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Abstract  

We study a two-players differential game in which one player wants the state of the system to reach an 
open target while the other player wants the state of the system to avoid this target. The aim of this 
paper is to show that, if the first players plays "Caratl16odory strategies" and the second player plays 
controls, then the game is not well-defined, i.e., either the "alternative" or the "causality" is not satisfied 
for that game. 

Nous Btudions un jeux differenbiel dans lequel un des joueurs cl~erche B faire en sorte que 1'Ctat du systhme 

atteigne une ciLle donnee tandis que l'autre joueur agit sur 1'Ctat du systkme A n  que celui-ci Cvite la 

cible. L'oLjet de ce travil est de montrer qlle, si Ursule joue des strategies Caratlleodory et Victor des 

contrGles, alors le jeu n'est en general pas bie~i dhfirli : soit. il ne verifie p* le principe "d'alternative", soit 

il ne satisfait p;ls le principe de "causolitC". 

Keywords : Diff ereilt ial Games, Pursuit and Evasioil Games, Viability 
Theory. 

A.M.S. classificatioil : 49524, 49552, 90525, 90526. 



I Introduction 

We study a N-dimensional dynamical system governed by two controls: 

x1 = f (x ,u ,v ) ,  where u E U ,  v E V 

We assume that Ursula plays u and that Victor plays v. Let R be an open 
target. We investigate the game where Ursula wants the state of the system 
x(.) to reach R while Victor wants the state of the system x(.) to avoid R 
forever. 

Note that this game is equivalent with the following: 
Let I( := lRN\R be a closed subset of lRN. In the new game, Ursula wants 
the state of the system to leave I(, while Victor wants the state of the system 
to remain in K. For technical reasons, we shall in fact study this last game. 

We study this problem in the framework of the Carathkodory strategies. 
This "continuous" case is interesting because it makes clear the difficulties of 
the problem. We shall prove bellow that, in some cases, there is no satisfying 
definition of the game for Carath6odory strategies: Either the game does not 
satisfy the alternative principle (a point x may belong neither to Ursula's 
victory domain, nor to Victor's victory domain), or the game does not sat- 
isfy the causality principle, i.e., Victor (for instance) needs the knowledge of 
Ursula's future strategy to win. 

We describe the kind of strategies we use: 

Definition 1.1 A strategy ii(., -) : lR+ x lRN --+ U  is a Carathe'odory strategy 
if ii(., .) is measurable, and G ( t ,  .) is continuous for almost every t > 0. 
W e  slzall denote by U the set of Carathebdory strategies. 

The class of counter-strategies Victor shall use is the set of time-measurable 
controls: 

N = {v(.) : [O, $00) -+ V, measurable application ) 

In the sequel, we shall keep the following notation: 



Recall that,  if C(., .) E U, a map x(.) is a solution of 

x'(t) E f (x(t),  C(t, x(t)),  V) for almost every t 2 0 
x(0) = xo 

if and only if there is a control v(.) E n/ such that x(.) is a solution of 

x'(t) = f (x(t) ,  C(t, x(t)),  v(t)) for almost every t 3 0 
x(0) = xo 

We summa.rize the assumptions on f :  Throughout this paper, we assume 
that the map f : lRN x U x V + lRN satisfies 

1) U and V are metric compact spaces, 
and V is a convex subset of lRd. 

2) f : B," x U x V -+ lRn is continuous. 
3) f ( . , u ,v )  isal-Lipschitzmapfor a n y u  a n d v .  

4) f is affine in v. 

Throughout this paper, we denote by B the closed unit ball of the state 
space lRN. 

Recall that,  under assumptions (2), differential inclusion ( I )  has always 
solutions (See for instance [4]). 

2 The victory domains 

Let us define the "natural" victory domains for such a game. We study only 
the case when Victor plays by retorting. The case when Ursula plays by 
retorting is more difficult and shall not be treated here. 

Victor's (retorting) victory doinain is the set of initial positions 
xo E K,  such that,  for any Ursula's strategy C(., .) E U, there is a solution 
x(-)  of (1) which remains in I( on [0, +a). 

The complement of Victor's retorting victory domain is called Ursula's 
(blind) victory domain. It is the set of initial positions xo of I(, for which 
Ursula can find a Carath6odory strategy G(., .) E U, such that any solution 



of (1) leaves Ii' is finite time. 

With the previous definition of the game, the "alternative" is obviously 
satisfied: A point xo of I( either belongs to Victor's victory domain, or to 
Ursula's victory domain. 

To give another formulation of Victor's victory domain, let us denote by 
Viabj(.,c(.,.),V)(Ii') (where Ti( . ,  .) E U )  the set of initial positions xo for which 
there exists a solution of (1) which remains in I( on [0, +m). Then Victor's 
victory domain is equal to: 

The main drawback of the definition of Victor's victory domain is that it 
does not satisfy a priori the principle of causality: Victor chooses his strategy 
by using, not only the knowledge of Ursula's past and present strategy, but 
also that of her future strategy. Indeed, from assumption, Ursula chooses her 
strategy a t  the beginning of the game, and cannot change it throughout the 
game. 

We shall not provide a rigorous definition of Victor's victory domain in 
the case when Victor plays in a causal way. The main idea is the following: 
If he plays in a causal way, Victor has to  ensure to  remain in his victory 
domain. So his causal victory domain is equal to  the largest set contained in 
I( in which Victor can ensure to  remain. 
It is proved in ([2]) that such the closure D of such a set satisfies the following 
tangential condition: 

where TD(x) denotes the contingent cone to D at  x (See [I]). Conversely, a 
closed set D satisfying this tangential condition .is also a set in which, what- 
ever Carathkodory strategy Ursula plays, Victor can ensure the state of the 
system to  remain (It is a consequence of the Measurable Viability Theorem 
([4]). A closed set satisfying this tangential condition is called a discriminat- 
ing domain. 



In ([I]),  it is proved that any closed subset I< of lRN contains a largest 
discriminating domain: This set - which is a closed discriminating domain - 
contains any closed discriminating domain contained in I(. It is called the 
discriminating kernel of I( for f and it is denoted by Discf  ( K ) .  

Thus it is not difficult to show that Victor's causal victory domain is 
equal to  the discriminating kernel of I( for f .  This result can be proved in a 
rigorous way, but we shall not do so because it is rather long, and not very 
interesting because of the following result: 

Propositioil 2.1 Tlzere are some dynamics f satisfying (2) and some closed 
set I( such that: 

Next section is devoted to an example of such a situation. 

Note that the inclusion 

always holds true thanks to the Measurable Viability Theorem ([4]). 
So Proposition 2.1 states that,  if Victor plays in a causal way, alternative 
property does not hold: There are some initial positions for which Ursula 
cannot surely win if she plays Carath6odory strategies, and where Victor 
cannot surely win if he plays in a causal way. 

This result is rather surprising because we shall prove in ([3]) that,  for 
some class U' of discontiiluous strategies, there is an equality in equation 

(3). This means in particular that there is no way to approximate by a 
Carathkodory feedback such discontinuous strategies. 



3 A counter-example 

We study here an example of Proposition 2.1. Our problem is in the plane. 
Set: Ir' := [-I, 11 x R, and 

where u and v belong to [-I, 11 and $(t) := e t / ( l  + et). Let us point out 
that f is Lipschitz, and linear in u and v. In particular, f satisfies (2). 

Note also that $ is an increasing map and that $(t) > $(-t) if t > 0. 
Moreover, limt,-, $(t) = 0, while limt,+, $(t) = 1. Thus $(t) E [O, I.] for 
any t. 

We shall denote by f, the projection of f onto the horizontal axis, while 
f, denoted the projection of f onto the vertical one. We shall also denote by 
Sf(.,c(.,.),v)(xo, yo) the set of solutions to: 

(xl(t),  yl(t)) E f (x(t) ,  y(t) , i i ( t ,z( t) ,  y(t)),  V) for almost every t 2 0 
x(0) = xo and y(0) = yo 

Proposition 3.1 For the map f and the closed set Ir' previously defined, 
one has: 

but 

We prove in a first step that Discf(Ii') is empty. In a second step, we 
prove that, for any Carathkodory strategy ii(., .), 

We conclude in a third step by showing the existence of a point (so, yo) (with 
yo < 0) from where, for any Carathkodory strategy ii(., .), one can reach any 
point of [- 1,1] x (0). 



3.1 First step : Discf ( I ( )  = 0 
Let T be the smallest positive real such that 

Recall that $ ( t )  - $( - t )  +t,+, 1, so such a T exists. 

Note that 

Discf (IC) # 0 Discf ( K )  n [ - I ,  11 x [T, $00) # 0.  

Indeed, if a point ( xo ,  yo)  belongs to Discf ( K )  then there is a solution of the 
differential inclusion for f (-, 1,  V )  (for u = 1 )  which remains in Discf ( I ( )  on 
[0, + m ) .  Since y( t )  = yo + t  (because f, - 1 for any ( x ,  y )  E IR2), 

Vt 2 T - yo, ( ~ ( t ) ,  y ( t ) )  E Discj(Ii') n [ - I ,  11 x [T, +m) 

and thus Discf (]{)  n [ - I ,  11 x [T, +oo) is not empty. 

So, to prove that Discj(IC) is empty, it is sufficient to show that Discf(IC)n 
[ - I ,  11 x [T, +m) is empty. 

For tha,t purpose, let y 2 T and x belong to [ - I ,  i). If we set u = -1, 
for any v( . )  E N:  

So, for ally initial point (so, yo)  with yo > T and xo E [ - I ,  i), for any 
control v ( . )  E N ,  any solution ( x ( . ) ,  y ( . ) )  of 

( ~ ' ( t ) ,  y l ( t ) )  = f ( ~ ( t ) ,  y ( t ) ,  -1, v ( t ) )  for almost every t  2 O 
( ~ ( 0 1 ,  ~ ( 0 ) )  = (xo, Y o )  

satisfies: y( t )  = yo + t  2 T and 



for almost every t > 0. Gronwa117s Lemma yields: 

1 ,  1 Yt 2 0, x(t) 5 (xo - - ) e  + - 
2 2 

and thus x(t) < -1 for t sufficiently large because xo < 112. 

In the same way, for xo E (i, 11 and yo 2 T ,  Ursula plays ii(-,.) = 1. 
Then for any solution (x(-) ,  y (.)) of ( I ) ,  there is a t > 0 with x(t)  > 1. 

So for any yo > T and any xo E [- 1,1] there is a constant strategy u such 
that any solution of (1) leaves I( in finite time. In particular, Discj(I() n 
[-I, 11 x [T, +m) = 0, and thus Discj(K) is empty. 

3.2 Second step 

We first prove the following Lemma: 

Leinina 3.1 Let 6(., .) be a Carathe'odory strategy. 
For any z E [-I, I.], for any t 2 0, there are xo E [-I, 11 and a solution 
( 4 9 ,  !/(.)I E S~(.,C(.,.),V)((X~, 0)) such that: 
1) (x(s) ,y(s))  E I( for every s E [O,t], 
2) x(t) = 2. 

Proof : Let iil(-, -) E U be any Carathkodory strategy. We first prove 
that the locally compact set [-I, 11 x lR;f (i.e., I( restricted to y > 0) is 
viable for the set-valued map - f (., ill (., -), V). For that purpose, we prove 
that the tangential condition 

is fulfilled for any x E [-I, 11 and y > 0. 

If, on one hand, y > 0 and x := 1, then, for any time s, 



SO - f ( 1 7 y 7 1 ( s , ( l , y ) ) 7 1 )  E T ( l 7 )  On the other hand, if g  > 0  and 
x  = -1, then 

-fZ(-l7 ( - I ?  ~ ) ) 7  -'I 
= -4(y)C1(s,  ( -1 ,  Y ) )  + 4 ( -d  + 2 ( 4 ( ~ )  - 4 ( - ~ ) )  
2 ( 4 )  - 4 -  > 0  

So -f(-l,y,iil(s,(-l,y)),-1) E T I C ( - l , ~ ) ,  and [-1,1] x E;f- is (locally) 
viable for - f  (., G I ( . ,  a ) ,  V ) .  

Let t  > 0  and z  E [ - I ,  11. We set i i l ( s ,  ( x ,  y ) )  := ii(t - s ,  ( x ,  y ) ) .  
Since [ - I ,  I ]  x lR: is (locally) viable for - f  ( a ,  iil (., .), V ) ,  there is a solu- 
tion ( x ( . ) ,  y  (.)) of the differential inclusion for - f  (., iil (., a ) ,  V ) ,  starting from 
( z ,  t ) ,  which remains in Ii' as long as y ( s )  2 0  (thanks to the Measurable Vi- 
ability Theorem (141)). Note that y ( s )  = t - s.  

The ma.p ( X I ( . ) ,  y l ( . ) )  defined by: x l ( s )  = x ( t  - s )  and yl ( s )  = s ,  
is a solution of the differential inclusion for f  (-, ii(., a ) ,  V ) ,  starting from 
( x l  ( O ) ,  0 )  E [- 1,1] x ( 0 )  , which remains in Ii' on [0, t ] ,  and which satis- 
fies moreover: x l  ( t )  = z .  So the Lemma is proved. 

Corollary 3.1 For any i i ( - ,  7 )  E U, 

Proof : For any t > 0 ,  let us denote by At the closed set: 

At := { x  E [ - I ,  : L ]  1 3 ( x ( . ) ,  I / ( . ) )  E S ~ ( . , C ( . , . ) , V ) ( ( X ,  0)) 
which remains in Ii' on [0, t ]  } 

Then At is nonempty from Lemma 3.1. Moreover, At is a compact subset of 
[ - I ,  11, and At! c At whenever t' 5 t .  So A, := nt20 At is not empty. 

It is easy to show that A, x ( 0 )  is the set of initial conditions ( x ,  0 )  for 
which there is a solution ( x ( . ) ,  y( . ) )  of the differential inclusion for f  (., G ( . ,  -), V ) ,  
which remains in Ii' on [0, +m). Thus 

is not empty. 



3.3 Third step 

Since [-I, 11 x (0) n Viabj(.,~(.,.),v)(I{) is not empty for any 6(., .) E U, it is 
sufficient to prove the following Lemma to  conclude: 

L e m m a  3.2 There is (xo, yo) E I(, with yo < 0, such that: For any 6(., .) E 
U, for any z E [-I, 11, a solution (x(.), y(.)) E Sj(.,ii(.,.),v)(xo, yo) exists, such 
that: 

1) vs 5 Ivol, (x(s),Y(s)) E I( 
2) x(ly0l) = 2. 

Thanks to  Lemma 3.2, we can achieve the proof of Proposition 3.1: 
P r o o f  of P ropos i t ion  3.1 : Let (so, yo) be as in Lemma 3.2. Let us show 
that: 

(XO,  YO) E n V ~ ~ ~ ~ ( . , G ( . , . ) , V ) ( I ( )  
ii(.,.)€U 

Indeed, from Corollary 3.1, for any fixed 6 ( - ,  .) E U, 

Let (z,O) belong to  this set. 

From Lemma 3.2, there is a solution (x(.), y(.)) of the differential inclusion 
for f (-, G ( . ,  .), V), starting from (xo, yo), which remains in K on [0, Iyol], and 
such that x(lyol) = z. Note that yl:lyol) = 0. Moreover, from the very defini- 
tion of z, there is another solution (xl(.), yl(.)) of the differential inclusion for 
f (., 6(. ,  .), V), starting from (z, 0), which remains in I( on [0, +m). Concate- 
nating the solutions (x(.),  y(.)) and (x,(.), yl (.)), we obtain a viable solution 
of the differential inclusion for f (., 6(., .), V) starting from (xO, yo). 

P r o o f  of L e m m a  3.2 : 

The proof is set in four steps: 
In the first set, we show that the lines (1) x lR, and {- 1) x lR, are (locally 

compact) viability domains for f (., 6(-, a ) ,  V). . 

In the second step, we show that, for any ( 5 , ~ )  of I(, with < 0, the 
reachable set for f (., 6(-, .), V) at time 1 ~ 1 ,  starting from ( 2 ,  y) is an interval 
contained in lR x (0). 



In the third step we prove the existence of (5, y) of Iil, for which the pre- 
vious reachable set contains [-I, 11 x (0). 

In the fourth step, we show that the same reachable set, but with the con- 
straint that the state of the system remains in I(, still contains [-I, 11 x (0). 

The first step : We make the proof for (1) x lR,, the other case been 
symmetrical. Let (1, y) E (1) x lR;. Recall that 

where d(-y) > d(y), and IG(t,(l,y))l I 1. Thus 0 E fx ( l ,y76( t ,  ( l ,y) ) ,V) .  

Since T 
( 1 1 x K  

(1, y) = (0) x lR, we have proved that: 

Thus (1) x l R i  is viable for f (., 6(., a ) ,  V). 

The second step : Since the set-valued map f (., 6(., .), V) is Caratllkodory, 
the reachable set at some time t is always connected. Since fy  - 1, the reach- 
able set for f (., 6(., .), V) at time 1ij1 from (5, ij) (with @ < 0) is contained in 
lR x (0) and is connected. Thus it is an interval of lR x (0). 

Third step : Let ( 0 , ~ )  be an initial point, with ij < 0. For v(.) 1, we 
denote by (x(-),  y(.)) a solution of the differential equation for f (-, 6(- ,  .), I ) ,  
starting from (0, ij). Recall that yl(t) = 1, and so y(t) = t + ij. Thus 

xl(t) = d(t  + y)ii(t, (x(t) , t  + y)) + d(-y - t )  .> -d(t + v) + d(-Y - t )  

and so: 

x ( I ~ ~ I )  2 ~ ' " [ - d ( t  + s )  + m(-y - t)ldt 

Since -d(y) + d(-y) +,,-, 1, there is some jj < 0 such that x(l yl) > 1. 
Since the game is symmetrical, setting v(.) -1, we obtain x(Iij1) 5 -1. 
Thus the reachable set of f (-, 6(., .), V) starting from (0, y)  at  time Jijl con- 
tains [-I, 11 x {0), because it is a connected set contained in lR x (0). 



Fourth step : Let ( 5 , ~ )  as in the previous step. For any z E [-1,1], 
there is a solution ( x ( . ) ,  y( . ))  starting from ( 5 ,  y ) ,  such that  ~ ( 1 ~ 1 )  = z. The 
problem is that ( x ( . ) ,  y  (.)) does not necessarily remain in I(. 

To obtain a solution which enjoys the same properties than ( x ( . ) ,  y ( . ) ) ,  

and which remains in I( ,  let us define: ( x l ( - ) ,  y l ( . ) )  by: x l ( t )  = x ( t )  if 
x ( t )  E [ - I ,  11, x1 ( t )  = 1  if x ( t )  > 1,  x1 ( t )  = -1 if x ( t )  5 -1, and yl ( t )  = y( t ) .  

It remains to  prove that ( x l ( - ) ,  y l ( . ) )  is a solution of the differential in- 
clusion for f (., G(. ,  .), V ) .  Let us point out first that ( x l  (.), yl (-))  is Lipschitz, 
and so, almost everywhere derivable. 

The map ( x l ( . ) ,  y l ( . ) )  is obviously a solution for any t  > 0  such that 
x l ( t )  E (-1,  I ) ,  because on some ( t  - h ,  t  + h )  (with h  > O ) ,  x ( . )  G x l ( . ) .  

Let t  be a point where x l ( t )  = 1  and where x',(t) exists. Since x l ( . )  
remains in [ - I ,  11, one has: x i ( t )  5 0. If x',(t) = 0 ,  then the first step of the 
proof yields that 

Otherwise, x i ( t )  < 0.  There is some h  < O such that x l ( s )  E ( - 1 , l )  
for s  E ( t ,  t  + h ) .  In particular, x l ( s )  = x ( s )  for s  E ( t ,  t  + h ) .  Since x ( - )  
is a solution of the differential inclusion for f  (., G(. ,  .), V )  , x', ( t  ) belongs to 
f  ( x l ( t ) ,  y l ( t ) ,  G(t,  ( x l ( t ) ,  y l ( t ) ) ) ,  V ) .  So the proof is complete. 
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