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FOREWORD 

We prove the existence of global set-valued solutions to the Cauchy problem for 
partial differential equations and inclusions, with either single-valued or set-valued 
initial conditions. 

The method is based on the equivalence between this problem and problem of 
finding viability tubes of the associated characteristic system of ordinary differential 
equations or differential inclusions. 
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Abstract 

We prove the existence of global set-valued solutions to the Cauchy problem for partial 
differential equations and inclusions, with either single-valued or set-valued initial conditions. 

The method is based on the equivalence between this problem and problem of finding 
viability tubes of the associated characteristic system of ordinary differential equations or 
differential inclusions. 

On de'montre l'existence de solutions multivoques globales du problime de Cauchy pour 
les systt?mes hyperboliques du premier ordre d'e'quations ou d'inclusions aux de'rive'es par- 
tielles, pour des conditions initiales univoques ou multivoques. 

La me'thode est base'e sur l'e'quivalence entre ce problime el celui de l'existence de tubes de 
viabilite' pour le systime caracte'ristique d'e'quations diffe'rentielles ordinaires ou d'inclusions 
diffe'rentielles. 
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1 Introduction 

It is well known from the method of characteristics that first-order systems 
of hyperbolic partial differential equations may and do possess set-valued so- 
lutions, the set-valued character of a given solution providing an explanation 
for shocks. 

One can use the differential calculus of set-valued maps for looking for 
global set-valued solutions to such hyperbolic systems of both partial differ- 
ential equations and inclusions. 

We shall prove the existence of a largest set-valued solutions with closed 
graph, which is unique (among closed graph single or set-valued solutions) 
whenever the characteristic system enjoys the uniqueness property. 

The method we use is based on the equivalence between solutions u(t , x) = 
(ul(t, x), . . . , u,(t, x)) to the system of partial differential equations 

n 

v j = 1, ..., m, 0 = auj(t7x) +C d"j(t,x) fj(t,x,u(t,x)) -gj(t,x,u(t,x)) 
dt i=l dx; 

and bilateral viable tubes1 P(.) under the characteristic system 
(1) 

The link between (single-valued or set-valued) solutions to (1) and tubes 
bilaterally viable under the characteristic system (2) is given by the relation 

'We recall that a solution t  - ( x ( t ) ,  y ( t ) )  E X x Y to ( 2 )  defined on [0 ,  +oo[is viable in 
the tube P  if 

v t  2 0 ,  ( ~ ( t ) ,  ~ ( t ) )  E P ( t )  

A tube P  is bilaterally viable under the system ( 2 )  if, for all t o  2 0  and ( x t D ,  y t , )  E 
P ( t o ) ,  there exists at least one solution ( x ( . ) ,  y ( . ) )  to the differential system ( 2 )  satisfy- 
ing ( x ,  y ) ( t o )  = ( x t , ,  yt ,)  which is viable in the tube P .  



Therefore, the existence of solution to the Cauchy problem for (1) satisfying 
the initial condition 

v x E X, u(0, x) = uo(x) 
is equivalent to the existence of a tube bilaterally viable under the charac- 
teristic system (2) satisfying the initial condition 

Our objectives are twofold: 

to prove the equivalence between Cauchy problems for hyperbolic sys- 
tems of partial differential equations and initial value problems for vi- 
able tubes of ordinary differential equations on one hand, 

to prove the existence of the largest tube bilaterally viable on the other 
hand and to characterize it. 

This equivalence allows also to transfer other properties of viable tubes 
to corresponding properties of solutions to partial differential systems. 

There are obvious advantages in doing so. First, dealing with graphs of 
solutions, we do not have to worry about the univocity issue: the viable tube 
provides the graph of a solution, single-valued or set-valued. We can tackle 
for instance the question of the existence of a largest solution as well as the 
existence of minimal solutions containing a given function. 

The other advantage is that we can treat in the same way not only systems 
of partid differential equations, but also partial differential inclusions, since 
the results about viable tubes are still valid for ordinary differential inclusions 

First-order systems of partial differential inclusions arise naturally in control 
theory (see [7,9,8]). 

For instance, we shall prove a stability theorem: the graphical upper limit2 
of a sequence of solutions U, is still a solution and that in the time indepen- 
dent case, the graphical upper limit of the solutions U(t, -) when t + ca is a 
solution to the stationary problem. 

We shall provide an explicit formula in the decomposable (set-valued) case 
from which we derive useful estimates. They are applied later on to prove 
the existence of single-valued Lipschitz contingent solution to the Cauchy 
problem for systems of partial differential inclusions 

on a small time interval by using fixed point arguments. 

'The graph of the graphical  u p p e r  l im i t  UI := ~ irn? , , , ~ ,  of a sequence of set-valued 
maps U,, : X -u Y is by definition the graph of the upper limit of the graphs of the maps 
un. 



2 Cauchy Problem for Viability Tubes 

The differential calculus for single-valued maps, including inverse function 
theorems, can be extended to set-valued maps. 

We recall that the contingent derivative DU(x, y )  of a set-valued map 
U : X -.., Y at ( x ,  y )  E Graph(U) is defined by 

where 
T K ( z )  := { v  E X I liminfd(z+ h v ; K ) / h  = 0) 

h+O+ 
denotes the contingent cone to a subset K at z E K .  

When U = u is single-valued, we set Du(x)  := Du(x,  u (x ) ) .  See [5, 
Chapters 4, 51 for more details on contingent cones and differential calculus 
of set-valued maps. 

We say that a set-valued map P : t E [0, +oo[-.., P ( t )  c X is a tube, and 
that a tube is closed if its graph is closed. 

We shall say that a set-valued map F is a Marchaud map if it is nontrivial, 
upper semicontinuous, has compact convex images and linear growth. 

In finite dimensional spaces, this amounts to saying that 

i )  the graph and the domain of F are closed 
i i )  the values of F are convex 
i i i)  the growth of F is linear 

We consider a Marchaud map F : [0, +oo[xX -.., X and the differential 
inclusion 

x'(t> E F( t , x ( t ) )  (4 )  

Definition 2.1 A tube P is viable under F (or enjoys the viability property) 
if and only if, for all to 2 0 and xo E P(to),  there exists at least one solution 
x(.) to the differential inclusion ( 4 )  starting at xo at time to which is viable 
in the tube P .  

It is said to be backward viable under F if for every to E [0, +oo[, xo E 
P(to),  there exists at least one solution x(.) to the differential inclusion ( 4 )  
on the interval [0, to] starting at P(O), viable in the tube P on [0, to] and such 
that x( to)  = xo. 

It is said to be bilaterally viable under F if it is both viable and backward 
viable, i.e., if and only if V to E [0, +oo[,V xo E P(to) ,  there exists at least 
one viable solution starting at P(0)  and passing through xo at time to (in the 
sense that x( to)  = xo). 

A tube P : [O,+oo[- X is called a viability tube of a set-valued map 
F :  [O,+oo[xX-.., X if 



a backward viability tube if 

and a bilateral viability tube if it is both a viability tube and a backward 
viability tube. 

W e  say that a tube P is invariant under F (or  enjoys the invariance prop- 
erty) if and only if for all to and xo E P(to),  all the solutions to  differential 
inclusion ( 4 )  starting at xo at t ime  to are viable in the tvbe P.  

It is called a n  invariance tube if 

For Marchaud maps, we recall some properties of the viability tubes (see 
Theorem 11.1.3 of VIABILITY THEORY, [2, Aubin]): If F : [0,  + w [ x X  -+ X 
is a Marchaud map, then  a tube is viable under F if and only if it is a viability 
tube. 

Let us consider a sequence of set-valued maps F, : X -+ Y .  The set- 
valued map Ffl := ~ i m ~ , , , ~ ,  from X to Y defined by 

is called the (graphical) upper limit of the set-valued maps F,. 
We derive the following characterization of bilateral viability: 

Proposition 2.2 Assume that F : [0,  + w [ x X  -+ X is a Marchaud map. 
T h e n  a closed tube P is backward viable vnder  F if and only if it is a backward 
viability tvbe. 

A s  a consequence, P is bilaterally viable vnder  F if and only it i s  a 
bilateral viability tvbe. 

Furthermore, if P, is a sequence of closed tubes bilaterally viable vnder  
F, then  so is i ts  graphical upper limit P. 

Consequently, any closed tvbe Q contained in a tvbe P bilaterally viable 
vnder  F and satisfying Q ( 0 )  = P ( 0 )  is actually contained in a minimal  
tube G c P bilaterally viable under F and satisfying G ( 0 )  = P(O), called a 
viability envelope of Q .  

Proof - Let P(- )  be a backward viability tube and xo belong to P(to).  
First, consider the tube p t 0 ( s )  := P(to - s )  defined by 

Pto(s)  := { P(t0 - s )  if s E [0,  to] 
K if s > to 

We observe that 



because one can check easily that 

if and only if 
(-A, u) E T ~ r a ~ h ( p ) ( ~ o  - '9 X) 

Second, we consider the set-valued map Gt0 defined by 

1-11 x -F(to - s, x) if s E 10, to] 

[-I, 01 x m ( { ~ }  u -F(o, x)) if s = to 

(0) x ~ ( ( 0 )  U -F(O, x)) if s > to 

It is a Marchaud map since F is assumed to be a Marchaud map. Then, we 
observe that P is a backward viability tube if and only if the graph of pt0 is 
a viability domain of Gt0 . 

Therefore, Theorem 3.3.5 of VIABILITY THEORY, [2, Aubin] implies that 
this is equivalent to say that the graph of pt0 is viable under G ~ , .  

This means that for every to E [0, +m[, xo E P(to), there exists a solution 
z(-) to the backward differential inclusion zl(t) E -F(to - t,  z(t)) starting at 
xo at time 0 and viable in the tube t --, P(to - t)  for all t E [O,to]. By 
setting x(t) := z(to - t)  when t E [O,to], we infer that x(.) is a solution to 
the differential inclusion x' E F(t ,x)  starting at x(0) = z(to) E P(0) and 
satisfying x(to) = xo. 

We show next that the upper graphical limit Pfl of a sequence of tubes 
Pn bilaterally viable under F is still bilaterally viable under F. 

Let x belong to P"(t). This means that t is the limit of a subsequence 
t , ~  and that x is the limit of a subsequence X,I E Pnl(tnt). Since the tubes 
Pn are bilaterally viable under F, there exist solutions ynl(.) to differential 
inclusion (4) starting at Pnl(0), satisfying ynl(tnl) = xnl and viable in P,I. 
Theorem 3.5.2 of VIABILITY THEORY, 12, Aubin] implies that these solutions 
remain in a compact subset of C(0, +m; X). Hence a subsequence (again 
denoted) ynl(-) converges uniformly on compact intervals to a solution y(.) 
to differential inclusion (4) starting at Pfl(0) and satisfying x(t) = x. Since 
ynl(t) belongs to Pn,(t) for all n', we deduce that y(t) does belong to Ptl(t) 
for all t 2 0. 

When the sequence Pn is decreasing, we know that its upper limit is equal 

to the intersection of the Pn : Pfl(t) = n Pn(t). 
n>O 

Therefore, by Zorn's Lemma for the inclusion order on the family of closed 
tubes bilaterally viable under F and satisfying Q(0) = P(O), we deduce that 



any closed tube Q starting at P(0)  is contained in a minimal closed tube 
bilaterally viable and starting at P(0). 

For Lipschitz maps, we recall a characterization of the invariant tubes. 
Theorem 11.6.2 of VIABILITY THEORY, [2, Aubin] states that whenever F : 
[O,+oo[xX + X is upper semicontinuous and Lipschitz with respect to x3, 
then a closed tube t -+ P ( t )  c X is invariant under F if and only if it is an 
invariance tube. 

Let us single out the following property : 

Proposition 2.3 Assume that P is a closed tube invariant under a set- 
valued map F.  Then, if for some s > 0, x, $ P(s ) ,  then for every solution 
x(.) to differential inclusion ( 4 )  satisfying x ( s )  = x, and for every t E [0, s] ,  

4 P ( t ) .  

Proof - If not, there would exist a solution x(.) and a time to E [0, s [ 
such that x( to)  E P(to)  and y(s) = x,. This solution is viable in the tube P 
since all the solutions starting from x(to) E P(to)  are viable, because the tube 
is assumed to be invariant. Therefore x(s )  belongs to P ( s ) ,  a contradiction. 

We now provide examples of tubes invariant under a set-valued map F. 
Let us denote by SF(s ,  K )  c C(s, +oo; X )  the subset of solutions to dif- 

ferential inclusion (4) starting from K at time s 2 0. 
The reachable tube RK(.) of F starting at K defined by 

is obviously closed whenever F is Marchaud (see VIABILITY THEORY, [2, 
Aubin]). 

Theorem 2.4 The reachable tube RK(-)  is invariant under F and "mini- 
mal" in the sense that there is no other tube P invariant under F starting 
at  K and strictly contained in RK(-) .  

It is also backward viable under F and is the largest closed bilateral via- 
bility tube starting at RK. 

If KI := Limsupn,,Kn denotes the upper limit of a sequence of closed 
subsets Kn c X ,  then the graphical upper limit of the reachable tubes starting 
at Kn is a bilateral tube starting at KI and thus 

3in the sense that for some positive constant A 

F ( t ,  z )  C F ( t ,  Y) + Allz - YIP 
(B is a unit ball) 



Equality holds true if the set-valued maps F(t,.) are A-Lipschitz for every 
t 2 0. 

Proof - The reachable tube RK (-) is obviously invariant and backward 
viable under F: Indeed, if xo E RK(tO), there exists by definition a solution 
x(-) to the differential inclusion (4) starting from K at time 0 and passing 
through xo at to. Furthermore, every solution y(-) to differential inclusion 
(4) starting at xo at time to, concatenated to x(.) restricted to the interval 
[0, to] being a solution to our differential inclusion starting at K ,  RK(-) is 
invariant. 

Let us consider a closed tube P c RK invariant under F starting at K.  
We claim that it is equal to the reachable tube. Otherwise, there would 
exist x, E RK(s) such that x, 4 P(s). Since the reachable tube is backward 
viable, there exists a solution x(-) to the differential inclusion (4) starting 
from x(0) E K such that x(s) = x,. But starting from x(O), the solution is 
viable in the tube P since it is invariant under F and satisfies P(0) = K. 
Therefore x(s) belongs to P(s), a contradiction. 

Let now P be any closed bilateral viability tube starting from K at time 0 
and let us check that it is contained in the reachable tube. For that purpose, 
take xo E P(to). By Proposition 2.2, we know that there exists at least one 
viable solution starting at P(0) = K and passing through xo at  time to. 
Hence xo E RK(to). 

By Proposition 2.2, we know that the graphical upper limit is a bilateral 
viability tube. Proposition 7.1.4 of SET-VALUED ANALYSIS, 15, Aubin & 
Frankowska] implies that 

we infer that it is a bilateral tube starting at KH, and thus, contained in RKr. 
Conversely, let us choose xt, E RKt(to). Then there exist a solution 

x(.) to (4) starting from some x(0) E KH and satisfying x(to) = xt, and a 
subsequence (again denoted by) xn E Kn converging to x(0). By the Filippov 



Theorem4, there exist solutions x,(-) to (4 )  starting at x, such that 

We .thus derive from Gronwall's Lemma that xn(to) E RK,(to) converges to 
x( to )  = xto. 

Proposition 2.5 Let c > 0 be the growth constant of F : [0, +m[xX -.., X: 

v t L 0,  E X, I I F ( ~ ,  X I I I  I ~ ( I I X I I  + 1)  

Then the tube Q K ( - )  defined by 

is invariant under F and satisfies QK(0 )  = K .  

Proof - Indeed, we know that every solution x(.)  to differential inclu- 
sion ( 4 )  satisfies 

v t 2 to, IIxl(t>ll 5 c(IIx(t0)ll + 1) ec(t-to) 

so that 

Therefore, every solution x ( - )  to differential inclusion ( 4 )  starting from 
the closed subset QK( to )  at time to satisfies 

Since QK (to) := K + I: 1 1  K 1 1  + l)(ecto - 1)  B, we infer from these two inclusions 
that x ( t )  remains in the tube Q K ( t )  for t > to. 

4Filippov's Theorem (see [3, Theorem 2.4.11 for instance), yields an estimate on any finite 
interval [0, TI: If for every t 2 0 F( t ,  .) is A-Lipschitz with nonempty closed values, and if 
an absolutely continuous function y(.) and an initial state zo are given, then there exists a 
solution z(.) to the differential inclusion (4) defined on [0, TI, starting a t  zo and satisfying 
the estimate 



3 Contingent Solutions 

Consider two finite dimensional vector-spaces X and Y and two set-valued 
maps F : [0, +oo[xX x Y -+ X ,  G : [0, +oo[xX x Y -+ Y. Let DU(t, x, y) 
denote the cont ingent  derivative of U at a point ( t ,  x, y) of the graph of U. 

Definition 3.1 W e  shall say  t ha t  a closed set-valued m a p  U : [0, +oo[xX -+ 

Y satisfying 

V Y  E U(t,x), 0 E DU(t,x,y)(l ,F(t ,x,y)) - G ( ~ , X , Y )  (6) 

is  a forward (contingent) set-valued solution t o  t h e  partial differential inc lu-  
s ion  (6). 

It is  said t o  be a backward (contingent) set-valued solution t o  ( 6 )  if  it 
satisfies 

and a (contingent) set-valued solution t o  ( 6 )  if it i s  both a forward and a 
backward solut ion.  

Naturally, whenever the contingent derivatives DU(t , x, y ) are even, then 
forward and a backward solutions do coincide. 

When U = u : [0, +oo [x X I-+ Y is a single-valued map with closed graph, 
the partial contingent differential inclusion (6) becomes 

Let the initial condition Uo : X -+ Y, a single- or set-valued map be 
given. 

Theorem 3.2 Let  u s  define t he  set-valued m a p  U, : ( t ,  x) E [0, +oo[xX -+ 

U,(t, x) E Y by the  method of characteristics: y E U,(t, x) i f  there exists a 
solut ion (x(-), y(.)) t o  t h e  s y s t e m  of differential inclusions (3) start ing in t h e  
graph of Uo and such  tha t  x(t) = x and y(t) = y. 

A s s u m e  tha t  F : [0, +oo[xX x Y -+ X and G : [0, +oo[xX x Y -+ Y 
are Marchaud maps .  T h e n ,  for a n y  ini t ial  condit ion Uo : X -+ Y, U, is  t h e  
largest set-valued solut ion t o  ( 6 )  satisfying the  ini t ial  condit ion 

It is  t he  unique  solut ion w i th  closed graph whenever  t he  characteristic 
s y s t e m  has  t he  uniqueness  property5. 

5This happens whenever F  and G enjoy a monotonicity property of the form: there 
exists a real constant c such that for every t  > 0, for every pair x i ,  yi, ui E F ( t , x j ,  yi) and 
vi E G ( t , x i , y i )  ( i  = 1, 2), we have 



Furthermore, we can associate with any selection V(t, x) C U,(t, x) satis- 
fying V(0,x) = Uo(x) a minimal solution P c U, to (6) satisfying the same 
initial condition and containing V. 

Proof of Theorem 3.2 - By Theorem 2.4, the reachable tube RK(*) : 
R+ -A X x Y starting at K := Graph(Uo) at time t = 0 for the system of 
differential inclusions (3) is the largest closed bilateral viability tube of the 
system of differential inclusion (3). The map Urn(., .) : R+ x X -A Y defined 
by the method of characteristics is equal to 

ucx(t7 X) := {Y E Y 1 ( ~ 7  Y) E R K ( ~ ) )  

Then U,(O, -) = Uo(.) and Graph(U,) = Graph(RK). Since RK(-) is a vi- 
ability tube, its graph is a viability domain of the set-valued map (1) x 
F(t ,  x, y) x G(t, x, y). This amounts to saying that 

Since TGra ~ h ( u a  )( t ,  x, y ) = Graph(DU, (t, x, y)), the above relation means 
that 

v Y E U(t7 4 7  0 E DUO47 x, Y)(l, F(t7 x, Y)) - G(t, x, Y) 

In the same way, to say that RK is a backward viability tube amounts to 
saying that 

Let us consider any closed selection V of the solution U, to the Cauchy 
problem for (6) with which we associate a closed tube Q defined by Q(t) := 
Graph(V(t, .)). Then there exists a minimal bilateral viability tube contain- 
ing the closed tube Q, with which we associate a minimal set-valued solution 
to (6) containing this selection V. 

Let us derive the corollaries in the case of hyperbolic systems of partial 
differential equations. 

Corollary 3.3 Assume that f : [0, + w [ x X  x Y H X, g : [O, + w [ x X  x Y I+ 

Y are continuous maps with linear growth. Then, for  any initial condition 
uo : X H Y, there exists a largest set-valued solution (t, x) -A U,(t, x) to 

satisfying the initial condition 

It  is the unique solution with closed graph whenever the characteristic system 
has the uniqueness property6. 

'This is the case when the functions f and g are Lipschitz with respect to ( x ,  y), or when 
they enjoy monotonicity properties. 

10 



Dealing with set-valued initial conditions is justified for instance to study 
the case when disturbances Uon(x) = uo(x) + B of the initial condition uo(x) 
are involved. This approximation procedure makes sense since we obtain the 
following stability result with respect to the initial conditions: 

Theorem 3.4 (Stability) A s s u m e  t h a t  F : [O,+w[xX x Y -+ X, G : 
[0, + w [ x X  x Y -+ Y are Marchaud  maps .  Cons ide r  a sequence of in i t ia l  
condi t ions  Uon : X -+ Y and deno t e  by  Un(t, .) t h e  largest set-valued so lu t i on  
t o  ( 6 )  sat is fy ing t h e  in i t ia l  condi t ion  

Le t  U! := L i m \ , , ~ ~ ~  deno t e  t h e  graphical upper  l i m i t  of t h e  in i t ia l  con-  
di t ions.  T h e n  t h e  graphical upper  l i m i t  Ub(t, .) := Limfl,,~,(t, .) of t h e  
so lu t ions  i s  a so lu t i on  t o  ( 6 )  sat is fy ing t h e  in i t ia l  condi t ion  

so  t h a t  Un(t, -) c Ua(t, .) for  e ve ry  t 2 0. 
I f  w e  a s s u m e  f u r the rmore  t ha t  t h e  set-valued m a p s  F(t,  ., -) and  G(t, a, .) 

are A-Lipschi tz ,  t h e n  Ub(t, -) = U,(t, .). 

The proof follows from the second statement of Theorem 2.4. 

We also derive the following asymptotic result: 

Theorem 3.5 Cons ide r  t w o  t i m e  independent  set-valued m a p s  F : X x Y -+ 

X and  G : X x Y -+ Y and  a forward set-valued so lu t i on  (t, x) -+ U(t, x) t o  

T h e n  t h e  graphical upper  l i m i t  Urn(.) := Limi,,~(t,.) is  a closed so lu t i on  
t o  t h e  s t a t i onary  problem 

Proof of Theorem 3.4 - It follows from the fact that the upper 
limit when t -+ w of the values P( t )  of a viability tube is a viability domain 
(see Theorem 11.3.1 of VIABILITY THEORY, [2, Aubin]), because, in terms 
of graphs, this means that the graph of the graphical upper limit of the 
set-valued maps U(t,-) is a viability domain of the system of differential 
inclusions (3) 

ii) Y1(t> E G(x(t), Y(t)) 

i.e., a solution Urn(.) to the stationary problem. 

We also deduce the following characterization of the solution U,: 



Theorem 3.6 Let us assume that the maps F(t ,  -, a )  : X x Y - X and 
G(t,.,.) : X x Y Y are A-Lipschitz maps with compact values. Then, f o r  
any initial condition Uo : X - Y, (t,x) - U,(t,x) is also the solution to 

satisfying the initial condition 

It is minimal in the sense that any closed set-valued map U contained in 
U,, satisfying (10) and the same initial condition is equal to U,. 

Proof - We know that the reachable tube RGraph(u (-) is an invari- 
0 )  ance tube thanks to Proposition 2.3, the smallest of the invariance tubes 

starting at  Graph(Uo). We have defined U, as the set-valued map the graph 
of which is equal to RGraph(uo) (.). By Invariance Theorem 11.6.2 of VIA- 
BILITY THEORY, [2, Aubin], this graph is an invariance tube. This means 
that 

Since TGraph(ua)(t, x, y) = Graph(DU,(t, x, y)), this is equivalent to say 
that U, satisfies property (10). 

Remark - When the maps F and G are both Marchaud and A- 
Lipschitz with respect to x, y, we deduce that U, satisfies 

4 Decomposable Case 

We shall consider first the decomposable case for which we have explicit 
formulas, that we next use to solve the general problem of finding a contingent 
solution to the problem 

If u :  X H Y, we set 



When G is Lipschitz with nonempty closed images, we denote by llGlla 
its Lipschitz constant, the smallest of the constants 1 satisfying 

where B is the unit ball. For time-dependent set-valued maps G(t, .) which 
are uniformly Lipschitz, we still set llGlla := G(t, .) to denote the 
common Lipschitz constant. 

Let @ : R+ x X I., X and : R+ x X I., Y be set-valued maps. 
Consider the decomposable system of hyperbolic partial differential inclu- 

sions 

and its associated characteristic system of differential inclusions 

We denote by SLo(x) the set of solutions x(.) to the differential inclusion 
xt(s) E -@(t - s, x(s)) on [0, t] starting at x. 

Define the set-valued map U, : R+ x X I., Y by7 

We set 
eat - 1 eat - a t  - 1 

ey(t) := - & e;(t) := 
a a 2  

Theorem 4.1 Assume that @ : R+ x X - X and Q : R+ x X I., Y are 
Marchaud maps and that Uo is closed with linear growth. Then the set-valued 
map U, : R+ x X I., Y defined by (14) is the solution defined by the method 
of characteristics, and is thus the largest solution to (12) satisfying the initial 
condition 

V x E X, Ua(O, X) = UO(X) 

'By definition of the integral of a set-valued map (see Chapter 8 of SET-VALUED ANAL- 
YSIS, [5, Aubin & Frankowska] for instance), this means that for every y € U,(t, x),  there 
exist a solution x( . )  E S'*(x, .) to the differential inclusion x'(s) E -@(t - s, x(s)) starting 
at x ,  ut E Uo(x(t)) and z(s) E q(s ,  x(t - s)) such that 



If there ezist positive constants a ,  6, Po, yo, P, 7 such that 

then 

Moreover, if Uo, @, Q are A-Lipschitz with respect to x, then the maps 
Ua(t, .) : X -+ Y are also Lipschitz (with nonempty values): 

We recall that Ua(t, -) being the solution defined by the method of char- 
acteristics, it is both a forward and backward solution to (12): Th' is means 
that it satisfies (12) and 

v (t, X, Y) E Graph(U), 0 E DU(t, x, y)(-1, -@(t, x)) + Q(t, x) (16) 

Formula (14) shows also under mere inspection that the graph of Ua(t, .) is 
convex (respectively Ua(t, a )  is a closed convex process) whenever the graphs 
of the set-valued maps Uo, @(t, -) and Q(t, .) are convex (respectively @(t, .) 
and Q(t, .) are closed convex processes). 

Proof 
1. - We prove first that the map Ua is the largest solution to inclu- 

sion (12), i.e., that the tube Graph(Ua(t, .)) is the reachable map RGraph(uo,(t). 

Indeed, a pair (x, y) belongs to RGraph(u (t) if and only if there exist 
0 )  

solutions (z(.), y(.)) to the characteristic system (13) starting from the graph 
of Uo and satisfying (z(t), y(t)) = (x, y). This solution can be written in the 
form I z(t) = wt + Ji @(s, Z (S) )~S  

where ut E Uo(wt). By setting x(s) := z(t-s), we observe that it is a solution 
x(.) E SLO(x) to the differential inclusion xf(s) E -@(t - s, x(s)) starting at 
x and such that wt = x(t) and that 

Hence this solution Ua coincides with the largest solution. 

2. - Estimate (15) is obvious since any solution x(.) E SL'(x) 
satisfies by Gronwall's Lemma the estimate 



Therefore, 

3. - Assume now that @(t, .) and Q(t, -) are Lipschitz, take any pair 
of elements xl and x2 and choose yl = ul + Jl zl (s)ds E Ua(t, xl ), where 

By the Filippov Theorem, there exists a solution x2(.) E S!@(x2, .) such that 

We denote by z2(s) the projection of zl(s) onto the closed convex subset 
Q(s, x2(t - s)), which is measurable thanks to Corollary 8.2.13 of SET- 
VALUED ANALYSIS, [5, Aubin & Frankowska] and which satisfies 

Let u2 denote the projection of ul onto the closed convex set Uo(x2(t)). Then 
y2 := u2 + Jot zz(s)ds belongs to Ua (x2) and satisfies 

We prove now a comparison result between solutions to two decomposable 
partial differential inclusions. 

When L c X and M c X are two closed subsets of a metric space, we 
denote by 

A(L, M)  := sup inf d(y, z) = sup d(y, M)  
yEL =EM Y EL 

their semi-Hausdorff distanceg, and recall that A(L, M) = 0 if and only if 
L c M. If @ and Q are two set-valued maps, we set 

A(@, Q), = sup A(@(x), Q(x)) := sup sup d(y, Q(x)) 
=EX =EX YE@(=) 

Theorem 4.2 Consider now two triples (Uoll, @I ,  91) and (UO,~, @2, \E2) of 
maps and their associated solutions 

8The Hausdorff distance between L and M is max(A(L, M),  A(M, L)), which may be 
equal to oo. 



If the set-valued maps Uo,i are closed and bounded, @; and Q; are Marchaud 
maps ( i = 1, 2) and a2(t ,  -) and Q2(t,.) are A-Lipschitz, then 

Proof - Choose yl = ul + Jot zl(s)ds E Uml(t, x) where 

In order to compare xl(-) with the solution-set SLa2(x) via the Filippov 
Theorem, we use the estimate 

Therefore, by Filippov's Theorem, there exists a solution x2(.) E SLo2(x) 
such that 

As before, we denote by z2(s) the projection of zl(s) onto the closed convex 
set Q2(s, x2(s)), which is measurable and satisfies 

Therefore, denoting by u2 a projection of ul onto the closed set Uo,2(x2(t)), 
the element y2 = u2 + Jot z2(s)ds belongs to Um2(t, x) and satisfies 

l l ~ l  - ~ 2 l l  

I l h l l~ (~ )  ,-J 5 A("O,l , u0,2)m + , Q2)mt + ( 1  *2(lAA(@l, @2)me2 

When Uo, @, Q are single-valued, we obtain: 

Proposition 4.3 Assume that uo, cp(t, .) and $( t ,  .) are A-Li~schitz. Then 
the map u, := I'(u0, cp, $) defined b y  

t 

u,(t,x) = uo(SL,(x)(t)) + / o $ (s, Sf,(x)(t - s)) ds 

is the unique (contingent) single-valued solution t o  



and satisfies 

IIua(t, .>IIoo I IIuoIIoo + II$(t, .)llat (18) 

and 
Ilua(t, .)lln I lluollnell'llAt + (I$(t, . ) l l~el"""(t)  (19) 

The map (uO,  (P, $) I+ I'(u0, (P, $) is continuous from C ( X ,  Y )  x C([O,  T] x 
X ,  X )  x C([O,  TI x X ,  Y )  to C([O,  T] x X ,  Y ) :  

The result follows from Theorems 4.1 and 4.2. 

5 Single-Valued Lipschitz Contingent Solu- 
tions 

We shall now prove the local existence of a (contingent) single-valued solution 
to 

0 E D 4 t ,  x ) ( l ,  f ( t ,  x ,  u ( t ,  2 ) ) )  - G(t ,  x ,  u ( t ,  x ) )  (20) 

on some interval [0, TI satisfying the initial condition u(0,  x )  = uO(x) .  

Theorem 5.1 Assume that the maps f ( t ,  .) : X x Y I+ X are A-Lipschitz, 
that G( t ,  .) : X - Y are A-Lipschitz with nonempty convex compact values 
and that 

v t ,  x ,  Y ,  IIG(t, x,y)ll 5 4 1  + llyll) 

Then for any Lipschitz initial condition uo, there exist T > 0 and a bounded 
Lipschitz (contingent) solution to the partial differential inclusion (20) on 
the interval [0, TI. 

Proof  - Since for uniformly Lipschitz single-valued maps v ( t ,  a ) ,  the 
set-valued map x -A G(t ,  x ,  v ( t ,  x ) )  is Lipschitz (with constant IIGIIA (1  + 
Ilv(t, . ) l l A ) )  and has convex compact values, Theorem 9.4.3 of SET-VALUED 
ANALYSIS ( [ 5 ,  Aubin & Frankowska]) implies that the subset G, of Lips- 
chitz selections $ of the set-valued map x - G( t , x ,  v ( t ,  x ) )  with Lipschitz 
constant less than v llGll,, ( 1  + IIv(t, . ) I I A )  is not empty (where v denotes the 
dimension of X . )  We denote by (P, the Lipschitz map defined by cp,(t, x )  := 
f ( t ,  x ,  v ( t ,  x ) ) ,  with Lipschitz constant equal to 1 1  f llA(l + IIv(t, . ) l l A ) .  

The fixed points to the set-valued map 

defined by 
R ( v )  := { ~ ( u o ,  (P,, $ ) I i E G ,  



in Proposition 4.3 are the solutions u to inclusion (20): Indeed, if u E R(u), 
there exists a selection $ E Gu such that u = I '(uO,~,,$), and thus, by 
Proposition 4.3, such that 

and 

Since IIG(t, x, y)II 5 c(1 + Ilyll), we deduce that any selection $ E G, 
satisfies 

Il+(t, .)llm 5 41 + IIv(t, .>II..> 

Therefore, Proposition 4.3 implies that 

and 

.- P-IIuollA We first observe that for any T 5 Tl(p) .- c(l+p) 

We denote by T2(a) the smallest positive root of the equation 

when a is large enough for such a root to exist. Let T := min(Tl (p), T2(a)). 
We infer that 

by Proposition 4.3 because u is of the form r(uO, (P,, $,). 
Set T := min(Tl(p), T2(a)) and let us denote by B;(p, a )  the subset 

defined by 



which is compact (for the compact convergence topology) thanks to Ascoli's 
Theorem. 

We have therefore proved that the set-valued map R sends the compact 
subset BL(p, a )  to itself. 

It is obvious that the values of R are convex. Kakutani's Fixed-Point 
Theorem implies the existence of a fixed point u E R(u)  if we prove that the 
graph of R is closed. 

Actually, the graph of R is compact. Indeed, let us consider any sequence 
(v,, u,) E Graph(R). Since BL(p,a) is compact, a subsequence (again de- 
noted by) (v,, u,) converges to some function 

But there exist bounded Lipschitz selections $, E G,, with Lipschitz con- 
stant ~ l l G I / ~ ( l +  a )  such that 

Therefore a subsequence (again denoted by) $, converges to some function 
$ E G,. Since cp,, converges obviously to cp,, we infer that u, converges 
to l?(uo,cpv, $) where $ E G,, i.e., that u E R(v), since l? is continuous by 
Proposition 4.3. 

We deduce from Theorem 4.2 the following "localization property": 

Theorem 5.2 We posit the assumptions of Theorem 5.1. Let Uo : X -+ Y, 
@ : [O,T] x X -+ X and @ : [O,T] x X -+ Y be Marchaud maps which 
are uniformly Lipschitz with respect to (x,y). We associate with them the 
set-valued solution U, to (12) defined by 

Then the bounded (contingent) single-valued solution u(t,.) to inclusion (20) 
satisfies the following estimate 

In particular, if we assume that 

v (x, Y) E X x Y, f ( t ,  x, Y) E @(t, x) & G(t, x, Y) C @(t, x) 

then the bounded single-valued contingent solutions u(t,.) to inclusion (20) 
is a selection of U,(t, -). 



Proof - Let u be any bounded single-valued contingent solution to 
inclusion (20). One can show that u can be written in the form 

t 

~ ( t ,  x) = ut + Z ( S ) ~ S  where z(s) E G(s, x(t - s), u(x(t - s))) 

by using the same arguments as in the first part of the proof of Theorem 4.1. 

We also adapt the proof of Theorem 4.2 with Ql(t, x) := f (t, x, u(t, x)), 
zl(s) := z(s), Qz := Q and Q2 := Q, to show that the estimates stated in the 
theorem hold true. 
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