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Abstract 

In this paper we explore a learning algorithm for 2x2 games. We 
assume that  the players neither know the payoff matrix of their oppo- 
nent nor their own and can only observe their own actions and their 
own payoffs. We prove that the learning process, which is modelled 
by a generalized urn scheme, converges to  a pure strategy profile if 
the game has a t  least one strict Nash equilibrium. In case there is no 
strict Nash equilibrium, the learning algorithm exhibits oscillations. 
We derive sufficient conditions that  cycling occurs in a generalized urn 
scheme. Journal of Economic Literature Classification Number: C73 

*I  wish to thank Yuri Kaniovski and Karl Sigmund for stimulating suggestions and 
helpful comments. 



1 Introduction 

The idea of Nash equilibrium is probably the most important concept in 

game theory. There are essentially two interpretations of Nash equilibrium. 

One belongs to the static approach of traditional game theory, whereas the 

other is a dynamic interpretation based on an evolutionary viewpoint. 

Traditional game theory assumes that the players are rational and therefore 

can determine Nash equilibria or some refinement thereof by deduction. Ho- 

wever, this view has been strongly challenged on the ground that the players 

would have to know all the possible actions and the preferences of the other 

players to be able to evaluate a Nash equilibrium. This is a very strong 

assumption, since information about the preferences may not be public and 

the evaluation of the Nash equilibrium may cost much effort. Furthermore 

if the game has multiple Nash equilibria it is often necessary to assume a 

preplay bargaining process to guarantee that the players agree on the same 

Nash equilibrium. 

In the dynamic interpretation a Nash equilibrium is understood as the result 

of a learning or evolutionary process. The game is played repeatedly, and 

after each round the players update their strategies. Thus the Nash equili- 

brium need not be evaluated by supernaturally intelligent agents but can be 

found iteratively by following more or less simple rules. 

One class of learning processes is based on the idea of fictitious play. One 

assumes that the players can observe the actions of the others and can com- 

pute a best response, provided they know the strategies of the other players. 

Thus, based on prior beliefs and the history of the play, the players can make 

hypotheses about the strategies of their opponents and then play a best reply 



to the expected behavior of their opponents. After each round the players 

update their beliefs. These so called Bayesian learning processes have been 

studied recently in several game theoretic contexts by e.g. Eichberger et al. 

(1991), Jordan (1991) and Milgrom and Roberts (1991). The main topic of 

these papers is to study convergence of Bayesian learning to Nash equilibria. 

A more naive approach will be explored in this paper. We assume that 

players can only observe their own actions and their own payoffs. Thus, they 

are not able to evaluate a best response, but can only naively learn by trial 

and error. 

Kraines and Kraines (1993) studied what they call Pavlovian learning algo- 

rithm for the Prisoners Dilemma. They assume that the players consider 

payoffs below a certain limit as non satisfactory. Their learning algorithm 

works as follows: The players start with a mixed strategy (that is a proba- 

bility distribution on the actions) and choose an action at random. If the 

payoff is satisfactory they increase the probability of repeating this action, 

otherwise they decrease it. Kraines and Kraines show that in the case of 

the Prisoners Dilemma both players will end up cooperating, hence by not 

playing Vash equilibrium for the one round game. 

In contrary to the Pavlovian approach, which formalizes negative and positive 

conditioning, we consider a self-reinforcing learning model, which turns out 

to be a stochastic version of the replicator dynamics for the game. Again 

the player starts with some mixed strategy. He or she chooses an action 

at random and increases the probability of playing that action (and as a 

consequence decreases the probability of playing one of the other actions). 

The amount of the increment depends on the payoff he receives. Additionally 

one assumes that the longer the game evolves, the smaller the changes of 

probabilities at each round become. This seems reasonable, since individuals 



are usually less ready to change their behaviour if they already have lots of 

experience. 

Since both players are learning simultaneously a basic result is that  the lear- 

ning algorithm need not converge, but a cycling of strategy profiles may 

occur. 

Cycling in learning models is often assumed to be an unrealistic feature, since 

players should be able to detect cycles that emerge (see e.g. Mailath, 1992). 

Xevertheless, cyclic behavioral patterns have been observed in many human 

conflicts (see e.g. the pig cycle in Rosenmiiller (1972)). Thus, the bounded 

rationality assumption may not be as implausible as it seems. In any case, 

realistic or not, cycling is an interesting property of learning mechanisms. 

In this paper we will study the oscillating dynamics of a learning algorithm 

in the context of a two person normal form game. To model the learning 

algorithm we use a generalized Polya urn scheme, which will be described 

in the next section. In section 3 we describe the game and the learning 

algorithm. In sections 4 and 5 we give results on convergence and cycling 

for urn processes which we use in section 6 to classify the learning dynamics. 

The proofs are left for the appendix. 

2 Urn Models and a First Learning Algo- 

rithm 

To give an insight into the development of urn models, we first describe the 

urn model formulated by Polya and Eggenberger (1923). Consider an urn of 

infinite capacity that contains one black and one white ball. Now balls are 



iteratively added to  the urn according to  the following rule: Draw a ball from 

the  urn a t  random, replace it and add one additional ball of the same color 

to  the urn. Will the frequency of black (resp. white) balls oscillate randomly 

between [O, 1) or will it converge to  a limiting frequency X? Polya (1931) 

 roved that  the frequencies converge indeed, and that  the limit frequencies 

are uniformly distributed on [0,1). 

This model has been extensively generalized. In the Polya urn model the 

probability that  a black (resp. white) ball is added to  the urn is equal to  

the current frequency of black (resp. white) balls. Hill e t  al. (1980) 

introduced a model where the probability to  add a black ball is given by an 

arbitrary function of the frequencies, called the urn function. Brian Arthur, 

Yuri Ermoliev and Yuri Kaniovski (1984; 1987; 1988;) generalized this model 

further by considering urns with more than two types of balls, and urns where 

more than one ball a t  a time may be added. Finally, Dosi and Kaniovski 

(1994) considered models with several urns, where the urn function depends 

on the frequencies of the balls in all urns. 

Before we study the learning algorithm for the normal form game, we in- 

troduce a learning algorithm for a decision problem that can be realized by 

a generalized urn scheme. It is a simplified version of a learning algorithm 

studied in Arthur (1993), where it was also mentioned that  it can be applied 

to  normal form games. 

Consider an agent that  can choose between two actions I and 11. Action I 

leads in 10% of the cases to  a payoff of 100 units and in 90% to a payoff of 

only 10 units. Action I1 leads in 90% to a payoff of 50 Units and in 10% 

to  a payoff of 10 units. Obviously in the long run action I1 is the optimal 

choice. but since the agent has no prior information about the probability 

distribution of the payoff he has to  learn. 



The learning algorithm now works as follows: The  agent has an urn with 

infinite capacity containing an arbitrary but positive number of balls of type 

I and 11. To determine the next action he draws a ball from the urn at 

random and replaces it. Then he triggers the according action and observes 

his payoff. Now he adds as many balls of the type he has drawn to the urn 

as he received units of payoff. 

Thus the frequency of balls of type I and I1 gives the probability that he 

chooses the first resp. second action. The initial urn composition can be 

interpreted as his prior belief. Brian Arthur (1993) asserts for a qualitatively 

equal model that the frequencies of balls converge a.s. such that in the limit 

the optimal strategy is chosen with probability one. 

This learning model has some very plausible properties. On the one hand it 

is self-reinforcing, so that if one has chosen a certain action, the probability 

that the same action will be chosen next time increases. This is realistic, since 

changing the behaviour usually is attended with expenditure and effort. 

Another important property is that the learning process becomes more and 

more stable as time evolves. In the beginning the frequencies of balls will 

fluctuate strongly due to stochastic events. But later the stochastic fluctuati- 

ons have only little impact on the frequencies of balls since the total number 

of balls is growing very fast. 

Brian Arthur compared this algorithm to the learning behaviour of humans 

and found that humans are much faster in exploiting the gained knowledge 

than this algorithm, so that they may get locked in a non optimal action. If 

they e.g. got by chance the first ten times a payoff of 100 units per round 

with action I but only 10 units with action 11, they would stick with action 

I and no longer test action 11. The learning algorithm in the contrary keeps 



exploring alternative strategies and thus converges to the optimal action. 

Thus. the urn scheme is a sort of "zero hypothesis'' for a learning algorithm, 

the most simple learning rule one can think of, which has to be modified to  

fit to actually observed learning mechanisms, since it is learning much slower. 

One can imagine a realization of this learning rule in an organism if one 

thinks of cells containing two substances SI and SII instead of urns and 

balls. The probabilities of choosing the actions I and II are given by the 

concentrations SI/(SI + SII) and S I I / ( S I  + SII), respectively. The cells 

could be neurones whose firing rates are proportional to the concentration 

of some substance and the choice of action could be determined by which 

neurone fires first (cf. Maynard Smith (1982)). 

3 The Learning Algorithm for the 2x2 Nor- 

mal Forni Game 

\Ve consider two agents ( A  and B) playing a repeated normal form game. 

Each agent has two possible actions, I and I1 at his disposal. The  payoffs 

they receive after every round depend on the payoff matrices A = (ajk) for 

player -4 and 23 = ( b j k )  for player B, where j, k = 1,2. Thus, if player A 

chooses action j and his opponent action k he gets ajk units and the other 

player b k j  units of payoff. We assume that ajk and bjk are positive, where 

j, k = 1.2. 

Again the strategy of each player is a probability distribution on the two 

actions. which can be represented by the frequencies of balls in an urn. 

Assume that every player has an urn with balls of type I and 11. Before every 



round of the game he draws one ball at  random. He triggers this action and 

observes his payoff. Now he adds to the urn as many balls of the type drawn 

as he has received units of payoff. Since we did not require that the payoffs 

are integers, the numbers of balls need not be whole numbers. 

Finall!-. without changing the relative frequencies of balls, he renormalizes 

the number of balls in the urn, such that at  round n there are n balls in the 

urn. Thus the total number of balls in each urn is increasing linearly. The  

last step of the algorithm is for technical reasons only. Since it guarantees 

that at  every time instant n the total number of balls in both urns is equal, 

it simplifies the analysis essentially. 

This algorithm is a special case of the learning algorithm introduced by 

Brian .Arthur (1993). In his model the total number of balls (which he calls 

strength) is renormalized to C - nu,  where C and v are positive numbers. 

Hence. \re consider the case C = v = 1. 

A similar learning algorithm was studied by A.  Ianni (1993), but since she 

puts the emphasis on convergence results, she does not need the normaliza- 

tion of the number of balls in the urn. 

To study the dynamics of the strategies (that is the frequencies of balls) we 

introduce some notation. First we note that the frequency of balls in each 

urn is well defined by the relative frequency of balls of type I (resp. 11). 

Thus. i t  suffices to analyze the dynamics of the relative frequency of the type 

I balls. 

Denote by St (resp. Sf) the total number of type I balls in the urn of player 

A (resp. B) at time n. Since we assumed that at time n there are n balls in 



B each urn. the relative frequencies of type I balls (denoted as xt resp. x,) are 

s:, 
2: := - , i = A,  B. 

n  

and ( x - ~ :  xB) lies in the square Q := [O, 11.1 x [0, I.]. 

Now let 0: denote the random variable describing the number of type I balls 

that are added to the urn of player A at  time n. Thus we have 

Payo$ of Player A if player A chose action I; 
0; := 

if he chose action 11. 

The  distribution of 0: is given by 

By analogy we define a: to  be the increment of type I balls in the urn of 

player B. 

Let P t  (resp. P f )  denote the random variable describing the payoff of player 

A (resp. B)  in round n. 

Thus for the dynamics of the total numbers of type I balls we get 

. n + l  
Sk+l = (S; + 0;) . - i = A,  B. 

n + P i 7  

where the factor on the right comes from the normalization. 



Hence for the relative frequencies we obtain 

1 
= XI + -(a: - x: P:) + c i (xn) ,  n 

where i = A, B and xn := ( x f ,  x f ) .  

ab Since -" = - - 
n+b n2 +nb and since PA as well as (a; - x i  Pj) are bounded on 

Q we get ti(.) = O ( 3 ) .  

Let Fn denote the a-algebra generated by { z f ,  x?, a;', . . . , x f ) .  We set 

so that n f l ( x n ) ,  i = A, B is the expected increment of x i  up to the €-term, 

given the history of the game till time n. 

We rewrite the difference equation (3) to 

where p i ( zn )  := a: - x i  Pi - f i ( x n )  and i = A, B. 

Equation (4)  consists of a deterministic L'driving" part, a stochastic pertur- 

bational part ( the p-term in (4)) and an error term of order O( l /n2 ) .  Since 

E(p i (xn )  I F n )  = 0, the expected motion of the process (xk) is given by the 

"driving" part of (4) up to an O( l /n2 ) .  Thus on the average the motion is 

directed by the term f '(x).  



4 Convergence Results 

Brian Arthur: Yuri Ermoliev and Yuri Kaniovski (1984; 1987; 1988;) stu- 

died very general urn processes. Using stochastic approximation results in 

Nevelson and Hasminskii (1973) they gave convergence results and a clas- 

sification of the fixed points of the system into attainable and unattainable 

points which lead in our context to  the following theorems. 

To get a simpler notation we set f := ( f A ,  f B ) ,  p := ( p A ,  p B )  and so on. 

Since the function f gives the expected motion of the process, it is intuitively 

clear that if the process converges with positive probability to a point 0 E Q 

then f ( 0 )  = 0. These points are called the fixed points of the process (x,) .  

However: the system need not converge at all: Even in the purely deter- 

ministic system xk+, := x i  + f l ( x , ) ,  depending on the function f ,  cycles 

may emerge. (See e.g. the deterministic discrete game dynamics of Hof- 

bauer (1994)) .  A sufficient condition for convergence is given by a Ljapunov 

function. 

Theorem 1 Let (x , )  be an urn processes as defined by (4) such that f is 

continuous. Let B = { x I f ( x )  = 0) be the set offixed points of the determini- 

stic system! and assume that B has only finitely many connected components. 

If there exists a C2-Ljapunov function zl : Q -+ R such that 

then limn,, d ( x n ,  B )  = 0 a.s., where d ( x ,  B )  denotes the distance of the 

point .r to the set B .  



Proof: The theorem is a consequence of Theorem 7.3 in Nevelson and Has- 

minskii (1973). 

Hence, if all connected components of B are singletons, then the process (x,) 

converges a.s. to a random vector 5 with 5 E B. 

However not all the fixed points of f are attained in the limit with positive 

probability. There are fixed points such that the expected motion f points 

towards them, and fixed points where f points away. Hence we say that 0 is 

a s ink  if the Jacobian D f (0) has only eigenvalues with strictly negative 

real part. 

a source  (resp. a s a d d l e ) ,  if  all (resp. at  least one) eigenvalues have 

strictly positive real part. 

Theorem 2 L e t  0 E Q be a s ink  of the  process (x,) defined b y  (4). T h e n  

P( lim x, = 0) > 0. 
n-oo 

Proof: This is a direct generalization of Theorem 2 in Arthur et  al. (1988). 

Theorem 3 Le t  0 E intQ be a source  o r  a saddle of  t h e  process (x,) defined 

b y  (4). T h e n  

P( lim x, = 0) = 0. 
n-co 

Proof: For the proof we apply Theorem 5 in Arthur et .  al. (1988). 



Unfortunately there is still no result on the attainability of sources and sadd- 

les on the boundary of Q. Since at the boundary the variance of the process 

is vanishing it is much harder to get a corresponding result. Nevertheless 

it is conjectured that the theorem also holds for sources and saddles on the 

boundary. 

Thus, to prove convergence of the learning algorithm we have to find appro- 

priate Ljapunov functions. In section 6 we will give a classification of the 

2x2 games and provide Ljapunov functions where they exist. 

5 Cycling 

If no strict Ljapunov function for the learning process exists, but instead 

an invariant of motion, the process exhibits cycling with positive probability. 

We derive sufficient conditions for cycling for a generalized urn scheme, which 

also covers the learning process (4). We give here the results for the learning 

process and leave the proof for the appendix. 

Assume that the stochastic difference equation (4) has exactly one interior 

fixed point 0 E intQ, i.e. f ( 0 )  = 0. Let H be an invariant of motion such 

that  

a. H E C2( in tQ)  and the second derivatives are bounded; 

b. (VH. f )  = 0, Qx E intQ; 



e. 0 is a global strict maximum of H and the only critical point. 

Interpreting the function H as a mountain over the square Q ,  the conditions 

(c)-(e) imply that it has a unique peak at 0 and level zero a t  the boundary 

of Q.  Hence for every c E Im H ( Q )  the set H-'(c) is a closed curve around 

the fixed point or the fixed point itself. 

First we show that the process converges a.s. to  these closed curves or to the 

fixed point. To this end we prove that the invariant of motion H applied to 

x, converges a.s. for n -+ co. 

Proposition 1 The limit limn,, H ( x n )  exists almost surely. 

Hence the process H(x,) converges to a random variable H, which can take 

values in Im H (Q).  Next we show that for every open interval I in Im H (Q)  

the probability that H is in I is positive. 

Proposition 2 For all c E Im H ( Q )  and  E > 0 u;e have 

Since the sets H- '  ( ]c  - 6, c + t[) are rings around the fixed point 9, we can 

deduce in particular that the process does not converge a.s. to the boundary 

of Q or the interior fixed point. 

To prove that the learning process spins around the fixed point with positive 

probability we make a change of coordinates by moving the fixed point to  

the center (0,O) and denote the new coordinates for simplicity again by x,. 



The angle between two points x,, xn+l is given by 

A B B 
xn xn+l - x,A+~ ~n Adn  := arctan ( A A B B 
5 n  X n + l  + X n  Xn+1 

Let 

The  process xn spins around the fixed point 0 if Idn\ t m for n t 00. 

T h e o r e m  4 The process a s .  either 

converges to the boundary of Q or the interior fixed point; 

there is an No, such that for all n > iVo the angles Adn  are well defined 

and c e  have 

-+ 00 and Ad, t 0 f o r n  t m. 

The second dynamics emerges with positive probability. 

For the proof we show that if the process does not converge to  the fixed 

point or the boundary (which is by Proposition 2 with positive probability 

the case) it "follows" a.s. a solution of the differential equation i = f (x) .  

Since H is an invariant of motion for this differential equation all its solutions 

in the interior of Q up to the fixed point 0 are periodic. Thus, the learning 

process follows the periodic solutions of the differential equation with positive 

probability and hence cycles around the fixed point. 



6 Classification of the Dynamics 

Since the dynamics of the stochastic process ( 4 )  depends on the deterministic 

part ,  we first evaluate the expected motion f .  

where 

Hofbauer and Sigmund (1988) discussed the dynamics of the differential equa- 

tion x = f  ( x )  with f  defined as in (6 ,7) ,  which is the replicator dynamics for 

asymmetric games. They gave a classification of the dynamics, which will 

also be appropriate for the dynamics of the stochastic difference equation 

( 4 ) .  \Ve give here only the results of the analysis supplemented with the 

according Ljapunov functions. 

To avoid degenerate cases we assume that both a1 - a 2  # 0 and P1 - pz # 0. 

Note that independent of the payoff matrices the four vertices of Q are zeros 

of f  and thus fixed points of the process. 

If al . a 2  < 0 then f  A ( x )  does not change its sign in Q. If additionally 

pl . ,B2 < 0 then the same holds for f B ( x )  and the sum of the coordinates 

with appropriately chosen signs gives a Ljapunov function: v ( x A 7 x B )  := 

f x A  + f xB .  If 31. ,B2 > 0 then f B ( x )  changes its sign at x A  = &. Hence 



choosing the proper signs 

is a Ljapunov function. By analogy we get a Ljapunov function if al - a2 > 0 

and pl - $2 < 0. 

In the above cases, thus if a1 - a2 < 0 or pl - P2 < 0, the game has only one 

Nash equilibrium. It is strict and coincides with the only sink of f .  Since 

there is no fixed point in intQ, by Theorem 1 the process converges a.s. to  a 

random vector 5 which can take values in the set of the fixed points on the 

vertices. Since at present there are no results on the attainability of saddles 

and sources on the boundary, we cannot prove that in the limit the players 

play the Nash equilibrium with probability one, although this seems to  be 

the case. However, since the strict Nash equilibrium is a sink, we can deduce 

from Theorem 2 that it is attained in the limit with positive probability. 

It remains to  consider the case when al . a;! > 0 and p l .  P2 > 0. In this case 

there is a unique interior fixed point in intQ, given by 

0 is a Nash equilibrium but not strict. We have to distinguish two cases: 

If al . S1 > 0 then 0 is a saddle and there are two strict Nash equilibria on 

the vertices (see Fig. 1). Again we can find a Ljapunov function 



Thus, by Theorem 1 the process converges a.s. to a random vector 2 which 

can take values in the set of the fixed points on the vertices and the interior 

fixed point. Since the interior fixed point is a saddle, by Theorem 3 it is 

attained in the limit with probability 0. Two of the fixed points on the 

boundary are sinks ( the two strict Nash equilibria) and the other sources. 

Hence, by Theorem 2 both strict Nash equilibria are attained in the limit with 

positive probability. Again we cannot prove that the process will converge 

to one of the sinks with probability one. 

Finally, if cyl - PI < 0 the interior fixed point is a center and there is no strict 

Nash equilibrium. For this case Hofbauer and Sigmund derived an invariant 

of motion 

Since the only critical point of H is the fixed point B and since H ( x )  = 0 

on the boundary of Q,  all solutions of the differential equation x = f(x) in 

the interior of Q generate periodic orbits around the fixed point (see Fig. 2). 

Furthermore the time average of the strategies i Jd x(t)  dt converges to the 

interior fixed point. 

The  invariant of motion (8) satisfies the conditions (a)-(e) in section 5. Hence 

we can apply Theorem 4 and deduce that with positive propability also the 

stochastic learning algorithm exhibits an oscillating behavior. However, since 

the step size of the learning process is of order l l n .  the period of the cycles 

is growing exponentially. Thus, one cannot expect that the time average 

xk will converge. 



Figures 1, 2. The phase portrait of x = f ( x )  in the two cases 

where there is an interior fixed point. The flow of the differential 

equation corresponds to the expected motion of the stochastic 

process. 

On the tacit understanding that we exclude the degenerate cases where crl . 
a2 = 0 or . = 0 we summarize the classification of the 2x2 games in the 

following theorems: 

Theorem 5 If there is at least one strict Nash equilibrium, then the learning 

algorithm a.s. converges to a pure strategy profile. With positive probability 

all strict Nash equilibria are attained in the limit . 

We conjecture that the process converges a.s. to the strict Nash equilibria. 

Our main result is: 

Theorem 6 If there is no strict Nash equilibrium, then the process exhibits 

cycling with positive probability. If the process does not cycle, it a.s. converges 

either to the interior fixed point or to the boundary of Q .  



Figures 3 and 4 show two runs of the cycling learning process. For this 

plot we used the payoff matrices A = (: :) and 23 = (: 1). Here 

the interior fixed point (the Nash equilibrium) is 0 = (i, i), from where we 

started the process. 

Figures 3,  4. Two runs of the learning process. For technical 

reasons the plots were calculated with the stochastic difference 

equation only until n = lo7 and then were continued with the 

solution of the corresponding differential equation. 



7 Appendix 

Consider a stochastic process xn E in tQ := [O, 11 x [O, 11, such that 

Let the following conditions hold 

i. f := ( f l ,  f 2 )  is Lipschitz-continuous; 

ii. E(p(x11 IF,) = 0 and p(x)  is bounded; 

iii. e,(x) is a random variable such that en(x) = O( l /n2 ) ;  

iv. The function f has exactly one interior zero 8; 

v. For every xl E intQ,  every open set U 2 Q and every N there is an 

No > N such that P(xNo E U) > 0. 

The  learning process (4) obviously satisfies conditions (i)-(iv). Condition (v )  

says that every open set in Q can be reached with positive probability. In 

Lemma 6 we show that the learning algorithm satisfies this condition. 

Let H be an iniariant of motion satisfying the conditions (a)-(e) in section 

5 .  

Proof of Proposition 1: An application of Taylor's theorem gives 



1 
5 H ( x n )  + - ( V H ( x n ) ,  ~ ( x n ) )  + I( 

n (i) ' 
For the estimation of k n ( x )  by a K E R+ which is independent of n  and x ,  

we used the fact that the second derivatives of W are bounded on in tQ,  and 

that E,(z)  is an O ( l / n 2 ) .  

Hence for the expectations we have 



Thus we obtain for all n 

E(H(xn+l)  - H(xn)  1 Fn) 5 Ii' (t) ' 
We now define the random variable 

G(x,) = H ( x n )  + Ii' C 
j>, (+I2 

and get 

= E (H (xn+l) - H(x,) 1 F,) - Ii' 
b 

Y 
/ 

We see that G ( x n )  is a nonnegative supermartingale. and by the Martingale 

Convergence Theorem (see e.g. Williams, 1991) converges pointwise with 

probability 1. Since G ( x n )  converges pointwise to H(x,) for n + oo, H ( x n )  

converges too. 



Proof of Proposition 2: Fix a c E Im H ( Q )  and an c > 0. Let v(x)  := 

( H ( x )  - c ) ~ .  Since v is a function of the invariant of motion H, it is itself 

an invariant of motion and satisfies the conditions of Proposition 1. Hence 

v(xn)  converges a.s. for n + oo and by (11) there is a IC such that 

We choose an  N such that 

Let Uc(c) := H-' (]c - c? c + c[). By condition (v) there is an No > N, such 

that P(x,v0 E UCI2(c)) > 0. 

Thus? setting E={x,vo E Cic12(c) } we get P(E) > 0. On E we have v(xNo) 5 
cZ - 
4 ' 

Since v(x1vo) is Flvo-measurable we have for all n > ,& on E 

Let F = {limn,, ~ ' (x , )  > c2 } n E be the event that x,v0 is in UCI2(c) and the 

process does not enter &(c) from a given time onward. Obviously F E. 



Assume F = E a.s.. Then by the Lemma of Fatou we get on E 

r2 < E (  n-+, 1 ( x )  I FN,,) 5 lim E(v(xn)  1 F ~ , , )  5 E- 
n+m 

1 
2 

which is a contradiction. 

Since P(E) > 0 we obtain P(E - F) > 0 and get P(lim,+, v(xn) < r2) > 0. 

As in Nevelson (1973) we prove that the sum of the stochastic perturbations 

converges. 

Lemma 1 The stochastic process Yn := z;=l p(xk) is an L2-martingale. 

Hence we can apply the Martingale Convergence Theorem (see e.g. Williams 

(1991)) for L2-martingales, and conclude that the pointwise limit limn-+, Yn(w) = 

Y,(w) exists a.s.. 

Proof: Since E(Yn+, - Yn I F,) = & E ( ~ ( X , + ~ )  I F,) = 0 we have that Yn 

is a martingale. 

Let Yo = 0. Since the martingale differences are orthogonal in L2,  we deduce 

Hence 



Proof of Theorem 4: Let R be the event that H(x,) and Y(x,) converge. 

By Proposition 1 and Lemma 1 we have P(R) = 1. Let (x,) := (x,)(w), w E 

R be a path which neither converges to the fixed point nor to the boundary. 

According to Proposition 2 this occurs with positive probability. 

We will prove that this path (2,) spins around the fixed point. We rewrite 

the difference equation (9) such that 

where limn,, H(x,) exists and C,"==, 6; < m. 

Let x( t ,  a ,  to) denote the solution of the differential equation (DE) 

x = f (x) ,  x(to) = a.  ( 12) 

Since H is an invariant of motion for the DE up to the fixed point 13 all 

solutions in intQ are periodic. In the following we will prove, that (x,) 

"follows" a solution of the DE (12). 

Let c := limn,, H(x,) and y := H-'(c). Since H is an invariant of motion 

for the DE (12), y is the orbit of a solution in intQ. Since lim,,, H(x,) = c 

we deduce that (x,) converges to the set y. 

First we show that the angles Ad, are well defined: 

From a certain time on (2,) is very close to y. Since in the new coordinates 

the global maximum of H is the origin and x, ft (0,O) we have (0,O) $ y. 

Hence there is an 6 > 0 s.t. 3No with IIxnll > 6 Vn > No. Since the step size 

of the process converges to zero, the denominator is bounded from below. In 

addition, the nominator is bounded from above by an O(l /n) .  



Hence we can choose an iVo such that for all n > No, (5) is well defined. 

The proof that the path (x,) follows a solution x(t, a ,  to) of (12) will be given 

in several steps. In Lemma 2 and 3 we prove that (x,) stays for some time 

close to a solution of the DE, if it started close enough. In Lemma 5 we prove 

that for an adapted time scale s,, with arbitrarily small steps, the solutions 

of the ODE (12) (with proper initial conditions) stay close to the path (x,) 

forever. 

To approximate the path (x,) by a solution of the ODE we introduce a time 

scale t,, s.t. 

In the first two lemmata we adapt a discrete version of Gronwalls Lemma, 

which has been proved by Benveniste et.al. (1990). 

Lemma 2 If v, 5 rl C:=, ~ ; v ; - l  +r2 for r = 0,1, ..., n with r l ,  r2, y; positive, 

then 

Proof: We may suppose that rl = 1. 



It is easily proved by induction that 

holds for all r 2 1. 

T 

Let P( r )  denote the property: vT 5 ( r2  + yl v0) e x p ( C  y;) 
i= 1 

P( l )  reduces to vl 5 yl vo + r2 which is clearly true. 

Suppose P( r )  is true, then 

Hence we  roved P ( r  + 1).  

For t > 0 we denote the largest natural number n such that xi=, < t by 



Lemma 3 Let A T  > 0 ,  and a0 E Q .  Then for N 5 n L M ( t N  + A T )  we 
have 

where L is the Lipschitz constant o f f  and U ( N ) - I l ~ ~ - a ~ l l  -t 0 forN -t oo. 

Proof: For simplicity let x ( t )  := x ( t , a o , t N ) .  Since L is the Lipschitz con- 

stant of f we have 1 1  f ( x )  - f (x l) l l  5 Lllx - xlll for all x,x'  E Q 

Then for tn  defined in (13)  we have 

where anll 5 L (i)2. 
We wish to compare xn and x ( t n )  for n = N , .  . . , :W(tN + A T ) .  

Since 

we have 



1 
n - ( n )  5 X N  - a011 + L C -Ilxk - x(tk)II + 

k=N 
k + 1  

where Crl (N) ,  U2(1V) t 0 for iV t m since the sum xiif, r; converges for 

n t co by our assumptions. 

Applying Lemma 2, we have for iV < n < M ( t N  + AT) 

and obviously U ( N )  - I ~ X , ~  - ao(l t 0 for iV t m. 



Lemma 4 Let AT > 0. For every suficiently small c > 0 

holds for all a E y, where B,(a) denotes an open €-ball around the point a 

and 

Figure 5 .  Illustration to Lemma 4. 

Proof: For AT 2 7 1 2 ,  where T is the period of the periodic orbit in y, there 

is nothing to prove. Thus assume AT < ~ / 2 .  

Let €0 > 0. We claim that for every a E y we can find an 6 ,  < €0 s.t. 

Indeed. assume that this is not the case: Then there is a sequence (t,) with 

-712 < t ,  5 712 such that  x(t,, a! 0 )  -+ a for n -+ oo and t ,  4 ( - A T ,  A T ) .  

Thus we can find a converging subsequence (t,,) such that t  := limn,, t,,. 

Obviously t  # z . T ,  Vz E 2. 



Since x ( t n k ,  a ,  0 )  + x ( t ,  a ,  0 )  we have x ( t ,  a ,  0 )  = a and get a contradiction 

to the uniqueness of the solution of the ODE. 

Since the balls B,,(a)  are open we can choose for every point a a maximal 

ta 5 t o  satisfying condition (14 ) .  

We still have to prove that we can choose the E independently of a.  To this 

end we show that the ta  are bounded from below by a positive number. 

Assume that this is not the case: Then there is a sequence (a,) such that 

limn,, tan = 0.  Since y is compact we can find a converging subsequence 

(a,,) such that limk,, a,, =: a. For this point a we choose an 5, > 0 such 

that 

For k large enough we have B,a /2 (ank)  c B,-,(a) and since there are no fixed 

points on y we deduce for large k 

and get 

Since the tank were chosen to be maximal we have tank 2 5,/2 for all large k. 

Hence the limit of the tank cannot be 0 and we obtain a contradiction. 



Lemma 5 Let €0 > 0. There is an N such that for all n > N there are 

s ,  E R such that 

( ( x ,  - x(s,)II < € 0 ,  Is,+l - s,( < €0 and s ,  + m for n + m. (15)  

Proof: 

In the following steps we choose a proper 6-neighbourhood of y which we 

denote by B 6 ( y ) :  

1. Choose AT0 such that €012 > ATO > 0. By Lemma 4 we can choose 

an E 5 E O  such that for all a E y we have B, (a )  n y c ?(a ,  ATo). 

Set AT := ATo  t 2. 

2. By Lemma 3 we can choose Nl > 0 and 6 < €12, s.t. for all n > Nl 

and a E Q with Ila - x,Il < 6 the following holds: 

For all k such that n < k 5 M ( t ,  + AT) we have: 

Hence if the stochastic process and the solution of the DE are closer 

than 6 at a time n > ATl, then for the time span AT their distance will 

not exceed €12. 

3. Choose N 2 max{No, i l r 1 ,  1 / ( 2 ~ 0 ) ) ,  such that x, E B 6 ( y )  for n 2 N. 

We will construct the times s j ,  j > N iteratively in blocks: First we choose 

an initial time sk, such that the distance of x ( s k o )  to x,,, is smaller than 6. 



The iteration step: For j = k; + 1,. . . , k;+l - 1 we use the original time scale. 

For these j the distance of the two processes is smaller than € 1 2 .  Then we 

choose a time ski+, such that the distance of x , , ~ + ~  to the solution of the 

differential equation x ( s k , + , )  is smaller then 6. 

Figure 6. At round k, the distance from xk, to x ( s k l )  is less than 

5. By Lemma 3 we deduce that until round k; + 1  the distance 

from x ,  to x ( s k ,  + C : = k , + l  i) is less than €12 .  Since we know that 

the process x ,  is in the 6-neighbourhood B6(7) ,  we can find a 

time sktt1 close to Ski+, := sk, + '&y+, f such that the distance 

from x ( s k , + , )  to xk,+, is less than 6. 

Since x.v € ~ 6 ( 7 )  we can choose an a0 E 7 such that (lao - xNll < 6. Set 

kO := 1\- and sk, := t N .  

Let x ( s )  := x ( s ,  ao, sko ) denote the solution of the differential equation ( 1 2 )  

starting at ao. 



Assume that we have constructed the sequence ( s j )  until j = k ; ,  such that 

l l x k l  - x ( s k l ) l l  < 6- 

We claim that there are s j ,  j = k; + 1, .  . . , k;+l such that we have 

and 

where k;+l := i M ( t k ,  + AT).  

Addi tionaly we have 

1. ski < S j  for j = k ; +  1 , . . . ?  k;+l and ~ k , + ~  - s k ,  > 1 ;  

2 .  Isj - sj-11 5 €0 for k; + 1 5 j 5 k;+ l .  

Proof of the claim: 

1 Let sj := sk, + C:=k,+l 7 for j = k; + 1 , .  . . , k;+l - 1. 



Since the chosen iV and 6 satisfy the conditions of Lemma 3, we have for 

j =  k i + l , . . . l k i + l  - 1  

and obtain 

€ 

Ilxi - x(sj)lI < - *  2 

Let jkt t1 := sk, + c:L~:+~ f .  By Lemma 3 we also have 

Since ~ k , + ~  E B s ( y )  we can choose a time sk,,, , such that 

and I s L . , + ,  - Sk,+,  I 5 ~ / 2 ,  where r is the period of y .  

We still have to prove that sk,,, - sk, > 1. 

To this end we deduce from 6 < €12 and the inequalities (18) , (19)  

Since we have chosen E according to Lemma 4 we obtain 



Since A T  = ATo + 2 we have for the discrete times s k i + ,  - s k i  > ATo + 1. (By 

switching to the discrete timescale we make at most an error of 1/N < 1.) 

Using the triangle inequality we get with (20) 

The step size Isj -sj-1 I is bounded by 1/N < c0/2 for j = k; + 1, .  . . , kitl - 1 
and for j = k;+l (according to (20)) by ATo + c0/2 5 co. Thus the claim is 

proven. 

Hence we can construct iteratively the sequence (s,) with the properties 

stated in the lemma. 

Using Lemma 5 we finally prove the theorem. 

Let i .  o denote the differential equation (12) expressed in polar coordinates, 

such that the fixed point is moved to the origin. 



Since the polar coordinates depend continuously on the cartesian coordinates, 

according to Lemma 5 we can find for every el > 0 an N and a solution x ( t )  

of the ODE (12) such that for all n > N we have 

where 

Since we know that the solution of the ODE spins around the fixed point we 

have lo(s,)l + oo for n + oo and hence I $ , (  + oo for n + oo. 

Finally, since the step size of the process is an O ( l / n )  the same holds for the 

angles and we get Ad, + 0 for n + oo. 

Lemma 6 Let x ,  be the learning process defined b y  (4) such that X I  E intQ. 

Then for every open set U & Q and every iVo there is an N > No such that 

Proof: \Ve examine the process (4) in its original shape (2): 

Hence depending on the chosen actions the increments of x ,  up to a factor 

of order O ( l / n )  are given by 



As long as x, E in tQ  all actions are chosen with positive probability. 

Let 5 be a point in U. We iteratively construct a path that converges to 5. 

Choose the actions according to the following rule: 

1. If xt 5 sA and x: 5 sB choose the actions (I l l )  until this inequality 

no longer holds. 

Kote that by construction the path x, does not come arbitrarily close 

to the bdQ. Hence the increments of x, are bounded from below by 

an O ( l / n )  and since CF=l = os after finitely many steps the above 

inequality no longer holds. 

2. If xt 5 5" and xf > sB choose action pair (1,II) until this inequality 

no longer holds, which is again the case in finite time. 

In the other cases we choose the action pairs by analogy. 

Since the increments are an O( l /n ) ,  the path x, will converge to the point 

5.  Hence there is a time N1 after which the path does not leave the open set 

U. Thus for N := max(No, N1) we have x,v E U. 

Since every step has positive probability, the path from xl to x~ has positive 

probability, too. 
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