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ABSTRACT 

The bifurcations of a periodically forced predator-prey model (the chemostat model), 

with a prey feeding on a limiting nutrient, are numerically detected with a continuation 

technique. Eight bifurcation diagrams are produced (one for each parameter in the 

model) and shown to be topologically equivalent. These diagrams are also equivalent 

to those of the most commonly used predator-prey model (the Rosenzweig-McArthur 

model). Thus, all basic modes of behavior of the two main predator-prey models can 

be explained by means of a single bifurcation diagram. 



A UNIVERSAL BIFURCATION DIAGRAM 
FOR SEASONALLY PERTURBED 

PREDATOR-PRE Y MODELS 

Alessandra Gragnani 

1. INTRODUCTION 

During the last ten years, a number of studies have been performed on the 

interactions between seasons (or, more generally, environmental cycles) and 

internal biological rhythms of ecosystems. By and large, these studies show that 

these interactions can have spectacular consequences, such as multiplicity of 

attractors, catastrophes and deterministic chaos (for a recent review see Hastings 

et al., 1993). Even the simplest predator-prey model has been considered by 

many authors (Inoue and Kamifukumoto, 1984; Schaffer, 1988; Toro and Aracil, 

1988; Allen, 1989; Gary et al., 1993) who have found, mainly through 

simulations, that chaos can be obtained by increasing the strength of the seasons. 

A more systematic and complete analysis of the bifurcations of the periodically 

forced Rosenzweig-McArthur predator-prey model (Kuznetsov et al., 1992; 

Rinaldi et al., 1993) has shown that chaos can be obtained in the two classical 

ways, i.e., through torus destruction and through cascade of period doublings. 

Strange attractors of the first kind are obtained by introducing a low seasonality 

in a predator-prey community which, in the absence of seasons, behaves on a 

limit cycle, while the second type of attractors can be generated, with a higher 

seasonality, even when the system does not autonomously cycle. This means that 

chaos can be present in a predator - prey community provided that the exogenous 

and endogenous sources of periodicities are, as a whole, sufficiently strong. This 



conclusion was possible after recognizing that the bifurcations of the model were 

always the same, no matter which parameter was periodically forced. In other 

words, there exists a bifurcation diagram which qualitatively applies to all 

possible seasonality mechanisms. 

In this paper, we repeat this systematic analysis for a more complex 

predator-prey model, namely the chemostat model, in which the prey feeds on a 

limiting nutrient. Thus, the model is three-dimensional and the extension is not 

trivial. The bifurcations of such a model have already been found for two cases: 

(i) periodically varying inflow rate (Pavlou and Kevrekidis, 1992) and (ii) 

periodically varying nutrient concentration of the inflow (Kot et al., 1992). Here 

we complete the analysis by periodically perturbing the six other parameters: the 

efficiency and the two parameters identifying the functional response of both 

populations. Again, the comparison of the eight bifurcation diagrams shows that 

they are topologically equivalent. But what is even more interesting, is that they 

are also equivalent to those of the Rosenzweig-McArthur model. We have 

therefore found a kind of "universal" bifurcation diagram which can be used to 

interpret all modes of behavior of the two most commonly used predator-prey 

models when they are periodically forced in all possible ways. 

2. THE PERIODICALLY FORCED CHEMOSTAT 

The chemostat model we consider in this paper is the following: 



where n, x and y are nutrient, prey and predator concentrations; D is through- 

flow; ni is nutrient concentration of the inflow; ax and ay are maximum nutrient 

uptake of prey and maximum prey uptake of predator; b,, and bx are half- 

saturation constants, and ex and ey are efficiencies of prey and predator. The 

model can be used to describe microbial processes such as those going on in a 

chemostat or in a wastewater treatment plant where the prey, a bacterial 

population, feeds on a substrate and the predator, a protozoan population, feeds 

on bacteria. But chemostat experiments in the laboratory can also be carried out 

with algae (prey) and zooplankton (predator) in order to mimic the interactions 

going on in a lake or in a marine environment. In other words, model (1) can be 

considered a minimum model for plankton dynamics in eutrophic water bodies. 

Finally, in a more abstract sense, eq. (1) represents the dynamics of any predator- 

prey assembly with the prey feeding on a limiting resource flowing through the 

environment. The literature on this model and its extensions is quite rich. For 

recent reviews, the reader can refer to Pavlou and Kevrekidis, 1992, and Kot et 

al., 1992. 

In the constant parameter case, the chemostat can be studied by means of a 

reduced (second order) model, since all the trajectories approach exponentially 

(or lie in) a particular plane of the state space (n, x, y). In such a case the model 

has four different modes of behavior: 

1. washout of both populations; 

2. washout of predator only; 

3. steady coexistence of the two populations; 

4. cyclic coexistence of the two populations; 



The transitions from 1 to 2 and from 2 to 3 are transcritical bifurcations, while 

the transition from 3 to 4 is a supercritical Hopf bifurcation (Guckenheimer and 

Holmes, 1983; Afrajmovich et al., 1991). Thus, except for the first mode, which 

is obviously non interesting and typical of a chemostat with a very high through- 

flow, the model has the same modes of behavior (and bifurcations) as the well- 

known Rosenzweig-McArthur model (see Rinaldi et al., 1993). In the following, 

we will show that this is also true for the case of periodically varying parameters. 

Model(1) has eight parameters (D, n,, ax, ay,  b,,, bx, ex, ey,). If the 

environment is not constant in time, each one of these parameters must vary in 

order to keep track of the variations of the interactions between environment and 

populations. In particular, in the case of a periodically varying environment 

(seasons), any parameter p can be assumed to vary sinusoidally, i.e., 

p(t) = po(l + E sin 2721) (2) 

where po is the average value of p and E is the strength of the season (notice that 

E po is the magnitude of the perturbation). Obviously, 

because p cannot be negative. Also notice (see (2)) that the period of the season 

has been normalized to 1. 

In real ecosystems there are many independent mechanisms that transform 

the seasonality of the environment into a periodicity of many, if not all, 

population parameters. To be consistent, the lag existing between different 

sinusoids should also be taken into account, as done in Rinaldi and Muratori, 

1993. In fact, not all parameters vary in phase: for example, if x and y are algae 

and zooplankton of a lake in a resort area, the efficiency of algae ex peaks on the 

summer equinox when light intensity is at its maximum, while the nutrient 



concentration of the inflow ni might peak one month later when the touristic 

activities reach their maximum level. Nevertheless, in order to simplify the 

analysis, we only deal with "elementary" seasonality mechanisms, namely with 

phenomena that entail periodic variations of a single parameter in model (1). 

These mechanisms are the following: 

(i) Inflow variations (D) 

This is the case analyzed by Pavlou and Kevrekidis, 1992. It simulates, for 

example, the case of daily, variations of the inflow of a waste-water 

treatment process. 

(ii) Nutrient concentration of the inflow (ni) 

This is the case analyzed by Kot et al., 1992. As in the preceding case, it 

can be simulated in the laboratory with a chemostat in which a bacterial 

population (the prey) interacts with a protozoan population (the predator). 

(iii) Temperature variations (ax) 

If the nutrient uptake of the prey is influenced by temperature (as in 

plankton communities, see Doveri et al., 1993), the parameter a x  varies 

periodically with a period of 1 year. 

(iv) Resting time of predator (ay) 

If the resting time of the predator varies seasonally, as in populations 

characterized by a certain degree of diapause, then a ,  varies periodically 

(see Rinaldi et al., 1993). 

(v) Searching time of prey (bn). 

Seasonal variations of the structure of the nutrient and of the environment 

might entail some differences in the searching time of the prey and, hence, 

in the half-saturation constant bn. (This is possibly the less relevant among 

the eight elementary mechanisms.) 



(vi) Searching time of predator (bx) 

Seasonal variations of the habitat might protect the prey in some specific 

season, so that bx varies. For example, the presence of filamentous blue- 

green algae in a shallow lake during the summer protects other algae 

(prey) from zooplankton (predator). 

(vii) Light variations (ex) 

If the prey population is also limited by light intensity (as in the case of 

phytoplankton) the efficiency ex can vary during the year, in particular in 

temperate zone (see Doveri et al., 1993). 

(viii) Q~lality of the prey (e,,) 

If the quality of the prey varies during the year (as in phytoplankton 

communities), the energy available to the predator (zooplankton) varies 

consistently. Hence, the efficiency e, varies periodically. 

Of course, the values of the eight parameters depend upon the application (a 

chemostat, a wastewater treatment plant, a shallow lake, etc.). The interested 

reader can refer to Kot et al., 1992, for microbial systems, and to Doveri et al., 

1993, for shallow lakes. Since, in the present paper, we are not interested in a 

specific application, the values of the parameters have been fixed in such a way 

that the bifurcation diagrams discussed in the next section are easily readable. 

The reference setting is the following 

For these values of the parameters, model (1) oscillates on a limit cycle with 

period equal to 1.65. In the following, all these parameters will be perturbed 



sinusoidally as in (2), but always one at a time. For example, if the perturbed 

parameter is D, eq. (I) will be written with 

and bifurcation curves will be computed in the two-dimensional space (&,Do), 

keeping the seven remaining parameters at their reference values. The strength of 

the season will be varied from 0 to 0.5, while Do will be varied around its 

reference value. 

3. BIF URCA TION ANALYSIS 

The analysis of the bifurcations of model (1) with one periodically varying 

parameter, say p(t) = po(l + e sin 2m),  and all other parameters at their 

reference values, has been performed numerically by means of LOCBIF, a 

package implementing a powerful continuation method. The package produces 

local bifurcations of cycles of periodically forced dynamical systems (Khibnik et 

al., 1993) and displays them in two-dimensional spaces. The use of the package 

is described in detail in Rinaldi et al., 1993 and is therefore not repeated here. 

The results of the analysis are shown in Fig. 1, where the diagrams (i), (ii), 

..., (viii) refer to the eight cases described in the previous section. In these 

diagrams each bifurcation curve is identified with a symbol, namely h (for Hopf), 

t (for tangent) and f (for flip). When curve h(k) is crossed, an attracting 

(repelling) cycle of period k bifurcates into an attracting (repelling) quasi- 

periodic solution (torus) and a repelling (attracting) cycle of period k. On curve 

t(k) a saddle and a non-saddle cycle of period k collide and disappear. Finally, 

when curve hk) is crossed, a non-saddle (saddle) cycle of period k bifurcates into 

a saddle (non-saddle) cycle of period k and a non-saddle (saddle) cycle of period 



2k (period doubling). In Fig. 1, only the bifurcation curves involving attractors 

are shown, because this simplifies the biological interpretation of the diagrams. 

Nevertheless, other bifurcation curves (involving only saddles and repellors) are 

also present and must actually be computed in order to identify the whole 

bifurcation structure (see Kuznetsov et al., 1992, for more details). Moreover, the 

figure does not show bifurcations of periodic solutions with period greater than 

2, which, nevertheless, exist and are actually very complex, as shown in great 

detail by Pavlou and Kevrekidis, 1992, for case (i). The bifurcation curves h4) 

and h8) have also been obtained, but they are not shown in the figure because 

they almost coincide with h2). Nevertheless, they must be kept in mind because 

they clearly indicate one of the two routes to chaos (i.e., cascade of period 

doublings). 

It should be noticed that on the vertical axis of each bifurcation diagram 

there are two points, namely H and T2, which are, respectively, the points of 

(2)) departure of a Hopf bifurcation curve h(') and of two branches (t1(2) and t2 

of a tangent bifurcation curve. These two points can be easily detected by 

analyzing model (1) with constant parameters (E =O). Point H is the value of the 

parameter for which steady coexistence (mode 3 of Sect. 2) is substituted by 

cyclic coexistence (mode 4 of Sect. 2). Therefore, it corresponds to a Hopf 

bifurcation of model (1) with constant parameters. Point T2, on the contrary, is 

not a bifurcation point: it simply corresponds to the value of the parameter for 

which the period of the limit cycle of the unperturbed model is equal to 2. Since 

for the reference setting of the parameters the period of the limit cycle is 1.65, 

we can conclude that in all eight diagrams the reference value of the perturbed 

parameter is somewhere between point H and point T2. 



4. A UNIVERSAL BIFURCATION DIAGRAM 

If the bifurcation diagrams of Fig. 1 are compared, turning the first, third, 

fifth and sixth upside down, it can be immediatly recognized that the eight 

diagrams are topologically equivalent. This fact is very important: it means that 

all seasonality mechanisms give rise to the same phenomena. But what is even 

more surprising is that these diagrams are also topologically equivalent to those 

of the periodically forced Rosenzweig-McArthur model (compare Fig. 1 with 

Fig. 2 in Rinaldi et al., 1993). This is a very interesting discovery, because it 

allows the observation that all complex dynamic phenomena detected in the last 

decade by studying with different models the influence of seasons on predator- 

prey communities can be interpreted by means of a unique bifurcation diagram. 

This "universal" diagram, shown in Fig. 2, is, therefore, the same as that already 

discussed in Rinaldi et al., 1993. The parameter p, of this diagram is directly (in 

cases (ii), (iv), (vii), (viii)), or inversely (in cases (i), (iii), (v), (vi)) related to the 

average value of the periodically varying parameter. Reading the diagram is 

relatively easy if not too technical questions are asked about the codimension- 

two bifurcation points A, B, C and D (the reader interested in this kind of details 

should refer to Rinaldi et al., 1993). In the following paragraphs, the main 

consequences of the diagram are summarized. 

On the p,-axis there is point H corresponding to the Hopf bifurcation of the 

unperturbed system. Below that point, the attractor of the unperturbed system is 

an equilibrium, while above it the attractor is a limit cycle. Thus, for small values 

of E and below point H are period 1 periodic solutions, while for small values of 

E and above point H are quasi-periodic solutions. Consistently, a bifurcation 

curve h(') rooted at point H separates the two regions. When this curve is crossed 

from below, the forced stable cycle of period 1 smoothly bifurcates into a stable 

quasi-periodic solution. 



Point A is a codimension-two bifurcation point, called strong resonance 1:2, 

from which a flip curve r( ')  starts. Along r( ')  the normal form coefficient 

(computed as in Kuznetsov and Rinaldi, 1991) varies and becomes equal to 0 at 

point B, which is therefore a codimension-two bifurcation point. When curve r( ')  

is crossed from region 1 to region 4, the forced cycle of period 1 looses stability 

and smoothly bifurcates into a stable period 2 cycle. However, if r( ' )  is crossed 

from region 3 to region 4, the stable cycle of period 1 collides with a saddle 

cycle of period 2 and becomes a saddle cycle of period 1. 

The codimension-two bifurcation point B is the terminal point of one of the 

two branches of a tangent bifurcation curve. The two branches (t1(2) and t2(2)) 

originate at point T2 on the p,-axis, where the limit cycle of the unperturbed 

system has period 2. When t/2) and t j 2 )  are crossed from the left, close to point 

T2, a stable cycle of period 2 and a saddle cycle of period 2 appear. Points C and 

D are also codimension-two bifurcation points. When curve h(2) is crossed from 

below, a stable cycle of period 2 bifurcates into an unstable cycle of period 2 and 

in a stable quasi-periodic solution. Point D is the root of a bifurcation curve r(2) 

(and of a bifurcation curve h(4)). When curve P2) is crossed from region 4 to 

region 6, a stable periodic solution of period 2 smoothly bifurcates into a stable 

periodic solution of period 4. 

Finally, the analysis shows that flip bifurcation curves r(4), &'I... exist in the 

vicinity of curve r(2) (the difference between curves r(2) and P4) is intentionally 

magnified in Fig. 2). This cascade of period doublings results in strange 

attractors which can be found in some subregions of region 7. 

The quasi-periodic solutions also bifurcates, through a homoclinic structure 

on a bifurcation set resembling a curve, connecting point A with a point on 

branch t/2) close to point TZ. Thus, in this region there are strange attractors 

obtained through torus destruction. 



The universal bifurcation diagram proves that seasons can generate rather 

complex dynamics. First of all, they can support multiple attractors. For 

example, a stable cycle of period 2 coexists with a stable cycle of period 1 in 

(1) region 3, then with a quasi-periodic solution in region 4, just above curve h , 

and, finally, with a strange attractor obtained through torus destruction in a 

subregion of region 4. Moreover, very small variations of a parameter can entail 

a radical change of behavior of the system because some of the bifurcations are 

1) catastrophic. For example, crossing the flip curve fi from region 3 to region 4 

will give rise to a transition from a period 1 cycle to a period 2 cycle (frequency 

switching). Finally, there are two distinct routes to chaos. The first one (torus 

destruction) is characterized by low values of E but requires values of p,, for 

which the unperturbed system behaves on a limit cycle (in other words a 

predator-prey system that does not autonomously cycle in a constant 

environment cannot become chaotic through torus destruction). On the contrary, 

the second route to chaos (cascade of period doublings) is characterized by 

higher values of E and can sometimes be present in predator-prey systems which 

would not cycle in a constant environment. In summary predator-prey 

communities can be expected to be chaotic when the exogenous and endogenous 

sources of periodicities are, as a whole, sufficiently strong. 

5. CONCLUDING REMARKS 

The bifurcations of the periodically forced chemostat model already studied 

by Pavlou and Kevrekidis, 1992, and Kot et al., 1992, have been analyzed in this 

paper. Eight bifurcation diagrams have been produced (one for each parameter) 

and recognized to be topologically equivalent. This allows the casting of all 

modes of behavior of the chemostat in a single frame. Moreover, these 



bifurcation diagrams are also topologically equivalent to those of the seasonally 

perturbed predator-prey model of Rosenzweig-McArthur (see Rinaldi et al., 

1993). This means that the two models have the same modes of behavior (except 

for the extreme case of washout of both populations) not only in the constant 

case, as has been known for quite a long time, but also in the case of periodically 

varying parameters. In a sense, this should not be a surprise, in view of the 

general theory of periodically perturbed Hopf bifurcations (Kath, 198 1 ; 

Rosenblat and Cohen, 198 1 ; Gambaudo, 1985; Bajaj, 1986; Namachchivaya and 

Ariaratnam, 1987). Nevertheless, as already pointed out by Kuznetsov et al., 

1992, this general theory predicts only some of the bifurcation curves of our 

universal diagram. 

The equivalence of the two models (the chemostat and the Rosenzweig- 

McArthur model) has been only partially ascertained. In fact only the 

bifurcations of periodic solutions of period 1 and 2, namely those which are 

described in our universal diagram, have been compared. Pavlou and Kevrekidis, 

1992, have shown, however, that there are many other bifurcations in a 

chemostat with periodically forced inflow rate (case (i)) and that some of them 

are definitely very subtle. Of course, it would be interesting to know if also these 

bifurcations are universal, i.e., if they are present even in cases (ii), ..., (viii) and 

in the Rosenzweig-Mc Arthur model. 
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Figure 1 Bifurcation diagrams for model (I), (2). Each case (i), ...,( viii) refers to the 

corresponding seasonality mechanism identified in the text. Curve h(k), 

t(2)and t(k), k=l, 2 are Hopf, tangent and flip bifurcation curves 

respectively. Points A and B are codimension-two bifurcation points. All 

parameters are fixed at the reference value indicated in the text. 
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(1) h(2) h(4) fil) f(2) fi4) t(2) Figure 2 The universal bifurcation diagram. Curves h , 9 9 9 , , 

are bifurcation curves. Points A, B, C, D are codimension-two bifurcation 

points. 


