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Abstract 

In this paper a sixth-order nonlinear dynamical system modelling forest-pests interactions is 

presented. Forest growth is described by mechanisms of the exchange of carbon and nitrogen 

between soil and vegetation, and by microbial mineralization. The influence of acid 

deposition, an increase of which can cause either the decline or the collapse of the forest 

ecosystem, is discussed. The analysis is  carried out by numerically finding the bifurcations of 

the model. 



ACID RAINAND THE FATE OF 
FOREST ECOSYSTEMS 

Alessandra Gragnani and Sergio Rinaldi 

1. INTRODUCTION 

Acid depositions have caused, during recent decades, great damages to forests or, more 

eenerally, to forest ecosystems. In fact, the increase in acidity causes accumulation of stress in u 

the forest with different consequences. As a first possibility, the forest may smoothly decline: 

the vegetation biomass decreases slowly, say at the same speed at which acidity increases. On 

the contraly, the second possible consequence is a collapse: the forest, having reached a 

suitable threshold of stress, quickly becomes infested and its bioinass decreases substantially. 

The first case corresponds to a non-catastrophic bifurcation of the system, while the second to 

a catastl-ophic bifurcation (Guckenheimer and Holmes, 1983). 

This paper's aim is to determine under which circumstances the increase in acid 

deposition, i.e., the decrease in pH of the rain, will generate a decline or a collapse in a given 

forest. Until now, many results have been obtained by studying the influence of acid 

deposition on forests (Gatto and Rinaldi, 1987, 1989; Lohele, 1989; Gatto et al., 1993) or, 

more generally, on forest ecosystems (Muratori and Rinaldi, 1989). However, all of these 

s t~~d ies  are based on naive models of the vegetation growth, such as the logistic equation 

"(t) = r v(t) (I-?) 

where v(t) is vegetation biomass at time t and r and V are intrinsic growth rate and canying 

capacity. 



I11 this paper a more realistic model composed by five differential equations that account 

for the cycles of the mineral nutrients necessary for the growth of the forest biomass, is 

proposed for describing the vegetation. Therefore, a relatively detailed model based on the 

description of the exchanges of carbon and nitrogen between soil and vegetation and on 

microbial mineralization is considered. The rest of the forest ecosystem is composed of 

defoliator insects or  pests feeding only on vegetation, and birds feeding on them; in the 

following they will be called predators and superpredators, respectively. The model of the 

forest ecosystem here proposed is, therefore, a three-level food chain composed of prey 

(vegetation), predator (insect pest), and superpredator (birds). Moreover, it is supposed that 

the supelpredator population is constant since in the majority of the cases birds can feed on 

alternative resources. The forest ecosystem is, therefore, described by a sixth-order nonlinear 

dynamical system: five equations describe the vegetation submodel, while the sixth equation 

describes the dynamic behavior of the predator. 

It is practically impossible to detect a11 modes of behavior of a so complex model, if the 

parameters are not fixed or constrained to valy in suitable ranges. For this reason, in the 

following, all parameters are fixed (those of the vegetation submodel correspond to a typical 

forest of Phu.s Syl~,r.stri.s) with the exception of three of them, one for each compartment of 

the food chain. The three parameters with respect to which the analysis is performed are the 

acidity of the rain, the maximum uptake rate of the predator and the density of the 

supelpredator. The second of these parameters is, nevertheless, constrained in such a way that 

the model cannot cycle. This means that the present analysis does not pretend to mimic those 

forest ecosystems which systematically undergo through recurrent (periodic or almost 

periodic) infestation episodes. 

The paper is organized as follows: in Section 2 the model is described, and in Section 3 

all its possible modes of behavior are classified through bifurcations analysis. The 

catastrophic transitions and the hysteresis emerging from this analysis are discussed in 

Section 4. Finally, the discussion of the results and possible refinements of the proposed 

  nod el are presented. 



2. THE MODEL 

The dynamic of vegetation, in the absence of predators, is described by the exchanges of 

carbon and nitrogen between vegetation and soil and by microbial mineralization. Our model 

is based on a series of contributions by &yen and Bosatta (Agren and Bosatta, 1987; Agren, 

1988; Bosatta and Agren, 1991) that the reader can consult for more details. The following 

phenomena are considered: 

nitrogen is the limiting nutrient for the production of vegetation biomass, while shading 

reduces the photosynthesis; 

the vegetation absorbs inorganic nitrogen from soil; 

microbial decomposers, whose activity is limited by the amount of carbon in the soil, 

~nineralize organic carbon and nitrogen; 

~nicrobial decomposers immobilize carbon and nitrogen; 

meteorological precipitations enrich the compartment of inorganic nitrogen; 

leaching and washout gene~~a te  the outflow of inorganic nitrogen and of organic carbon 

and nitrogen, respectively; 

dead vegetation biomass enriches the compartment of organic carbon and nitrogen. 

The following phenomena are considered to describe (see Muratori and Rinaldi, 1989) the 

dynamic of predators: 

baseline mo~tali ty;  

sulplus of mortality due to intraspecific competition among predators; 

mo~tali ty caused by superpredators. 

Lastly, the assumption has been made that predators attack the foliage of the trees: organic 

nitrogen, mainly contained in leafs, is, therefore, their limiting nutrient. 

Under these assumptions, the model is  described by the following differential equations 

with constant parameters 



where the variables are: 

C,,, = organic carbon contained in the vegetation (indicator of the vegetation biomass), 

COs = o~.ganic carbon contained in the soil, 

No, = organic nitrogen contained in the soil, 

N,, = inorsanic nitrogen contained in the soil, 

N,,,. = organic nitrogen contained in the vegetation, 

P = density or biomass of predators; 

while the parameters have the following meaning: 

a =  production rate of vegetation biomass (measured in carbon) per unit of nitrogen contained 

in the vegetation, considered as limiting nutrient; 

b = shading late; bCov reduces the production rate of the vegetation biomass because of the 

reduced photosynthesis: 

m = mortality rate of vegetation; 



u = production rate of microbial biomass per unit of carbon (considered as limiting nutrient 

for microbes); uCos is the amount of carbon immobilized in the microbial biomass; 

e = efficiency of microbial production; uCos/e is the amount of carbon absorbed by 

decomposers, while its difference with immobilized carbon yields the mineralized carbon; 

r = ratio nitrogedcarbon in dead vegetation biomass; rdCov is the flux of organic nitrogen 

arising from the death of the vegetation; 

f = ratio nitrogedcarbon in the microbial biomass; fuCos is the amount of nitrogen 

immobilized in the microbial biomass, while uN,,/e is the amount of nitrogen absorbed by 

microbial decomposers; 

w,, w, = washout rate for organic carbon and nitrogen; 

d = tlux of inorganic nitrogen due to precipitation which contains the ions NO; and NH: ; 

1 = rate of leaching; 

rr = maximum tlux of inorganic nitrogen that vegetation can absorb; " 

11 = half satill-ation constant of the Michaelis-Menten relationship characterizing the 

absorption of inorganic nitl.ogen by vegetation; 

cl = half saturation constant of the Michaelis-Menten relationship characterizing the 

r n a x i ~ n u ~ n  abso~.ption of inorganic nitrogen by vegetation. In fact, we have assumed that high 

values of vegetation biomass (expressed by C,,) decrease the absorptioli of nitrogen per unit 

of biomass: 

O. = maximum uptake rate of predators; 

p = half satu~.ation constant of the Holling type I1 functional response (Holling, 1965) of 

predators, na~nely  the amount of organic nitrogen contained in the vegetation at which the 

uptake rate is half the maximum; 

E = efficiency of predators; 

6 = baseline death rate per capita of predators, namely the death rate at low predators density 

and in the absence of superpl-edators; 

y = surplus of death rate due to intraspecific competition among predators; 

p = ~ n a x i l n u ~ n  uptake rate of superpredators; 



p = half saturation constant of the Holling type I1 functional response (Holling, 1965) of 

supeipredators, namely the density or biomass of predators at which the uptake rate is half the 

maximum; 

S = density or biomass of supeipredators. 

The influence of acid deposition is not described in model (1). Denoting with W the flux 

of protons due to acid deposition (inversely related to rain pH), it has been supposed that: 

the concentration Z of protons in the soil (inversely related to soil pH) is an increasing 

functioil of W, in particular, 

where Zo and Wo are suitable reference values, as specified in the following, while q,  is 

the ratio between the percent variation of Z and that of W with respect to their reference 

values; 

the tlux d of inorganic nitrogen due to precipitation is an increasing function of W, in 

particular, 

where d, and W, are suitable reference values, as specified in the following, while q, is 

the ratio between the percent variation of d and that of W with respect to their reference 

values; 

the p~.oduction rate a and the mortality rate m of the vegetation biomass are, respectively, 

decreasing and increasing function of W (damage of foliage); 

the PI-oduction rate 11 of microbial biomass is a decreasing function of Z (intluence of soil 

pH on microbial activity); 



the maximum flux g of inorganic nitrogen that vegetation can absorb is a decreasing 

function of Z (damage of roots); 

the searching time b of the predators is a decreasing function of W, in particular, 

where b, is the maximum searching time, while Wc is the value of W where the searching 

time b is half the maximum; predators are, therefore, very sensitive to variations in acid 

depositions just in the vicinity of Wc. This can be justified by considering the effects of acid 

depositio~is on vegetation. There can be, for example, foliar damage resulting in erosion of 

the leaf cuticle whose integrity is a mechanism of resistance against predators. The increase in 

acid deposition increases the density of points at which the resource can be successfully 

attacked by predators so that their searching time decreases. 

Table 1 s~llnmalizes the ranges of variability of the parameters of model (1) and their 

functional dependence upon the exogenous parameter W. The values are typical for forests of 

Pi l~~ , . s  Sy1~~e.str.i.s (&]-en and Bosatta, 1987; Agren, 1988; Ingestad and Agren, 1991; Bosatta 

and Agren, 1991). Reference values and ranges of variability for the parameters of the 

predators are not given, since they are only roughly known. 

3. BIFURCATION ANALYSIS OF THE MODEL 

In this Section all modes of behavior of model (1) corresponding to different values of W 

(tlux of protons), S (density of superpredator), and a (maximum uptake rate of predator) are 

detected. This is done through a systematic bifurcation analysis of the equilibria which is 

performed n~~mel-ically by fixing all other parameters at reference values. 

With regard to the equilibria, there may exist two trivial equilibria; the first col-responds 

to absence of vegetation (and predators), namely to the presence of inorganic nitrogen in the 



- 
soil only (Nls = dll), while the second corresponds to forest at its "carrying capacity". This 

last equilibrium, denoted by (V,O), where the vector 
- - - - A -  

V = (Cov,Cos,Nos,N~s,Nov) 

represents the equilibrium values of the five variables characterizing the vegetation 

submodel, corresponds to a healthy (i.e. not infested) forest. Moreover, there may exist 

strictly positive equilibria corresponding to forests infested by pests. 

The trivial equilibrium (V,O) (healthy forest) exists for sufficiently high acidity of the 

rain (W) and is unique as prooved in the Appendix where it is also shown that the equilibrium 
- 
V in the state space V of the vegetation submodel with P = 0 is asymptotically stable. 

However, for suitable values of W, S and a the equilibrium (V,O) can become unstable in the 

whole space (V,P) of the system, formally via transcritical bifurcation. In other words, for 

suitable values of the free parameters the predators can invade the healthy forest. 

The relationship among parameters characterizing this bifurcation (as well as those 

presented in the following) cannot be found analytically because of the complexity of the 

model. Nevertheless, by mealis of LOCBIF, a program implementing a powerful continuation 

technique for bifurcation analysis (Khibnik et al., 1993), it has been possible to numel-ically 

detect all bifurcatio~is characterizing system (1) and to display them in any two-dimesional 

parameter space. In the following the bifurcation curves are shown in the parameter space 

(W,S) because the flux W of protons due to acid deposition is the most interesting exogenous 

variable, while the density S of superpredators can be considered to a certain extent a control 

variable. The analysis will show that at different levels of S there are different kinds of 

impacts of acid depositions on forests, and that the bifurcation diagram is more complex for 

more voracious predators (i.e. when a is greater). 

The pa~.aineters characterizing predators and superpredators (with the exception of the 

maximutn uptake rate of predators a )  have been fixed at the following values 

W, = 1 [keq ha-' y- l ]  8 = 0.5 [y-'] 



Moreover, it has been assumed that q, = 0 and q, = 1 in eqs. (2) and (3), i.e., a percent 

variation on the flux of protons W implies no influence on the soil pH, which is inversely 

related to 2, and the same variation on the flux d of nutrient. 

Figure 1 is the bifurcation diagram in the parameter space (W,S) corresponding to the 

above parameter setting and to a = 1.5. The curve corresponding to eq. (A2) in the Appendix 

does not appear in this figure because the threshold value of W is smaller than 1 (actually 

much smaller than 1). In this diagram there are two different bifurcation curves, identified 

with symbols, namely T for transcritical bifurcation and F for fold bifurcation. These curves 

define, in the parameter space (W,S), three different regions, indicated by [a], [b], and [c]. 

For parameter values corresponding to points in region [a], all trajectories tend toward the 

trivial equilibrium (V,O) (healthy forest), as shown in fig. 2a, while in region [c] all 

trajectories tend toward the equilibrium colresponding to forest infested by predators, as 

shown in fig 2c. In region [b] there are two stable equilibria (namely the healthy forest (V,O) 

and the infested forest), whose basins of attraction are limited by the inset of a saddle-type 

equilibrium. Depending upon the initial conditions, the system tends toward one of the two 

stable equilibria, as shown in fig. 2b. 

Crossing the fold bifurcation curve F from region [b] to region [a], the stable equilibrium 

corresponding to the infested forest and a saddle collide and disappear. Crossing the 

transcritical bifurcation curve T from region [a] to region [c], the trivial equilibrium (V,O) 

looses stability and the healthy forest gradually becomes infested, while, crossing curve T 

from region [b] to region [c] the trivial equilibrium (V.0) corresponding to the healthy forest 

collides with the saddle and becomes unstable. 

Increasing the maximum uptake rate of the predator (a) the bifurcation diagram becomes 

reacher. Fig. 3 shows, for example, the bifurcation curves obtained for a = 3.9. As before, 

there is one region (grey region) with two stable equilibria but the bifurcation curves are four, 

 lamely F, T, H, and M for fold, transcritical, Hopf, and homoclinic bifurcation, respectively. 

The first three of these curves have been computed with LOCBIF while the last one, namely 

M has been computed only at a few points with a special program. These curves define, in the 

parameter space (W,S) five different regions, indicated by [a'], [a"], [b'], [b"], and [c]. The 



asymptotic behavior of model (1) in regions [a]=[a']u[a"], [b]=[b']u[bl'], and [c] of fig. 3 is 

the same as in regions [a], [b], and [c] of fig. 1 ,  respectively. In region [a"], there are two non 

trivial saddle-type equilibria; crossing the fold bifurcation curve F from this region to region 

[a'], they collide and disappear. In region [b"] there is a saddle equilibrium and a saddle-cycle 

obtained through subcritical Hopf bifurcation H; crossing this curve from region [a"] to 

region [b"], the saddle equilibrium becomes stable and a saddle-cycle appears. Such a cycle 

disappears through homoclinic bifurcation crossing curve M from region [b"] to region [b']. 

The point B T  from which the three curves F, H, and M originate is a Bogdanov-Takens 

codimension-2 bifurcation point (see Guckenheimer and Holmes, 1983). 

The analysis of figs. 1 and 3 shows that, looking only at the attractors (i.e. at the stable 

equilibria) of model (I) ,  the parameter space (W,S) is partitioned into three regions, 

corresponding to three different asymptotic modes of behavior of the system. In region [a], 

characterized by high values of rain pH (i.e., low values of W),  the forest tends toward its 

carrying capacity and the predators are absent. In the second region ([b]), characterized by 

intel-mediate values of rain pH, the forest can be either healthy or infested and accidents like 

fires and diseases can bring the system from one basin of attraction to the other. Finally, in 

the last region ([c]), characterized by low values of pH, the forest can only be infested. 

4. CATASTROPHES AND HYSTERESES 

A more detailed analysis of the bifurcation diagrams of figs. 1 and 3 suggests other 

conclusions. First of all, the variation in rain acidity, i.e., in W ,  with a constant superpredator 

population S,  can generate catastrophic transitions from a healthy to an infested forest as well 

as vice versa. For example, if the system is  in region [b] close to curve T (see figs. 1 and 3) 

and the forest is healthy, a small decrease of rain pH that implies the crossing of curve T 

would give rise to a catastrophic transition ending with an infested forest. This dramatic 

transition of the forest ecosystem may last a long time, even years. Fig. 4 shows one of these 

transients obtained through simulation by linearly increasing over time the flux of protons W 



in the neighborhood of its catastrophic value (the parameter values are those of fig. 3). The 

duration of the transient is of about 20 years, but small damped oscillations, typical of 

predator-prey systems, are present for a longer time. 

Catastrophic transitions are also obtained by increasing rain pH provided the left 

boundary of the grey region of figs. 1 and 3 is crossed from [b] to [a]. In this case, the 

catastrophe will actually be a regeneration of the vegetation biomass. 

The existence of catastrophic transitions, either increasing or decreasing the acid 

deposition, gives rise to a "hysteresis" between the two equilibria coiresponding to healthy 

and infested forest. Fig. 5 shows this hysteresis in terms of vegetation density (the parameters 

are those of fig. 1). The upper solid line corresponds to forest at its canying capacity, while 

the lower to infested forest; a slow periodical variation of rain pH encompassing the two 

critical values of W would, therefore, result in an hysteretic cycle between the two equilibria. 

It is important to remark that the transition from healthy to infested forest and the reverse 

one from infested to healthy forest can also take place gradually. This happens when the 

dashed part of the transcritical bifi~rcation curve T of figs. 1 and 3 is crossed. The bifurcation 

diagrams show that this should be expected in forest with low density of supe~predators. The 

biological interpretation of this result is the following. The presence of a great number of 

insectivores can keep the pest under control even when a quite low rain pH favours the 

srowth of insect pest. But above a threshold value, because of the limited harvesting capacity 

of the superpredator, each extra unit of pest is fully uncontrolled and can therefore give rise to 

a demogl-aphic explosion (catastrophe). On the contrary, if birds are not too many, and acidity 

increases slowly, than the pest can gradually take advantage of the increasing damages in the 

foliage and smoothly increase its density. 

5. CONCLUDING REMARKS 

In this paper the impact of acid deposition on forest ecosystems has been investigated by 

means of a mathematical model (eq. (1)) in which the vegetation growth is described by the 



exchanges of carbon and nitrogen with soil. The analysis of the bifurcations of the equilibria 

of this model has allowed the classification of the nature of the impact: a smooth decline or a 

dramatic collapse from a healthy to an infested forest may arise, when acid deposition 

increases too much. The bifurcation diagrams (see figs. 1 and 3) show that a possible way to 

temporarily avoid damages on the forest is to compensate the increase of acidity by stocking 

supe~predators. However, in doing so, there are higher chances that the forest will soon or late 

suffer a catastrophic collapse. The bifurcation diagrams also show that drops in the birds 

population controlling the pest can also induce catastrophic transitions from healthy to 

infested forest and that this is more likely to occur if the rain pH is low. 

The results of the analysis presented in this paper are in agreement with those obtained by 

Muratori and Rinaldi (1989) with a simpler model (logistic equation for the vegetation 

growth). Their analysis shows an extra mode of behavior, namely the case in which the forest 

is periodically infested by pests. This case is missing in the present analysis because it has 

been intentionally left out by limiting the range of variation of the maximum uptake rate of 

the insect pest. Indeed, it can be easily checked, for example, by simulation, that, increasing 

such a parameter, also the model proposed in this paper gives rise to stable limit cycles, 

which so~nehow mimic the behavior of pe~iodically infested forests. Actually, a prelimina~y 

analysis has shown that there is evidence of pesiod doubling bifurcations of these limit cycles 

which might indicate the psesence of dete~ministic chaos in suitable niches of the parameter 

space. This suggests that the behavior of model ( l ) ,  because of the detailed description for the 

vegetation growth, is significantly reacher than the second-order model used in Murato~i  and 

Rinaldi (1989); and possibly of the same complexity of food chain models which have 

recently been proved to be chaotic (Hastings and Powell, 1991; Rai and Sreenivasan, 1993; 

Abrams and Roth,1994a, b; Klebanoff and Hastings, 1994; McCann and Yodzis, 1994a, b). 

Forgetting the problem of the impact of acid precipitation, model (1) seems therefore a good 

candidate for studying the randomness of the recurrent infestation episodes of some forests. 
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APPENDIX 

This Appendix is devoted to the proof of the uniqueness and stability of the vector 5. 
By annihilating the right-hand sides of ( la)-(le)  with P = 0 and COV # 0, and rearranging the 

equations one obtains 

- 
- ~ C O V  
Nov = - 

a - bCov 

- ,nCov 
COS = 

wc + .(; - I) 

- rmCov + fiiCos 
N o s  = 



- 
Solving eq. ( A l )  with respect to Nls, all the other variables are univocally determined. On the 

other hand, the solution NIs of eq. (Al )  is unique since the left and the right-hand sides of the 
- 

equation are respectively increasing and decreasing with N a  

If C o v  is equal to 0, in the absence of predators (P = 0), i.e. if 

- - - - 
one obtains Cos = Nov = Nos = 0, and Nls = d/l. In other words, the two trivial equilibria, 

corresponding to absence of vegetation and to forest at its carrying capacity, collide for 

Eq. (A2), taking into account eqs. (2) and (3) and the dependence of g and d upon Z and W (see 

table 1) can be solved with respect to W, thus giving a threshold for W, below which vegetation 

cannot exist. On the contrary, for W above the threshold, the equilibrium (V,O)  exists, and is 

stable in the state space V characterizing the vegetation model. A formal proof of the stability of 
- 
V could be as follows. First evaluate the Jacobian matrix J of eqs. ( la)-( le)  with P = 0 at V 

U - Cov 
-1 - g 

h 

e q + C o v  (h + N,,)' I 

Then compute the five eigenvalues h,, ..., h, of such a matrix and check that they have negative 

real part. This procedure applied for the reference parameter setting gives 



and 

so that one can conclude that the equilibrium 7 is indeed asymptotically stable. One could 

acti~ally d o  more than this by proving the stability of such an equilibrium for any parameter 

setting but the proof is omitted since it requires the use of specialized software for algebraic 

manipulations. 011 the other hand. the stability of 7. once we have found that V is unique, is 

obvious from a biological point of view. 

Therefore, because of its uniqueness and stability in the state space V. the vector 7 can be 

identified with the carrying capacity of the forest. 



TABLE 1 

Dimensions, ranges of variability, and reference values of the parameters characterizing the 

vegetation submodel. Reference is made to a forest of Pinus Sylvestris. Z and d depend upon W 

by eqs. (2) and (3). 



Fig. 1 Bifurcation diagram of system (1) for the reference parameter values and a = 1.5. F 

and T indicate, respectively, fold and transcritical bifurcation curves. In the grey 

region [b] there are two stable equilibria, namely healthy and infested forest. 
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Fig. 2 Projections of state trajectories of system ( I )  in the state space (C,,,P) for the 

reference parameter values, a = 1.5, and S = 0.23: (a) W = 1.5; (b) W = 1.85; (c) W = 

2.5, corresponding, respectively, to systems in regions [a], [b], and [c] of fig. 1. 
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Fig. 3 Bifurcation diagram of system (1) for the reference parameter values and a = 3.9. 

Curves F, T, H, and M indicate, respectively, fold, transcritical, Hopf and homoclinic 

bifurcations. In the grey region there are two stable equilibria. 



Fig. 4 Simulation of vegetation density (indicated by C,,) for a = 3.9, S = 1.4, and all other 

parameters at their reference values. The plot is obtained starting with a forest at its 

2 can-ying capacity and with a small density of predators (P = 1.65.10- ) and increasing 

linearly (5% in 100 years) the flux of protons W from its catastrophic value (readable 

in fiz. 3). 
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Fig. 5 Hysteresis of vegetation density (indicated by C,,) for a = 1.5, S = 0.23, and for the 

reference parameter values. The dashed lines indicate catastrophic transitions; the 

upper solid line refers to healthy forest, while the lower to infested forest. 


