transfer /vapor balancing 98 

19 Gasoline distr: Service stations vapor balance (med) 98 

20 Transport - On board emis. control evaporative losses 90 

21 Transport - Diesel vehicles & LDV Autos -Improved diesel fuel quality 15 

22 Solvent Use - painting carbon adsorption on auto, paint 99 

23 Transport - Diesel vehicles & LDV LDV - improved diesel fuel quality 20 

24 Solvent Use - printing Roto - & flexography water base ink 70 

25 Solvent Use - industrial catalytic incineration 90 

26 Non- Ind. Solvent - Architectural powder coatings 100 

27 Non- Ind. Solvent - Architectural water based paints 82 
28 Non - Ind. Solvent - Domestic low solvent cootings (dom & ind) 73 

29 Solvent Use - printing industry, carbon treatment 85 

30 Solvent Use - industrial thermal incineration 90 

31 On board emission control vapor recovery 95 

32 Non - Ind. Solvent - Dry cleaning dry cleaning, closed system 99 
33 Solvent Use - painting auto - surface coating, process chang 70 

Avg. Cost 
ECU / Ton 



Appendix 

VOC Control Technology and Costs 
VOC 

Removal 
Efficiency 

Sector Control Option (%I 
34 Solvent Use - printing printing. process change 70 

35 Non- Ind. Solvent - Architectural comm. - to water based coat 25 

36 Transport - gas auto & LDV 3-way catalytic converter 80 

37 Gasoline distr: Service stations vapor balance 78 

38 Transport - gas auto & LDV U.S. 1985 standards(3-way cat.) 90 

39 Chemical Industry formaldehyde incineration 98 

40 Transport - On board emission con refuelling losses 90 

41 Transport - Heavy Duty Trucks cetane density improv, by process 15 

42 Transport - Diesel vehlcles & LDV US 1991 stds.(engine redeslgn) 50 

43 Non - lnd. Solvent - Dry cleaning dry cleaning 50 

44 Transport - other rail 89 

45 Gasoline dist: refinery dispatch Loading at ref / vapor recovery 89 

46 Transport - gas auto & LDV engine modifications 35 

47 Transport - gas auto & LDV EEC Luxembourg (EGR & lean burn) 50 

48 Transport - gas auto & LDV engine modification & EGR 35 

49 Gasoline distr: Service stations gas refueling vapor bal (med size) 69 

50 Non - Ind. Solvent - Domestic process change (solvent use) 90 

51 Transport - gas auto & LDV oxidation catalyst - LDV 55 

52 Transport - gas auto & LDV oxidation catalyst 90 
53 Refineries: Process gas volatility reduction 13 

54 Refineries: Stor. & Handling internal floating deck 54 

55 Transport - gas auto & LDV 3-way catalyst and elec. controls 80 

56 Solvent Use - painting beverage cans, incineration 57 

57 Transport - gas auto & LDV 3-way catalyst w/l&M 75 

58 Solvent Use - painting auto - surface coating, cat incin. 80 

59 Chemical Industry thermal incin, of paint manuf. 91 

60 Transport - gas auto & LDV oxidation catalyst - auto 55 

61 Solvent Use - industrial industry - mix. 90 

62 Transport - other barge 89 

63 Transport - gas auto & LDV oxidation catalyst w/l&M - auto 55 
64 Solvent Use - prlnting printing, incineration 90 

65 Transport - Motorcycles engine modifications & EGR 35 

66 Non - Ind. Solvent - Dry cleanlng dry cleaning, carbon treatment 95 

67 Transport - Motorcycles oxidation catalyst 55 

68 Solvent Use - printing lithography; catalytic incin/ heat rec. 69 

69 Gasoline distr: Service stations vapor balance 

70 Transport - gas auto & LDV oxidation catalyst - auto 

71 Transport - Motorcycles oxidation catalyst w/ I&M 

72 Solvent Use - printing lithography: thermal Incinlheat rec. 69 

73 Transport - gas auto & LDV oxidation catalyst w/ I&M - auto 75 

74 Solvent Use - painting auto - surface coating, higher solids cc 88 

75 Refineries: Stor. & Handling retrofitting fixed roof tanks w/int covers 89 

Avg. Cost 
ECU / Ton 
(1 987) 

797 

896 
920 

968 

1018 

1133 

1165 

1269 

1387 

1491 

1529 

1580 

1582 

1595 

1687 

1704 
1791 

1896 

1958 

2006 
2088 

2265 

2319 

2433 

281 7 

2823 

2990 

3506 

3860 

4032 

4225 

4297 

4390 
4731 

5389 

5820 
61 77 

7562 

788 1 

8789 

8958 

10435 


