
Working Paper
Hebbian Rules in Neural Networks

Jean- Pierre Au bin

WP-94-50
June 1994

to1 1 1 ASA International Institute for Applied Systems Analysis A-2361 Laxenburg Austria

h m d Telephone: +43 2236 71521 Telex: 079 137 iiasa a Telefax: +43 2236 71313

Hebbian Rules in Neural Networks

Jean- Pierre Azlbin

WP-94-50
June, 1994

CEREMADE, Universitb de Paris-Dauphine & IIASA

Working Papers are interim reports on work of the International Institute for Applied
Systems Analysis and have received only limited review. Views or opinions expressed
herein do not necessarily represent those of the Institute or of its National Member
Organizations.

r!l I I ASA International Institute for Applied Systems Analysis A-2361 Laxenburg Austria

Telephone: +43 2236 71521 Telex: 079 137 iiasa a Telefax: +43 2236 71313

Hebbian Rules in Neural Networks

Jean-Pierre Aubin

CEREMADE, UNIVERSIT~ DE PARIS-DAUPHINE
&

IIASA, INTERNATIONAL INSTITUTE FOR APPLIED SYSTEMS ANALYSIS

FOREWORD

Control theory allows us to present in a unified way many examples of neural networks by
regarding them as discrete or continuous control systems, the states of which are the signals and
the controls are the synaptic matrices (pattern classification problems, including time series in
forecasting). We refer to (Aubin J.-P., 1994) and its bibliography for an approach using this
viewpoint.

The usual classification problem for which most neural networks have been designed is then
to find synaptic matrices with which the network maps inputs of a prescribed sequence of patterns
to outputs, through one, several or a continuous set of layers. One can use several results on
control of nonlinear systems to obtain learning algorithms converging to some solutions of this
problem, such as the back-propagation formula (which is nothing other than the adjoint equation
in control theory). The mathematical structure of the space of synaptic matrices involving tensor
products, we then obtain in the formulas describing the learning algorithms pure tensor products,
whose entries are the products of the presynaptic and postsynaptic activities. This explains in
a mathematical way the emergence of Hebbian rules in learning mechanisms of neural networks.

Hebbian Rules in Neural Networks

Jean-Pierre Aubin

1 Adaptive Systems

The general form of an adaptive network is given by a map @ : X x U + Y where X
is the input space, Y the output space and U a control space (or parameter space). In
this paper, the spaces X , Y and U are finite dimensional vector spaces.

A pattern is an "input-output" pair (a,, b,) E X x Y. The inputs a, are often called
keys (or search argument) and the outputs b, the memorized data.

In the case of neural networks, or more generally, of connectionist networks, the
control space is a matrix space (synaptic matrices, fitness matrices, activation matrices,
etc., depending on the contexts and the fields of motivation). A pattern (x, y) E X x Y
made of an input-output pair is recognized (or discovered, generalized) by the adaptive
system programmed by such a control u if y = @(x, u) is a signal processed by the
network excited by the input x.

1.1 The Learning Problem

A teaching set P is a finite set of patterns (a,, bp)pEP c K: of input-output signals.
The choice of a control is done by learning a given number of input-output pairs

(a,, b,) (p E P) , (the teaching set), i.e., by finding a control up satisfying:

@(a,, up) = bp for all p E P (1)

We shall say that such a control up has learned the teaching set. With such a control u,
the system generalizes from this teaching set by associating with any input x the output
y = @(x,up). This is called the generalization phase of the operation of the adaptive
system.

This includes the forecasting problem, when X = Y and when the patterns associated
with a time series al , . . . , a ~ + ~ are defined by a, := at and b, := at+l (the input is the
present state and the output the future state).

@(at,up) = at+^ for all t = 1,. ..,T

T h e record of past states constitutes the teaching set.
A common feature to adaptive systems is that they are not "programmed" by a

sequence of instructions, but by making a control u (a synaptic matrix W in the case of
neural networks) learn a set of patterns which they can reproduce, and thus, hopefully,
discover new patterns associated with such a synaptic matrix. It is nothing else, after
all, than an extrapolation procedure set in a new framework.

Any algorithm converging to a solution up to the learning problem (??) is regarded
as a learning algorithm.

Since the problem (??) is generally a nonlinear problem, the first algorithm we can
think of is the Newton Algorithm. However, we can view the learning problem as an
optimization problems and use familiar gradient algorithms.

1.2 The Gradient Algorithms

We observe that the learning problem (1) is a nonlinear problem, which can be mapped
to a minimization problem of the form

where a E [l, m] and where Ep : Y + R are evaluation functions vanishing (only) at the
origin.

There are two advantages for doing that. The first one is the possibility of defining
a solution to such a minimization problem even when there is no solution to the above
system of equations: When the infimum is not equal to 0, the minimal solution can be
regarded as a quasi-solution. The second one is the possibility of using the whole family
of minimization algorithms (including variants of the gradient method) converging to a
solution to the minimization problem.

The simplest example of distance is naturally provided by the case when a = 2. But
we also include the important (although, nonsmooth) case when p = oo, where we have
to solve the minimization problem:

0 = inf sup Ep(@(ap, u) - bp)
P E P

event though the functional is no longer differentiable in the usual sense.
Once we have transformed the learning problem into an optimization problem of

the form infUEv H(u) the natural algorithms which may lead to the minima are in most
cases variants of the Gradient Algorithm. When H is differentiable, it can be written

When the criterion is nonsmooth, the gradient of the criterion is replaced by a
"generalized gradient". This happens when a = oo in the above criteria, when the
function to be minimized is written H(u) := suppEp Hp(u). Even when the functions Hp
are differentiable, taking their supremum destroys the usual differentiability. If P(u)
denotes the set of indices p E P achieving the maximum (i.e., the set of indices of
"active" functions Hp such that H(u) = Hp(u)), then the generalized gradient is given
by

(For instance, the generalized gradient of u + lul = sup-,,, at 0 is the interval. [-I, +I]).
In general, one defines in nonsmooth analysis the concept of the generalized gradient of
H at u, which is generally a subset aH(u).

In this case, the gradient algorithm takes the form

The convergence of these algorithms holds true under convexity assumptions both in
the smooth and nonsmooth cases.

1.3 Learning without Forgetting

An algorithm which learns without forgetting is defined as follows. Assume that up has
been obtained for learning the teaching set of (a,, bp)llplP-l made of P - 1 input-output
pairs. At the P t h iteration, we add another pair (ap, bp) to the teaching set. We want
to find a control up which learns the whole new teaching set (a,, bp)l<psP (and not only
the last pattern).

A natural way to design such an algorithm is to use the control up-1 which has
learned the teaching set (a,, bp)llplP-l and to modify it as little as possible for learning
the new teaching set (a,, bp)l<piP: this is what we call the heavy algorithm. Formally,
up is obtained from up-1 in the following way:

l up minimizes u -+ Ilu - u ~ - ~ ~ J

(under the constraints: @(a,, u) = b, for all t = 1, . . . , P,

When the system is affine with respect to the control (but still nonlinear with respect
to the state), the Heavy Algorithm provides very simple formulas, as we shall see in the
specific case of neural networks.

Neural Networks

In this paper, a neural network denotes a adaptive system where the set of controls
are (synaptic) matrices, or sequences of (synaptic) matrices or even time dependent
synaptic matrices.

Before being more specific about examples of neural networks, we posit the question:
What is then special to neural networks?

We shall have to apply the algorithms (Newton's Algorithm, Gradient Algorithms,
Heavy Algorithms) we mentioned to adaptive systems controlled by synaptic matri-
ces, and thus, to use specific properties of the spaces of matrices (regarded as tensor
products).

Since Hebb's 1949 classic book ORGANIZATION OF BEHAVIOR, most of the studies of
neural networks deal with numerous variations of learning rules which prescribe a priori
the evolution of the synaptic matrix Wn = (wKj) through an algorithm of the form:

where the correction of the synaptic weight wKj is proportional to the product of presy-
naptic and postsynaptic activity.

We shall see that the algorithms mentioned above, when applied to neural networks,
i.e., adaptive systems parametrized by synaptic matrices, yield Hebbian Learning Rules,
since they involve tensor products of vectors.

2.1 Classes of Neural Networks

For simplicity, we consider the learning problem of one pattern only.

In the case of one-
the map @ is defined

.layer neural network described by a propagation function g : Y + Y,

by
@(a, W) := g(Wa)

where the input a E X and the output b E Y of a pattern (a, b) is given. Given an
evaluation function E on the output space Y and an pattern (a, b), we look for a synaptic
matrix which minimizes the function

In the case of multi-layer neural network described by the vector spaces (layers) Xo :=
X, XI (1 = 1,. . . , L - 1) and XL := Y and propagation rules gl : XI + Xl from one
layer to the next, the map aL associates with a the sequence (Wl,. . . , WL) of synaptic
matrices the final state XL of the sequence of states starting from xo := a according to

x1 = gl(Wlxl-l) for all 1 = 1,. . . L (2)

We can regard a multi-layer neural network as a discrete control problem where layers
play the role of time. At time (layer) 1, one chooses the control Wl for mapping the
initial state xo to gl(Wlxo), and so on: at time (layer) 1, we associate with the preceding
state 21-1 and the control Wl the new state gl(Wlxl-l). Hence the final state XL is
obtained from the initial state xo through the discrete dynamical system (2) controlled
by the sequence of synaptic matrices Wl.

"Continuous-layer" neural networks are neural networks in which the evolution of the
signals is governed by a differential equation

(where the time here is regarded as an "infinitesimal layer"). We denote by aT(a, W(-))
the map which associates with a time-dependent synaptic matrix W(t) and an initial
signal a the final state x(T) obtained through this control system.

Hence, we have to find a time-dependent synaptic matrix W(.) minimizing the func-
tion

W(.) + H(W(.)) := E(@T(~ , W(.)) - b)

Again, in the continuous time version, we see that the final state XT is obtained
from the initial state xo through the dynamical system (3) controlled by the synaptic
matrices W(t).

In each of these cases, we have associated an adaptive system controlled by synaptic
matrices. Devising gradient algorithms for minimizing such functions (or other algo-
rithms) require the computation of the gradients of such functions defined on spaces
of matrices. This is where the tensor structure of the spaces of linear operators pops
up, since such gradients involve tensor products of vectors, which yield Hebbian rules,
and justify the specific role of neural networks compared to general adaptive systems.
Furthermore, since multi-layer neural networks are controlled problems, we can apply

the derivatives of these functions which involve the adjoint equations of the linearized
dynamical systems

pr = ~ < g k , (~ l x l) * p r + l

retropropagating the gradient E1(xL - b) of the error on the final state and

retropropagating the gradient E1(x(T) - b) of the error on the final state.
These two facts allow us to derive the back-propagation of the gradients formula.
Hence the task at hand is to compute the derivatives of these maps and their

transpose, in order to write down the algorithms.

3 Tensor Products

3.1 Tensor Products of Vectors

Let X := Rnbe a fundamental, X* := L(X, R) denote the dual space of X, which is the
vector space of linear functionals p : X + R on X . The bilinear form < p, x >:= p(x)
on X* x X is called the duality product. Let Y := Rm be another finite dimensional
vector space. We recall that the transpose W* E L(Y*,X*) is defined by

< W*q,x > = < q,Wx > for all x E X, for all q E Y*

Let p belong to X*. We shall identify the linear form p E L(X, R) : x E X +< p, x >
with its transpose p E L(R,X*) : X + Xp E X*. In the same way, we shall identify
x ~ x w i t h b o t h t h e m a p s p ~ X * + < p , x > ~ ~ ~ X E R + X X E X .

W e associate with any p E X* and y E Y their tensor product p 8 y E L(X, Y), which
is the linear operator defined b y

the matrix of which is

Its transpose (p 8 y)* E L(Y*, X*) maps q E Y* to

because < q, < p, x > y >=<< q, y > p, x >. Hence, we shall identify from now on the
transpose (p 8 y)* with y 8 p.

In the same way, if q E Y* and x E X are given, the tensor product q 8 x denotes
the map y E Y +< q, y > x E X belonging to L(Y,X) and its transpose p E X* +<
p, x > q E Y* belonging to L(X*, Y*) is identified with x 8 q.

We observe that the map (p, y) E X* x Y + p 8 y E L(X, Y) is bilinear.
It is useful to set

X* 8 Y := L(X, Y)

to emphasize this structure.

3.2 Tensor Products of Linear Operators

Let us consider two pairs (X , X1) and (Y, x) of finite dimensional vector-spaces. Let
A E L (X 1 , X) and B E L(Y, Y l) be given. Since A* E L(X*, XF), we denote by A* @ B
the linear operator from X* @ Y := L (X , Y) to XF @ Yl := L(X1 , Yl) defined by

(A * @ B) (W) := B W A for all W E L (X , Y)

We observe that when W = p @ y , we have

(A* @ B)(p @ Y) = A*P @ BY

and that
(A* @ B)* = A @ B*

Let Al E L (X 2 , X 1) and B1 E L(Yl , Y2). Then, it is easy to check that

3.3 Gradients of Functionals on Linear Operators

One main reason to introduce the concepts of tensor products is given by the following

Proposition 3.1 Let us consider three spaces X , Y and Z , an element x E X , a dif-
ferential m a p g : Y -t Z , with which we associate the m a p Q : W -t Q (W) := ~ (W X) .

The derivative of Q at W E L (X , Y) is given b y

Furthermore, if E be a diflerentiable functional from Z to R, setting H (W) :=
E (g (W x)) , the gradient of H at W E L (X , Y) is given b y

H 1 (W) = x @ ~ ' (W X) * E ' (~ (W X)) E L(X*, Y*)

Proof - Indeed,

Q(W + XU) - Q (W) I !2 X

g(TNx + XUx) - g (W x)
= lim I A-0 A

The chain rule implies the second formula.

4 Back-Propagat ion Algorithms

4.1 Gradient Methods

Multi-layer and continuous-layer neural networks being special discrete and continuous
control problems, we can derive from control theory the formulas for the derivatives
of the maps @L and and their transposes involving the "adjoint equation". The
formulas on tensor products are then used when the controls are synaptic matrices.

In the case of a one-layer neural network described by a propagation function g :
Y -+ Y, the map @ is defined by

and given an evaluation function E on the output space Y and a pattern (a, b), we look
for a synaptic matrix which minimizes the function

Then the gradient of H is given by

the entries of which are equal to

The gradient method can then be written

It yields for each entry:

It belongs to the class of Hebbian learning rules: the synaptic weight from a neuron
j to a neuron i should be strengthened whenever the connection is highly active, in
proportion of the activity of the pre-synaptic and post-synaptic neurons of the synapse.

In the case of a multi-layer network described by the vector spaces Xo := X, XI
(1 = 1,. . . , L - 1) and XL := Y and differentiable propagation rules gl : Xl -+ XI, the
map QL associates with a the sequence (Wl,. . . , WL) of synaptic matrices the final state
XL of the sequence of states starting from xo := a according to

x1 = gr(Wlxr-l) for all 1 = 1,. . . L

Given an evaluation function E defined on the output space XL, we are looking for a
sequence (W1)l=l,...,~ of synaptic matrices minimizing the function

The "back-propagation" learning rule is nothing else than the gradient method ap-
plied to this function H :

When the maps gl and the evaluation function E are differentiable, the gradient of
H is given by the formula

where pl is given by the adjoint equation

retropropagating the gradient E 1 (x L - b) of the error on the final state. We check that

In other words.

The gradient method + provides the celebrated back-propagation algorithm: Starting
with a synaptic matrix W O , we define w;+' from the synaptic matrix I f n according to
the rule

n w;I+~ - Wl = -E xn n * n n 1-1 8 9I(x[) pl+l
where x r = g l (Wlnxr - l) (starting at x i = a) and where pi' is obtained from the final
condition E 1 (x t - b) through the adjoint equation of the linearized discrete control
system:

n* I
P; = wl+l9l+l(x;+l 1*p;+1

It is given by

We begin by modifying the synaptic weights of the synaptic matrix of the last layer L
by setting pZ := Et(xZ - b) and then computing pL-l := W ~ * ~ ~ (X ~) * ~ ~ : the new matrix
is obtained through the Hebbian rule

Then, the gradient is "back-propagated" to modify successively the synaptic matrices
W? of each layer I from the last one to the first one through the adjoint equation and,
at each layer, according to an Hebbian rule.

In the case of a continuous-layer network, the evolution of the signals is governed by

Denoting by Q T (a , W (-)) the map which associates with a time-dependent synaptic
matrix W (t) and an initial signal a the final state x (T) obtained through this control
system, we have to minimize the function

The continuous back-propagation learning rule is nothing else than the gradient method
applied to this function H.

We associate with a time-dependent synaptic matrix W(.) the solution x(.) to the
continuous neural network starting at x(0) = a the solution p(.) to the adjoint differential
equation

~ ' (t) = -W(t)*gl(W(t)x(t))*p(t)

starting at pw(T) = E1(x(T) - b). Then the gradient of H is

The gradient method provides the continuous back-propagation algorithm. Starting with
a synaptic matrix WO(-), we define Wn+' (-) from the synaptic matrix Wn(-) according
to the rule: For all t E [0, TI,

where xn(.) is the solution to the differential equation

starting at xn(0) = a and where pn(-) is the solution to the adjoint differential equation

starting at pn(T) = E'(xn(T) - b).

4.2 The need for nonsmooth optimization
We may not always have the possibility to choose the evaluation function E and for
instance, the opportunity to choose the simplest ones, as in the case of least-square
methods. In the learning problem of control systems, for instance, when one deals with
viable solutions to control systems, the evaluation function is the function measuring the
distance from a point to a set, which is not differentiable. However, nonsmooth analysis,
and in particular, convex analysis, provide ways to define generalized gradients of any
function. Generalized gradient (which boil down to subdifferential in the case of convex
functions) are no longer elements, but subsets. They allow us to extend the gradient
methods. This is not the right place to recall precisely how generalized gradients are
rigorously defined: We refer to (Aubin J.-P., 1993) or to Chapter 6 of (Aubin J.-P. &
Frankowska H., 1990) for an introduction to nonsmooth analysis. For instance, if E is
locally Lipschitz and g is differentiable, we deduce that the generalized gradient of the
function H is given by

since the generalized gradient of the function \k : y + \k(y) := E(g(y)) is equal to

g'(y)*aE(g(y)).
We refer to the papers by Nicolas Seube and to (Aubin J.-P., 1994) for further details

on this topic.

5 The Heavy Learning Algorithm for Neural Net-
works

We consider a class of neural networks of the form

where

i) $: X -t Z1 maps the input space to the input layer

ii) the synaptic matrix W E L(Z1, Z2)
weights the processed signal $(x)

iii) G : X -t L(Z2, Y) maps the weighted processed signal to
the output space

which are affine with respect to the synaptic matrices. Let F be a finite teaching set of
patterns (a,, b,) E X x Y. Hence we have to find a synaptic matrix Wp learning the
training set in the sense that

~ (a ,) + G(a,) Wp$(a,) = b, for all p = 1, . . . , P (5)

Assuming that Wp-1 has been obtained for learning the P - 1 input-output pairs

(up, b ~) l (p (~ - l , we want to find a new synaptic matrix Wp which learns the whole new
teaching set (a,, b ~) ~ ~ , ~ p according to the "heavy rule"

Wp minimizes W -t IIW - WP-1 1 1

under the constraints (5).
For that purpose, we need the concept of pseudo-inverse Cel E L(Y, X) of a matrix

C E L(X, Y). It maps any y E Y to the closest solution with minimal norm 2 = Cely,
i.e., the solution with minimal norm to the equation Cx = y where y is the projection
of y onto the image of C. The pseudo-inverse coincides with the usual inverse when
C is invertible, is involved in quadratic minimization problems under linear equality
constraints and enjoys many properties (which are often used in statistical analysis).

Since we define the synaptic matrix Wp as a solution to a quadratic minimization
problem under linear equality constraints, we have to use the pseudo-inverse of a tensor
product of matrices. However, one can prove that the pseudo-inverse of a tensor product
is the tensor product of pseudo-inverses: this is a very useful property of tensor products
since pseudo-inverses of linear operators pop-up in many applications, statistics and data
analysis, for instance. This is what we shall do for our problem:

We posit the assumptions

i) c : X -t Y & $: X -t Z1 are continuous

ii) G : X -t L(Z2, Y) is continuous
iii) G(x) E L(Z2, Y) is surjective for all x E X

and
the elements $(a,) are mutually orthonormal

Then the "heavy algorithm" associates with the synaptic matrix WP-' the new synaptic
matrix Wp defined by formula:

This is also a Hebbian rule, in the sense that the correction of the synaptic matrix
Wp-1 is obtained by adding to it a matrix p 8 u whose entries p;ej are proportional t o the
product of activities in the presynaptic and postsynaptic neurons. It uses only the former
synaptic matrix WP-' and the last pattern (ap, bp) for making the correction.

6 Newton algorithms

We recall that in the last analysis, a neural network with one layer, or several layers, or
a continuous set of layers maps inputs x to outputs y = @(x, W).

We have to find synaptic matrices learning one pattern, i.e., satisfying the equa-
tion

Y(W) := @(a, W) - b = 0

Instead of replacing these nonlinear problems by optimization problems to which we
apply gradient methods, we may investigate the use of Newton algorithms:

Y'(Wn) (wn+' - w") = -6Y(Wn) for all n 2 o

starting at some initial matrix WO, where 6 > 0 is given. Since the linear operators
Y'(Wn) are not necessarily injective, we shall use the slow Newton algorithm, i.e.,
choose Wn+' such that the norm of the discrete velocity Wn+' - Wn is minimal among
the solutions of the above equation. By using the pseudo-inverse of the operators Y1(E),
the slow Newton algorithm can be written:

w"+' - Wn = -6Q'(Wn)"Y(Wn) for all n 2 0

In the case of a one-layer network associated with a differentiable propagation func-
tion g, we have to solve the equation

The slow Newton algorithm is

The situation becomes more complicated for multi-layer networks. We are looking
for a sequence of synaptic matrices learning a pattern (a, b) E Xo x XL, i.e., a solution
(Wl , . . . , WL) to the nonlinear equation

We have to compute the differential @;(a, W,", . . . , W t) to make explicit the slow
Newton algorithm

- I?n = d (@;(a, W;, . . . , ~ 2)) ~ ' (b - QL(a, W; , . . . , Wz)) for all n 2 O

starting at some initial matrix I?', where d > 0 is given.
If (W:, . . . , WZ is a given sequence of synaptic matrices, we denote by xr the solu-

tions to the problem

xi' = gr(Wrxy-l) for all I = 1,. . . L

starting from xo := a.
We set Ar := g;(xr)W," and

Let us assume that the propagation maps g, are differentiable and that the derivatives
g; satisfy

L
I I X ; - ~ (1 2 ~ " (~ , k)g;(x;) are surjective for all n _> 0

k = l

We denote by ;rrE E Y := X L the solution to the equation

The sequence (W,", . . . , W t) of synaptic matrices W," determined by the slow Newton
algorithm for mapping the input a to the output b is given by the formula

w;+' - W; = @ gj;(x;)*Gn(L, k)*;rrZ for all k = 1,. . . , L

The Newton algorithm keeps a Hebbian character.
These formulas can be adapted to continuous-layer networks and/or to the case of

learning several pat terns.

7 Discussion

In classification problems, synaptic matrices which learn a given set of patterns are
equilibria of a nonlinear problem, which are computed through gradient and Newton
type algorithms.

However, by looking only at static or asymptotic problems (mapping inputs onto
outputs, or finding equilibria and more generally, attractors), the evolution mechanism
is neglected and the "real" time used to model the neural networks is often replaced by
artificial times. For instance, the algorithmic time, describing the iterations of a given
algorithm, is often interpreted as a learning rule, although it may not be related to the
time involved in the modeling of the network. Or, in the case of multi-layer networks,
the layers of the network represent a second time scale.

By choosing the route used by most neural networks, one may bypass the basic
question: Why a n d How do synaptic matrices evolve? and the basic answer: To adapt
to viability constraints through learning laws which are feedbacks of the neural network
regarded as a control system, associating at each instant with any signal a synaptic
matrix allowing the adaptation to viability constraints. Among the at tempts to answer
such questions, we refer to a dynamical point of view presented in (Aubin J.-P., 1994)
and the papers of Nicolas Seube.

Indeed, two recent mathematical developments contributed to enrich available tools
for studying the class of particular systems arising in neural networks and more gener-
ally, in biological, social and economic sciences. Set-valued maps arise naturally in these
fields, and set-valued analysis, which deals with the extension of the differential and in-
tegral calculus to set-valued maps, became a "must" in those domains (see for instance
(Aubin J.-P. & Frankowska H., 1990)). Viability theory attempts to model Darwinian
evolution by encapsulating the concept of (contingent) chance by differential inclusions
instead of stochastic differential equations and necessity by state (or "viability") con-
straints to which at least one evolution starting from any initial state must comply (see
for instance (Aubin J.-P. & Frankowska H., 1990, Aubin J.-P. 1991, Frankowska H.,
1995))

8 References

+ ARBIB M.A. (1987) BRAINS, MACHINES, AND MATHEMATICS, Springer-Verlag
+ AUBIN J.-P. (1991) VIABILITY THEORY, Birkhauser
+ AUBIN J.-P. (1993) OPTIMA A N D EQUILIBRIA Springer-Verlag
* AUBIN J.-P. (1994) NEURAL NETWORKS AND QUALITATIVE PHYSICS: A VIA-

BILITY APPROACH Cambridge University Press
+ AUBIN J.-P. & FRANKOWSKA H. (1990) SET-VALUED ANALYSIS, Birkhauser
AUBIN J.-P. & SEUBE N. (1991) Apprentissage adaptatif d e lois d e re'troaction d e

systkmes contr6le's par re'seauz d e neurones, C. R. Acad. Sci., Paris, 314, 957-963
AUBIN J.-P. & SEUBE N. (1993) Apprentissage des feedbacks contr6lant des sys-

tkmes sous contraintes d'e'tat par des re'seauz d e neurones, contrat # 911411 pass6 par
la Direction Recherche Etudes et Techniques

* FRANKOWSKA H. (1995) SET-VALUED ANALYSIS AND CONTROL THEORY,
Birkhauser, Boston, Basel, Berlin

+ KOHONEN T. (1984) SELF-ORGANIZATION AND ASSOCIATIVE MEMORY. Springer-
Verlag, Series in Information Sciences, Vol. 8

+ McCLELLAND J. L. , RUMELHART D. E. & (Eds.) (1986) PARALLEL DIS-
TRIBUTED PROCESSING (VOL.~) . M.I.T. Press

SEUBE N. (1993) A State Feedback Control Law Learning Theorem, in NEURAL
NETWORKS IN ROBOTICS, 175-191 Kliiwer Academic Publisher

