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FOREWORD

We prove the existence of global set-valued solutions to the Cauchy problem for
partial differential equations and inclusions, with either single-valued or set-valued
initial conditions.

The method is based on the equivalence between this problem and problem of
finding viability tubes of the associated characteristic system of ordinary differential
equations or differential inclusions.
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Abstract

We prove the existence of global set-valued solutions to the Cauchy problem for partial
differential equations and inclusions, with either single-valued or set-valued initial conditions.

The method is based on the equivalence belween this problem and problem of finding
viability tubes of the associated characteristic system of ordinary differential equations or
differential inclusions.

Résumé

On démontre eristence de solutions mullivoques globales du probléme de Cauchy pour
les systémes hyperboliques du premier ordre d’équations ou d’inclusions aur dérivées par-
tielles, pour des conditions initiales univoques ou mullivoques.

La méthode est basée sur l’équivalence entre ce probléme el celui de Uezistence de tubes de
viabilité pour le systéme caractéristique d’équations différentielles ordinaires ou d’inclusions
différentielles.
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1 Introduction

It is well known from the method of characteristics that first-order systems
of hyperbolic partial differential equations may and do possess set-valued so-
lutions, the set-valued character of a given solution providing an explanation
for shocks.

One can use the differential calculus of set-valued maps for looking for
global set-valued solutions to such hyperbolic systems of both partial differ-
ential equations and inclusions.

We shall prove the existence of a largest set-valued solutions with closed
graph, which is unique (among closed graph single or set-valued solutions)
whenever the characteristic system enjoys the uniqueness property.

The method we use is based on the equivalence between solutions u(t, z) =
(u1(t, z),. .. ,um(t,z)) to the system of partial differential equations

Vi=1,..,m, 0= 262 520D b o it ) - gyt ult, )

)

and bilateral viable tubes' P(-) under the characteristic system

{ Z) .’Cl(t) = f(t’x(t)’y(t)) (2)
Zl) y’(t) = g(t’x(t)ay(t))

The link between (single-valued or set-valued) solutions to (1) and tubes
bilaterally viable under the characteristic system (2) is given by the relation

Vt>0, P(t) = Graph(u(t,")) C X xY

1We recall that a solution t — (z(t), y(t)) € X x Y to (2) defined on [0, 4+o0[ is viable in
the tube P if
Vi>0, (z(t),y(t) € P(t)

A tube P is bilaterally viable under the system (2) if, for all t, > 0 and (z¢,,y:,) €
P(tg), there exists at least one solution (z(-),y(-)) to the differential systemn (2) satisfy-
ing (z,y)(to) = (o, ¥,) which is viable in the tube P.




Therefore, the existence of solution to the Cauchy problem for (1) satisfying
the initial condition

Vze X, u(0,z) = uo(z)
is equivalent to the existence of a tube bilaterally viable under the charac-
teristic system (2) satisfying the initial condition

P(0) = K := Graph(uo)
Our objectives are twofold:

e to prove the equivalence between Cauchy problems for hyperbolic sys-
tems of partial differential equations and initial value problems for vi-
able tubes of ordinary differential equations on one hand,

e to prove the existence of the largest tube bilaterally viable on the other
hand and to characterize it.

This equivalence allows also to transfer other properties of viable tubes
to corresponding properties of solutions to partial differential systems.

There are obvious advantages in doing so. First, dealing with graphs of
solutions, we do not have to worry about the univocity issue: the viable tube
provides the graph of a solution, single-valued or set-valued. We can tackle
for instance the question of the existence of a largest solution as well as the
existence of minimal solutions containing a given function.

The other advantage is that we can treat in the same way not only systems
of partial differential equations, but also partial differential inclusions, since
the results about viable tubes are still valid for ordinary differential inclusions

{ 1) 2'(t) € F(t,z(t),y(t)) 3)
i) y'(t) € G(t,z(t),y(t))

First-order systems of partial differential inclusions arise naturally in control
theory (see [7,9,8]).

For instance, we shall prove a stability theorem: the graphical upper limit?
of a sequence of solutions U, is still a solution and that in the time indepen-
dent case, the graphical upper limit of the solutions U(t,-) when t — oo is a
solution to the stationary problem.

We shall provide an explicit formula in the decomposable (set-valued) case
from which we derive useful estimates. They are applied later on to prove
the existence of single-valued Lipschitz contingent solution to the Cauchy
problem for systems of partial differential inclusions

d d
Vi €X, 0 € (o) + (t,2)- f(t,2,u(t,2)) - G(t, 7, u(t,))

on a small time interval by using fixed point arguments.

2The graph of the graphical upper limit U := Lim!_ U, of a sequence of set-valued
maps Uy, : X ~ Y is by definition the graph of the upper limit of the graphs of the maps
Un.




2 Cauchy Problem for Viability Tubes

The differential calculus for single-valued maps, including inverse function
theorems, can be extended to set-valued maps.

We recall that the contingent derivative DU(z,y) of a set-valued map
U:X~Y at (z,y) € Graph(U) is defined by

Graph(DU(:c, y)) = TGraph(U)(xa y)

where

Tk(z) == {ve X| li’fn(ijxjfd(z + hv; K)/h = 0}

denotes the contingent cone to a subset K at z € K.

When U = u is single-valued, we set Du(z) := Du(z,u(z)). See [5,
Chapters 4, 5] for more details on contingent cones and differential calculus
of set-valued maps.

We say that a set-valued map P : t € [0,+o0[~ P(t) C X is a tube, and
that a tube is closed if its graph is closed.

We shall say that a set-valued map F is a Marchaud map if it is nontrivial,
upper semicontinuous, has compact convex images and linear growth.

In finite dimensional spaces, this amounts to saying that

¢)  the graph and the domain of F are closed
¢t) the values of F' are convex
itz) the growth of F is linear

We consider a Marchaud map F : [0, +00[xX ~ X and the differential
inclusion

z'(t) € F(t,z(t)) (4)

Definition 2.1 A tube P is viable under F' (or enjoys the viability property )
if and only if, for allty > 0 and x4 € P(ty), there exists at least one solution
z(-) to the differential inclusion (4) starting at zo at time to which is viable
in the tube P.

It is said to be backward viable under F if for every ty € [0,+00[, zo €
P(ty), there ezists at least one solution z(-) to the differential inclusion (4)
on the interval [0, o] starting at P(0), viable in the tube P on [0,t0] and such
that :L‘(to) = Ip.

It is said to be bilaterally viable under F if it 1s both viable and backward
viable, i.e., if and only if V ty € [0,+00[,V zo € P(to), there ezists at least
one viable solution starting at P(0) and passing through xq at time to (in the
sense that z(to) = o).

A tube P : [0,+o00[~ X is called a viability tube of a set-valued map
F:[0,4+00[xX ~ X if

Vte[0,+o0], Vz € P(t), F(t,z) NDP(¢,z)(1) # 0

3




a backward viability tube if
Vte[0,4+o0], Vz € P(t), F(t,z)N—-DP(t,z)(—1) # 0

and a bilateral viability tube if it is both a wiability tube and a backward
viability tube.

We say that a tube P is invariant under F' (or enjoys the invariance prop-
erty ) if and only if for all ty and zo € P(%o), all the solutions to differential
inclusion (4) starting at zo at time to are viable in the tube P.

It i3 called an invariance tube if
Vte[0,+o00[, Vz € P(t), F(t,z) C DP(t,z)(1)

For Marchaud maps, we recall some properties of the viability tubes (see
Theorem 11.1.3 of VIABILITY THEORY, [2, Aubin]): If F : [0, +o0o[xX ~ X
s a Marchaud map, then a tube is viable under F if and only if it i3 a viability
tube.

Let us consider a sequence of set-valued maps F,, : X ~ Y. The set-
valued map F! := Lim", . F, from X to Y defined by

Graph(Lim®,, _ F,) := Limsup,_,,, Graph(F,,)

is called the (graphical) upper limit of the set-valued maps F,,.

We derive the following characterization of bilateral viability:

Proposition 2.2 Assume that F : [0,+00o[xX ~ X is a Marchaud map.
Then a closed tube P is backward viable under F if and only if it is a backward
viability tube.

As a consequence, P 1is bilaterally viable under F if and only it is a
bilateral viability tube.

Furthermore, if P, is a sequence of closed tubes bilaterally viable under
F, then so is its graphical upper limit P.

Consequently, any closed tube Q contained in a tube P bilaterally viable
under F' and satisfying Q(0) = P(0) is actually contained in a minimal
tube Q C P bilaterally viable under F and satisfying Q(0) = P(0), called a
viability envelope of Q.

Proof — Let P(:) be a backward viability tube and zo belong to P(to).
First, consider the tube P, (s) := P(t; — s) defined by

5 . [ P(to—s) if s € [0,t]
Pols) := {K if s> to

We observe that

DP, (s,z)(A) = DP(ts — s,z)(=))

4




because one can check easily that

(A u) € TGraph(P,O)(S’x)

if and only if
(=Au) € TGraph(P)(tO —S,)

Second, we consider the set-valued map G,, defined by
{=1} x —=F(to — s,z) if s €]0,t]
Gy (s,z) := § [~1,0] xT({0} U —F(0,z)) if s=to
{0} x @({0} U —F(0,z)) if s > 1

It is a Marchaud map since F is assumed to be a Marchaud map. Then, we
observe that P is a backward viability tube if and only if the graph of P, is
a viability domain of G,.

Therefore, Theorem 3.3.5 of VIABILITY THEORY, [2, Aubin] implies that
this is equivalent to say that the graph of P, is viable under Gy,.

This means that for every to € [0, +00[, zo € P(%o), there exists a solution
z(-) to the backward differential inclusion 2'(t) € —F(to — t, 2(t)) starting at
zo at time 0 and viable in the tube t ~» P(¢o — t) for all t € [0,t9]. By
setting z(t) := z(to — t) when t € [0,t,], we infer that z(-) is a solution to
the differential inclusion z' € F(t,z) starting at z(0) = z(¢o) € P(0) and
satisfying z(to) = zo.

We show next that the upper graphical limit P* of a sequence of tubes
P, bilaterally viable under F is still bilaterally viable under F.

Let = belong to P¥(t). This means that t is the limit of a subsequence
t. and that z is the limit of a subsequence z,, € P,(t.). Since the tubes
P, are bilaterally viable under F', there exist solutions y,:(-) to differential
inclusion (4) starting at P,/(0), satisfying yn/(tn) = T and viable in P,.
Theorem 3.5.2 of VIABILITY THEORY, {2, Aubin] implies that these solutions
remain in a compact subset of C(0,+00; X). Hence a subsequence (again
denoted) y./(-) converges uniformly on compact intervals to a solution y(-)
to differential inclusion (4) starting at P¥(0) and satisfying z(t) = z. Since
Yn(t) belongs to Pu(t) for all n’, we deduce that y(t) does belong to P!(t)
for allt > 0.

When the sequence P, is decreasing, we know that its upper limit is equal
to the intersection of the P, : P(t) = (] Pa(t).

n>0

Therefore, by Zorn’s Lemma for the inclusion order on the family of closed

tubes bilaterally viable under F' and satisfying Q(0) = P(0), we deduce that




any closed tube Q starting at P(0) is contained in a minimal closed tube
bilaterally viable and starting at P(0). O

For Lipschitz maps, we recall a characterization of the invariant tubes.
Theorem 11.6.2 of VIABILITY THEORY, [2, Aubin] states that whenever F :
[0,+00[xX — X 1is upper semicontinuous and Lipschitz with respect to z°,
then a closed tube t ~» P(t) C X is invariant under F if and only if it is an
invariance tube.

Let us single out the following property :

Proposition 2.3 Assume that P is a closed tube invariant under a set-
valued map F. Then, if for some s > 0, z, ¢ P(s), then for every solution
z(-) to differential inclusion (4) satisfying z(s) = z, and for every t € [0, s],

=(t) ¢ P(t).

Proof — If not, there would exist a solution z(-) and a time ¢y € [0, s]
such that z(¢5) € P(to) and y(s) = z,. This solution is viable in the tube P
since all the solutions starting from z(ty) € P(%y) are viable, because the tube

is assumed to be invariant. Therefore z(s) belongs to P(s), a contradiction.
O

We now provide examples of tubes invariant under a set-valued map F.

Let us denote by Sp(s, K) C C(s,+00; X) the subset of solutions to dif-
ferential inclusion (4) starting from K at time s > 0.

The reachable tube Rk(-) of F starting at K defined by

Rk(t) = {2(1)}.()esp0.5)

is obviously closed whenever F is Marchaud (see VIABILITY THEORY, [2,
Aubin]).

Theorem 2.4 The reachable tube Rk(-) is invariant under F and “mini-
mal” in the sense that there i3 no other tube P invariant under F starting
at K and strictly contained in Rk(-).

It is also backward viable under F and is the largest closed bilateral via-
bility tube starting at Rg.

If K* := Limsup,_,. K, denotes the upper limit of a sequence of closed
subsets K,, C X, then the graphical upper limit of the reachable tubes starting
at K, is a bilateral tube starting at K* and thus

Lim*. Rk, C Rg

3in the sense that for some positive constant A
F(t)z) C F(t’y) + /\”I - y”B
(B is a unit ball)




Equality holds true if the set-valued maps F(t,-) are A-Lipschitz for every
t>0.

Proof — The reachable tube Ri(-) is obviously invariant and backward
viable under F: Indeed, if 2o € Rk(%o), there exists by definition a solution
z(-) to the differential inclusion (4) starting from K at time 0 and passing
through zo at to. Furthermore, every solution y(-) to differential inclusion
(4) starting at zo at time o, concatenated to z(-) restricted to the interval
[0,%0] being a solution to our differential inclusion starting at K, Rg(-) is
invariant.

Let us consider a closed tube P C Rg invariant under F starting at K.
We claim that it is equal to the reachable tube. Otherwise, there would
exist z, € Rk(s) such that z, ¢ P(s). Since the reachable tube is backward
viable, there exists a solution z(-) to the differential inclusion (4) starting
from z(0) € K such that z(s) = z,. But starting from z(0), the solution is
viable in the tube P since it is invariant under F' and satisfies P(0) = K.
Therefore z(s) belongs to P(s), a contradiction.

Let now P be any closed bilateral viability tube starting from K at time 0
and let us check that it is contained in the reachable tube. For that purpose,
take zo € P(t9). By Proposition 2.2, we know that there exists at least one
viable solution starting at P(0) = K and passing through zo at time t,.
Hence z¢ € Rk(to)-

By Proposition 2.2, we know that the graphical upper limit is a bilateral
viability tube. Proposition 7.1.4 of SET-VALUED ANALYSIS, [5, Aubin &
Frankowska] implies that

(Lim! ., Rx,) (0) = Limsup,_ . (Rx.(0)) = K

we infer that it is a bilateral tube starting at K", and thus, contained in Rgy.

Conversely, let us choose z;,;, € Rgi(to). Then there exist a solution
z(+) to (4) starting from some z(0) € K" and satisfying z(tg) = 24, and a
subsequence (again denoted by) z,, € K,, converging to z(0). By the Filippov




Theorem?, there exist solutions z,(-) to (4) starting at z, such that
[ Nlz(t) = z.(2)

§ < ([2(0) — mall + 5 e d(x'(s), Fs, za(s)))ds)

< e (||2(0) — zall + A fg €[ l2(s) — za(s)l|ds)

\

We .thus derive from Gronwall’s Lemma that z,.(t0) € Rk, (fo) converges to
:z:(to) = Tty- ]

Proposition 2.5 Let ¢ > 0 be the growth constant of F: [0,+00[xX ~ X
V20, s€X, [Fta) < cllal+1)
Then the tube Qk(-) defined by
Vt20, Qk(t) = K+ (|IK||+1)(e* —1)B
18 invariant under F and satisfies Qg (0) = K.

Proof — Indeed, we know that every solution z(+) to differential inclu-
sion (4) satisfies

Vi2to, [l < clllz(to)ll + 1)e ")

so that

13
|lz(t) — z(to)]| < /1£ lz'(F)|ldr = (J|lz(o)|| + 1)(et%) — 1)
0

Therefore, every solution z(-) to differential inclusion (4) starting from
the closed subset Qk(to) at time ¢, satisfies

z(t) € Qk(to) + (|| Qk ()| +1)e"*)B

Since Qk(to) := K + (]| K|| +1)(e* — 1) B, we infer from these two inclusions
that z(t) remains in the tube Qk(t) for t > ¢,. O

4Filippov’s Theorem (see [3, Theorem 2.4.1] for instance), yields an estimate on any finite
interval [0, T]: If for every t > 0 F(t,-) is A-Lipschitz with nonempty closed values, and if
an absolutely continuous function y(-) and an initial state zo are given, then there exists a
solution z(-) to the differential inclusion (4) defined on [0, T, starting at o and satisfying
the estimate

ll=(t) - ()] < & (Ilzo—y(O)II + /0 d(y’(S),F(y(S)))e‘“dS) (5)




3 Contingent Solutions

Consider two finite dimensional vector-spaces X and Y and two set-valued
maps F' : [0,400[xX XY ~ X, G :[0,400[xX xY ~ Y. Let DU(t,z,y)
denote the contingent derivative of U at a point (¢,z,y) of the graph of U.

Definition 3.1 We shall say that a closed set-valued map U : [0, +00[x X ~»
Y satisfying

VyeU(tz), 0 € DU(t,=,y)(1,F(t2,y)) — G(t,2,y) (6)
i3 a forward (contingent) set-valued solution to the partial differential inclu-
sion (6).

It is said to be a backward (contingent) set-valued solution to (6) if it
satisfies

VyeU(t,z), 0 € DU(t,z,y)(—1,—F(t,z,y)) + G(t,z,y) (7)

and ¢ (contingent) set-valued solution to (6) if it i3 both a forward and a
backward solution.

Naturally, whenever the contingent derivatives DU(t, z,y) are even, then
forward and a backward solutions do coincide.

When U = u : [0,400[xX — Y is a single-valued map with closed graph,
the partial contingent differential inclusion (6) becomes

V(t,z), 0 € Du(t,z)(1,F(t,z,u(z))) — G(t,z,u(z)) (8)

Let the initial condition Uy : X ~ Y, a single- or set-valued map be
given.

Theorem 3.2 Let us define the set-valued map Uy : (t,z) € [0, +00[xXX ~»
Ux(t,z) € Y by the method of characteristics: y € Uy(t,z) if there exists a
solution (z(-),y(+)) to the system of differential inclusions (3) starting in the
graph of Uy and such that z(t) = z and y(t) = y.

Assume that F : [0,400[xX XY ~ X and G : [0,400[xX XY ~ Y
are Marchaud maps. Then, for any initial condition Up: X ~ Y, Uy 13 the
largest set-valued solution to (6) satisfying the initial condition

Ve X, Ug(0,z) = Up(x)

It is the unique solution with closed graph whenever the characteristic
system has the uniqueness property®.

5This happens whenever F and G enjoy a monotonicity property of the form: there
exists a real constant ¢ such that for every t > 0, for every pair z;, y;, u; € F(t,z;, %) and
vi € G(t,zi,y) (i =1, 2), we have

(w1 — uz, 2y — za) + (v1 — vo, 11 — ¥2) < ¢ (||z1 — z2|> + [[v2 — w2%)




Furthermore, we can associate with any selection V(t,z) C Ux(t, z) satis-
fying V(0,z) = Up(z) a minimal solution V C Uy to (6) satisfying the same
initial condition and containing V.

Proof of Theorem 3.2 — By Theorem 2.4, the reachable tube Rg(:) :
R; ~ X x Y starting at K := Graph(Up) at time ¢t = 0 for the system of
differential inclusions (3) is the largest closed bilateral viability tube of the
system of differential inclusion (3). The map Uy(+,*) : Ry X X ~ Y defined
by the method of characteristics is equal to

Ux(tiz) = {y €Y |(z,y) € Rk(1)}

Then Uy(0,-) = Uo(+) and Graph(Us) = Graph(Rg). Since Rk(-) is a vi-
ability tube, its graph is a viability domain of the set-valued map {1} x
F(t,z,y) x G(t,z,y). This amounts to saying that

Vy € Ualtiz), ({1} X F(t,2,9) X G(t,2,9)) N Tqraphp(t: 2:¥) # 0

Since TGra.ph(U“)(t’xvy) = Graph(DUy(t,z,y)), the above relation means
that
VyeU(tz), 0 € DU(t,z,y)(1, F(t, z,y)) — G(t,z,y)

In the same way, to say that Ry is a backward viability tube amounts to
saying that
Vy€eU(tz), 0 € DUa(t,2,y)(=1,~F(t,2,1)) + G(t2,9)
Let us consider any closed selection V' of the solution U, to the Cauchy
problem for (6) with which we associate a closed tube Q defined by Q(t) :=
Graph(V(t,-)). Then there exists a minimal bilateral viability tube contain-

ing the closed tube @, with which we associate a minimal set-valued solution
to (6) containing this selection V. 0O

Let us derive the corollaries in the case of hyperbolic systems of partial
differential equations.

Corollary 3.3 Assume that f : [0,400[XxX XY — X, g:[0,+00[xX XY
Y are continuous maps with linear growth. Then, for any initial condition
ug : X — Y, there ezists a largest set-valued solution (t,z) ~ Uyx(t,z) to

VyeU(t,z), 0 € DU, z,y)(1, f(t,z,y)) — 9(t,2,y) (9)
satisfying the initial condition
Vze X, U0,z) = {uo(z)}

It 1s the unique solution with closed graph whenever the characteristic system
has the uniqueness property®.

6This is the case when the functions f and g are Lipschitz with respect to (z,y), or when
they enjoy monotonicity properties.

10




Dealing with set-valued initial conditions is justified for instance to study
the case when disturbances Upa(z) = uo(z)+ L B of the initial condition ue(z)
are involved. This approximation procedure makes sense since we obtain the
following stability result with respect to the initial conditions:

Theorem 3.4 (Stability) Assume that F : [0,400[xX XY ~ X, G :
[0,+00[xX XY ~+ Y are Marchaud maps. Consider a sequence of initial
conditions Uy, : X ~ Y and denote by U,(t,-) the largest set-valued solution
to (6) satisfying the initial condition

Vze X, Un(0,z) = Upn(x)

Let Ug := Lim!__ U, denote the graphical upper limit of the initial con-

ditions. Then the graphical upper limit Ul(t,-) := Lim'__U.(¢,-) of the

n—00

solutions is a solution to (6) satisfying the initial condition
VzeX, UN0,2) = Ul(z)

3o that Ub(t,-) C Ux(t,-) for every t > 0.
If we assume furthermore that the set-valued maps F(t,-,-) and G(%,-,-)
are A\-Lipschitz, then UM(t,-) = U, (%,-).

The proof follows from the second statement of Theorem 2.4.

We also derive the following asymptotic result:

Theorem 3.5 Consider two time independent set-valued maps F : X XY ~»
X and G: X XY ~ Y and a forward set-valued solution (t,z) ~ U(t,z) to

VyeU(tz), 0 € DU, z,y)(1,F(z,y)) - G(z,y)

Then the graphical upper limit U(-) := Lim!_ U(t,") is a closed solution
to the stationary problem

Vy € Uxn(z), 0 € DU(z,y)(F(z,y)) - G(z,y) D

Proof of Theorem 3.4 — It follows from the fact that the upper
limit when ¢t — oo of the values P(t) of a viability tube is a viability domain
(see Theorem 11.3.1 of VIABILITY THEORY, [2, Aubin]), because, in terms
of graphs, this means that the graph of the graphical upper limit of the
set-valued maps U(t,-) is a viability domain of the system of differential

inclusions (3)
{ i) z'(t) € F(a(t),y(t))
1) y'(t) € G(z(1),y(t))

i.e., a solution Uy(-) to the stationary problem. O

We also deduce the following characterization of the solution Uy:

11




Theorem 3.6 Let us assume that the maps F(t,-,-) : X xY ~ X and
G(t,",:) : X XY ~ Y are A-Lipschitz maps with compact values. Then, for
any wnitial condition Up: X ~ Y, (t,z) ~ Un(t,z) i3 also the solution to

VyeU(tz), G(t,z,y) C (| DU®R,z,y)(1,u) (10)
ucF(t,z,y)

satisfying the initial condition
Vze Xa Ua(o?x) = UO(‘T)

It is minimal in the sense that any closed set-valued map U contained in
U, satisfying (10) and the same initial condition is equal to U,.

Proof — We know that the reachable tube RGraph(Uo)(') is an invari-
ance tube thanks to Proposition 2.3, the smallest of the invariance tubes
starting at Graph(Uy). We have defined U, as the set-valued map the graph
of which is equal to RGraph(Uo)(')' By Invariance Theorem 11.6.2 of VIA-

BILITY THEORY, [2, Aubin], this graph is an invariance tube. This means
that

Vy € Ux(t,z), ({1} x F(t,2,y) x G(t,2,9)) C Tgraphw.(t 2 v)

Since TGraph(U«)(tvz’y) = Graph(DU(t,z,y)), this is equivalent to say
that U, satisfies property (10). O

Remark — When the maps F and G are both Marchaud and A-
Lipschitz with respect to z,y, we deduce that U, satisfies

G(t,.’l:, y) C nueF(t,z,y) DU(t,.’l:, y)(l,u)
VyeU(tz), (11)
0 € DU(t,:c,y)(—l,—F(t,x,y)) +G(tvz»y)

4 Decomposable Case

We shall consider first the decomposable case for which we have explicit
formulas, that we next use to solve the general problem of finding a contingent
solution to the problem

Vt,z € X, 0 € Du(t,z)(1, f(t,z,u(t,z))) — G(t, z,u(t, z))

Hu: XY, weset

el = supllu(@)]| & flulls = sup =Wl
reX z#y ”.’l! - y“
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When G is Lipschitz with nonempty closed images, we denote by ||G||a
its Lipschitz constant, the smallest of the constants [ satisfying

V 21,22, G(21) C G(22) +!||z1 — 2| B

where B is the unit ball. For time-dependent set-valued maps G(t,-) which
are uniformly Lipschitz, we still set |G||a» := sup,»qG(t,-) to denote the
common Lipschitz constant. -

Let : Ry x X ~ X and ¥: Ry x X ~ Y be set-valued maps.

Consider the decomposable system of hyperbolic partial differential inclu-
sions

V(t,z,y) € Graph(U), 0 € DU(t,z,y)1,®(t,z)) — ¥(¢,z) (12)
and its associated characteristic system of differential inclusions

Z'(t) € (t,=(t))
(13)
y'(t) € ¥(t,2(2))

We denote by S! 4(z) the set of solutions z(-) to the differential inclusion
z'(s) € —®(t — s,z(s)) on [0,1] starting at z.
Define the set-valued map Uy : Ry x X ~ Y by’

U«(t,z) = {ut + _/Ot U(s,z(t — s))ds} (14)

ut €Up(x(1)), (1) €SE 4 (=)

We set
et —1 et —at—1

& e3(t) =

eS(t) = =
Theorem 4.1 Assume that ® : Ry X X ~ X and UV : Ry x X ~ Y are
Marchaud maps and that Uy 13 closed with linear growth. Then the set-valued
map Uy : Ry X X ~ Y defined by (14) 1s the solution defined by the method
of characteristics, and i3 thus the largest solution to (12) satisfying the initial
condition

Vze X, Usl(0,2) = Up(z)

"By definition of the integral of a set-valued map (see Chapter 8 of SET-VALUED ANAL-
YsIs, [5, Aubin & Frankowska] for instance), this means that for every y € Ux(t, x), there
exist a solution z(-) € 8! (z, ) to the differential inclusion z'(s) € —®(t — s, z(s)) starting
at z, u; € Ug(z(t)) and z(s) € ¥(s, z(t ~ s)) such that

t
y = u,+/ z(s)ds € Ux(t,z)
0

13




If there ezist positive constants a, 8, fBo, Yo, B, v such that
|2, 2)ll < 6+ allzll, [Us(z)l < Bo+llzll & I¥E2)| < B+~
then

IUx(t, 2)ll < Bo+ Bt+ vollzlie™ + (08 +vllzleg(t) +v8ez(t)  (15)

Moreover, if Uy, ®, V¥ are A-Lipschitz with respect to x, then the maps
Ux(t,") : X ~ Y are also Lipschitz (with nonempty values):

Us(t,21) C Uu(t,22) + (I[Tollac’®t 4 | @[[ael* M (1)) |21 — 22| B

We recall that Uy(2,-) being the solution defined by the method of char-
acteristics, it is both a forward and backward solution to (12): This means
that it satisfies (12) and

Y (t,z,y) € Graph(U), 0 € DU(t,z,y)(—-1,—®(t,z)) + ¥(¢, z) (16)

Formula (14) shows also under mere inspection that the graph of Ux(t, ) is
convex (respectively Ux(t,-) is a closed convex process) whenever the graphs
of the set-valued maps Uy, ®(¢,:) and ¥(t,-) are convex (respectively ®(t,-)
and ¥(t,-) are closed convex processes).

Proof

1. —  We prove first that the map U, is the largest solution to inclu-
sion (12), i.e., that the tube Graph(Ux(t, -)) is the reachable map RGraphw, )(t).

Indeed, a pair (z,y) belongs to RGraph(Uo)(t) if and only if there exist
solutions (2(+), y(+)) to the characteristic system (13) starting from the graph
of Uy and satisfying (2(t),y(t)) = (z,y). This solution can be written in the

form
{ z(t) = w+ [y (s, 2(s))ds

y(t) = e+ fo ¥(s, 2(s))ds

where u; € Up(w:). By setting z(s) := z(t—s), we observe that it is a solution
z(-) € Stg(z) to the differential inclusion z'(s) € —®(t — s,z(s)) starting at
z and such that w; = z(t) and that

t
wy = z(t) & y = y(t) = u,+/ U(s,z(t — s)ds
0
Hence this solution Uy coincides with the largest solution.

2. —  Estimate (15) is obvious since any solution z(:) € S!4(z)
satisfies by Gronwall’s Lemma the estimate

V20, [lz(t)] < lle(s)lle**™) + e3(t - s)
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Therefore,

Ut 2)| < Bo+ Bt + vollzlle™ + (v08 + vllzles (t) + vbez(t)

3. — Assume now that ®(t,-) and ¥(t,-) are Lipschitz, take any pair
of elements r; and z; and choose y; = u; + J; 21(s)ds € Ux(t,z;), where

z1(-) € Ste(z1), z1(s) € ¥(s,21(t —3)) & ur € Up(z1(t))
By the Filippov Theorem, there exists a solution z,(-) € 8t 4(z2,-) such that
Vse0,t], lloa(s) = za(s)ll < el®al|zy — o]

We denote by z3(s) the projection of 21(s) onto the closed convex subset
U(s,z2(t — 8)), which is measurable thanks to Corollary 8.2.13 of SET-
VALUED ANALYSIS, [5, Aubin & Frankowska] and which satisfies

Vs €0, [z1(s) — z2(s)ll < [|¥]|allea(t — 5) — z2(t = s)|
< (@] ael Nt 2y — 2|

Let uz denote the projection of u; onto the closed convex set Up(z2(t)). Then
Y2 := ug + [ 22(s)ds belongs to Uy (z;) and satisfies

I — v2ll < [Wollallza(t) — z2(®)I| + f5 ¥ [|aell®lal=2||z; — z,]|ds
< (I[Tollel®int + || @] el (2)) Jlz1 — 2o ©

We prove now a comparison result between solutions to two decomposable
partial differential inclusions.

When L C X and M C X are two closed subsets of a metric space, we
denote by
A(L,M) := supinf d(y,z) = supd(y, M)
yeL z€M yeL

their semi- Hausdorff distance®, and recall that A(L,M) = 0 if and only if
LC M. If & and ¥ are two set-valued maps, we set

AR, V) = itel)lgA(Q(w),‘I’(r)) r= sup SUP)d(y,‘I’(x))

zeX yed(x

Theorem 4.2 Consider now two triples (U1, ®1,¥1) and (Uopz, 2, ¥2) of
maps and their associated solutions

t
Usi(t, z) := {Ui,t +/ (s, zi(t - S)ds} (:=1,2)
0 ui,1 €U0 i (zi(t)), zi(1)€SLg (<)

8The Hausdor[f distance between L and M is max(A(L, M), A(M, L)), which may be
equal to oco.
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If the set-valued maps Uy, are closed and bounded, ®; and ¥; are Marchaud
maps (i =1, 2) and P,(t,-) and V(L ) are A-Lipschitz, then

{ A(Udl(t")a qu(t,'))oo \
< A(U01,Up2)00 + A(¥1, ¥2)ot + A(P1, (I>2)°°“\p2||Aeg 2”A(t)

Proof — Choose y; = u; + f5 z1(s)ds € Uni(t, ) where

21(-) € Slg,(z), w1 € Upa(za(t)) & 21(s) € Ti(s,z1(t - s))

In order to compare z;(-) with the solution-set S’4 (z) via the Filippov
Theorem, we use the estimate

d(z1(s), —@2(t—s,21(s))) £ sup  d(z,B2(t—s,21(s)))) < A(P1, P2)w

ze€®y (t—a,zl (3))

Therefore, by Filippov’s Theorem, there exists a solution z5(-) € Stgq,(z)
such that

Vs e[0,8], llz(s) — z2(s)]| € A(B1, B2)ooel 214 (s)

As before, we denote by z;(s) the projection of z1(s) onto the closed convex
set ¥,(s,z2(s)), which is measurable and satisfies

{Vse[o,tl, ll21(s) — 22(s)|| < A(¥1,¥2)e0 + [|T2llallza(t — 8) — z2(t — 3)|
< A(T1, ¥3)oo + || T2llaA(D1, B2)eoel 20 (t — 5)

Therefore, denoting by u, a projection of u; onto the closed set Up 2(z2(t)),
the element y; = uz + f§ z2(s)ds belongs to U.a(t,z) and satisfies

{ llys — vall
< AWo1,Uo2)oo + A(T1, ¥2)oot + || T2][aA(D1, B2)ooel ™l (1) O

When Uy, @, ¥ are single-valued, we obtain:

Proposition 4.3 Assume that uo, ¢(t,-) and ¥(t,-) are A-Lipschitz. Then
the map uy := I'(uo, 9, ) defined by

unlt2) = oS4, @) + [ ¥ (5,58 @)t —s) ds
i3 the unique (contingent) single-valued solution to
0 € Du(t,z)(1,¢(t,z)) — ¥(¢, ) (17)
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and satisfies
ot Moo < ltalloo + [[16(E, -)lloot (18)
and
lualt, Mo < lluollae®lat + [[w(t, )llael(2) (19)

The map (uo,,¥) — I'(ug,p, ) is continuous from C(X,Y) x C([0,T] x
X,X)xC([0,T] x X,Y) to C([0,T] x X,Y):

{ ”F(uo.l, 501,1/)1) - F(Uo,z, ¢2’¢2)||°0
< luoa — uolloo + [[#1 = Walloot + @1 — @2lloolla]laeh?* 4 (2)

The result follows from Theorems 4.1 and 4.2.

5 Single-Valued Lipschitz Contingent Solu-
tions

We shall now prove the local existence of a (contingent) single-valued solution
to

0 € Du(t,z)(1, f(¢,z,u(t, 2))) — G(t, 2, u(t, 7)) (20)

on some interval [0, T] satisfying the initial condition u(0, z) = ue(z).

Theorem 5.1 Assume that the maps f(t,-) : X xY — X are A-Lipschitz,
that G(t,-) : X ~ Y are A-Lipschitz with nonempty conver compact values
and that

Vi, z, y, G z,9)ll <c(1+]yl)

Then for any Lipschitz initial condition uo, there ezist T > 0 and a bounded
Lipschitz (contingent) solution to the partial differential inclusion (20) on
the interval [0,T].

Proof — Since for uniformly Lipschitz single-valued maps v(t,-), the
set-valued map ¢ ~ G(t,z,v(t,z)) is Lipschitz (with constant |G|, (1 +
|lv(t,-)|[a)) and has convex compact values, Theorem 9.4.3 of SET-VALUED
ANALYSIS ([5, Aubin & Frankowska]) implies that the subset G, of Lips-
chitz selections 1y of the set-valued map z ~ G(¢,z,v(t,z)) with Lipschitz
constant less than v ||G|[, (1 + ||v(¢,-)||a) is not empty (where v denotes the
dimension of X.) We denote by ¢, the Lipschitz map defined by ¢,(¢,z) :=
f(t,z,v(t,z)), with Lipschitz constant equal to || f||a(1 + ||v(2,-)||a)-

The fixed points to the set-valued map
R:C([0,T] x X,Y)~ C([0,T] x X,Y)

defined by
R(’U) = {F(u0’¢0’¢)}¢ecv (21)
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in Proposition 4.3 are the solutions u to inclusion (20): Indeed, if u € R(u),
there exists a selection ¥ € G, such that v = I'(ug, ¢y, %), and thus, by
Proposition 4.3, such that

{ 0 € Du(t,z)(1, f(t,z,u(t,z))) — ¥(t,z)
C Dult, 2)(1, £t 2, u(t, 2))) — G(t, 2 u(t,2))

{ 0 € Du(t,z)(-1,—f(t,z,u(t,z))) + ¥(t,z)
C DU(t,.’E)(—l, —f(t,I,U(t,I))) + G(t,x,u(t,x))

Since ||G(t,z,y)|| < ¢(1 + |ly||), we deduce that any selection ¢ € G,
satisfies

[t oo < 1+ lv(E,-)lloo)
Therefore, Proposition 4.3 implies that
Vu€eR@), [[ul)le < lluolles +e(1+[lv(t;-)lleo )t

and

llu(t, -)|a
< (”uo”Ae||f||A(l+||v(t,~)||A)t 4+ ”G”A (1 + ”v(t, -)||A)e'llf“"(1+“”("‘)”A)(t)

We first observe that for any T < Ti(p) := "—:(IIJ“T"}I)A

{ Vv €eC([0,T] x X,Y) such that sup,epqllv(t, )l < o,
Vu€R@), suppmllult e <p

We denote by T,(o) the smallest positive root of the equation
luoll(t, YN 4 v |Gl (14 0)ed M+ (1) = o

when o is large enough for such a root to exist. Let T := min(Ty(p), T2(o)).
We infer that

{ Vv eC([0,T] x X,Y) such that sup,cipqllv(t,-)la < o,
Vu € R(v), supeponllut,-)la <o

by Proposition 4.3 because u is of the form I'(ug, Yy, ¥y)-

Set T := min(Ty(p), Tz(c)) and let us denote by Bl (p,o) the subset
defined by

{ B (p,)
= {v €C([0,T] x X,Y) | SUP;eo,1] lo(t, o <0 & SUP;e(o,1] [lv(t,)lla < 0'}
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which is compact (for the compact convergence topology) thanks to Ascoli’s
Theorem.

We have therefore proved that the set-valued map R sends the compact
subset Bl (p,0) to itself.

It is obvious that the values of R are convex. Kakutani’s Fixed-Point
Theorem implies the existence of a fixed point u € R(u) if we prove that the
graph of R is closed.

Actually, the graph of R is compact. Indeed, let us consider any sequence
(Un,un) € Graph(R). Since B! (p,0) is compact, a subsequence (again de-
noted by) (vn,u,) converges to some function

(v,u) € Bl (p,0) x Bl(p,0)

But there exist bounded Lipschitz selections ¢, € G,, with Lipschitz con-
stant v||G|[a(1 + o) such that

VnZO, Un = P(uO,()ovmd)ﬂ)

Therefore a subsequence (again denoted by) 1, converges to some function
¥ € G,. Since g, converges obviously to ¢,, we infer that u, converges
to I'(ug, ¢y, ) where ¥ € G,, i.e., that u € R(v), since I is continuous by
Proposition 4.3. O

We deduce from Theorem 4.2 the following “localization property”:

Theorem 5.2 We posit the assumptions of Theorem 5.1. LetUy: X ~ Y,
®:[0,T]xX ~ X and ¥ : [0,T] x X ~ Y be Marchaud maps which
are uniformly Lipschitz with respect to (z,y). We associate with them the
set-valued solution Uy to (12) defined by

Uu(t,z) = {ut +/0t U(s,z(t — s)ds}

ue€Up((t)), z(-)ES 4 (2)

Then the bounded (contingent) single-valued solution u(t,-) to inclusion (20)
satisfies the following estimate

VeeX, du(tz),Ux(t,z))
{ < sup,ex d(uo(z), Un(z)) + sup,ex A(G(2, z, u(t, z)), ¥(t, z))t
+ sup,ex d(f(t, @, ult,z)), B(t,2))[|¥[lacl*(t)

In particular, if we assume that
V(z,y) € X xY, f(t,z,y) € ¥(t,z) & G(t,z,y) C ¥(t,2)

then the bounded single-valued contingent solutions u(t,-) to inclusion (20)
i3 a selection of Ux(t,-).
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Proof — Let u be any bounded single-valued contingent solution to
inclusion (20). One can show that u can be written in the form

u(t,z) = ut+/otz(s)ds where z(s) € G(s,z(t — s),u(z(t — s)))

by using the same arguments as in the first part of the proof of Theorem 4.1.

We also adapt the proof of Theorem 4.2 with &,(¢,z) := f(¢,z,u(t, z)),
z1(s) 1= 2(s), @3 := ® and ¥, := ¥, to show that the estimates stated in the
theorem hold true. O
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