
Working Paper 
SIMPLEX v. 2.17: 
an Implementation 

of the Simplex Algorithm 
for Large Scale Linear Problems. 

User's Guide. 

Artur ~ w i ~ t a n o w s k i  

WP-94-37 
May 1994 

UllASA International Institute for Applied Systems Analysis A-2361 Laxenburg Austria 

k.;: Telephone: +43 2236 71521 Telex: 079 137 iiasa a Telefax: +43 2236 71313 



SIMPLEX v. 2.17: 
an Implement at ion 

of the Simplex Algorithm 
for Large Scale Linear Problems. 

User's Guide. 

WP-94-37 
May 1994 

Working Papers are interim reports on work of the International Institute for Applied 
Systems Analysis and have received only limited review. Views or opinions expressed 
herein do not necessarily represent those of the Institute or of its National Member 
Organizations. 

Ffl IIASA International Institute for Applied Systems Analysis A-2361 Laxenburg Austria 

ad: Telephone: +43 2236 71521 Telex: 079 137 iiasa a Telefax: +43 2236 71313 



Foreword 

The research described in this Working Paper was performed a t  the Institute of Automatic 
Control, Warsaw University of Technology as part of IIASA CSA activities on Methodology 
and Techniques of Decision Analysis. While earlier work within this project resulted in the 
elaboration of prototype decision support systems (DSS) for various models, these systems were 
closed in their architecture. In order t o  spread the scope of potential applications and t o  increase 
the ability to  meet specific needs of users, in particular in various IIASA projects, there is a need 
to  modularize the architecture of such DSS. A modular DSS consists of a collection of tools rather 
than one closed system, thus allowing the user to carry out various and problem-specific analyses. 

This Working Paper describes the SIMPLEX optimization solver for middle and large-size 
linear programming problems based on the modified simplex algorithm. SIMPLEX can be used 
for solving the relaxed mixed integer programming problem and thus providing an advanced basis 
for the MOMIP solver (documented in WP-94-35). Both solvers are designed and implemented 
as part of a wider linear programming library being developed within the project. 



Abstract 

This document presents SIMPLEX - a linear optimizer for large scale linear programs. Issues like 
command line syntax, data  input and output formats and interpretation of results are addressed. 
In order to make the interpretation of results and program's reports easier, some of the features 
of the implementation are also discussed. Finally, numerical test results give a measure of the 
code's true efficiency. 



Contents 

1 Introduction 1 

2 Modifications to the standard algorithm 1 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2.1 Formulation of the problem 2 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2.2 Linear problem scaling 2 
. . . . . . . . . . . . . . . . . . . . . . . .  2.3 Construction of a feasible initial basis 3 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2.4 Pricing and pivoting 3 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2.5 Dynamic numerical tolerances 4 

. . . . . . . . . . . . . . . . . . . . . . . . .  2.6 Detecting optimality and infeasibility 4 
. . . . . . . . . . . . . . . . . . . . . . . . . . .  2.7 Overcoming numerical difficulties 5 

3 Using the program 5 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3.1 Command line syntax 6 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3.2 Solver report file 8 

4 Input and output file formats 11 
. . . . . . . . . . . . . . . . . . . . . . . . . .  4.1 Text input file format . fixed MPS 11 

. . . . . . . . . . .  4.2 Binary input and output using LP-DIT data transfer protocol 12 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4.3 Text solution file format 12 

. . . . . . . . . . . . . . . . . . . . . . . . . . . .  4.4 Final (optimal) basis file format 13 

5 Numerical results 14 

6 Conclusions 15 

7 Acknowledgements 15 

A Compiling and linking SIMPLEX 15 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  A . l  Data  types 15 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .  A.2  Compile time reconfiguration 16 
. . . . . . . . . . . . . . . . . . .  A.3  Compiling the solver on a PC-based computer 17 

vii 



SIMPLEX v. 2.17: 
an Implementation 

of the Simplex Algorithm 
for Large Scale Linear Problems. 

User's Guide. * 

Artur Swietanowslci** 

1 Introduction 

SIMPLEX is an experimental implementation of Dantzig's [3] revised simplex method for large 
scale linear programs. It contains quite a few of the enhancements typically available in com- 
mercial linear programming packages. Those include sparse inversion routines, scaling, crashing, 
non-standard pricing and pivoting techniques etc. 

Section 2 gives a brief overview of those features with focus on their impact on program's re- 
ports' interpretation. Section 3 explains command line syntax and describes the typical program 
run, including the  on-line activity report. Section 4 provides the reader with short descriptions 
of available input file formats ( a  subset of IBM's MPS standard1 and the format proposed for 
L P - D I T ~ )  and a more detailed definition of output file formats. Since it is possible for the solver 
t o  supply the user with the final (possibly optimal) basis, the format of the file containing the 
basis description is also covered in that section. Results of numerical experiments conducted so 
far, are presented in section 5. They are immediately followed by final conclusions in section 6. 
Appendix A explains how to compile and link the program on a computer, on which the software 
was not already tried, and how to  change some of the operating characteristics to  suit user's 
particular needs. Obviously, this appendix may be useful only for users who have access to  
source codes. 

Throughout the document, it is assumed that  the reader is familiar with most of the the- 
oretical issues presented. Therefore, we will not provide a detailed description of the simplex 
method. Nor will we present lengthy discussions why one technique was used instead of another. 
Readers interested in such in-depth discussions are referred t o  ~ w i ~ t a n o w s k i  [15] as well as to  
other papers listed in the references. 

2 Modifications to the standard algorithm 

The simplex method is very well understood and documented (see e.g.: Dantzig [3] and Mur- 
tagh [13]) and there exist several very efficient commercial implementations (as e.g. CPLEX of 
Bixby [2], OSL of Forrest and Tomlin [4] and MINOS ver 5.3 of Murtagh and Saunders [14]). 

'This research was partially sponsored by the grant number P40301806 of the Polish Comitee for Scientific 
Research. 

I*  Institute of Control and Computation Engineering, Faculty of Electroncs and Information Technology, Warsaw 
Uniwersity of Technology, ul. Nowowiejska 15/19, Warsaw. 

'See e.g. [ l l ]  or [13] for more information. MPS standard description is also available in numerous other 
sources. 

'See Makowski [12] for details. 



A. ~ w i ~ t a n o w s k i  - 2 -  SIMPLEX v. 2.1 7 User's Guide 

The key to  its effectiveness and ability to cope with numerical difficulties lies in the numerous 
enhancements and improvements that have been invented throughout the years by many re- 
searchers. While the basic Dantzig's idea and algorithm remain unchanged, the various tricks 
make the difference between a good and a poor simplex method implementation. 

Quite a few of those tricks were used in SIMPLEX. Some of them are commonly known, but 
others are not as popular. As the optimization progresses, the program usually (see section 3) 
produces a report of its activity, which refers not only to  user's understanding of the simplex 
method, but also to  his (or her) knowledge of some details of this implementation. In order to  
make this report informative to  the reader, it is recommended that he (or she) should at  least 
leaf through this section and get acquainted with the terms used. 

2.1 Formulation of the problem 

We are concerned with a linear problem of minimizing objective function 

T min c x 

sub iect to  constraints 

where c ,  x E gn, b, r E gm and a;,, a;,, ai,, ai, (iE = 1,.  . ., mE, iL = 1 , .  . . , m ~ ,  iG = 

1,. . . , mG, i~ = 1, . . . , m ~ ,  mE + mL + mG + m~ = m) are respectively "equal to", "less than", 
"greater than" and "range" rows of the constraint matrix3 A ,  A E Xmxn. 

Depending on the values of simple bounds on primal variables x j ,  j E (1, .  . ., n)  each of 
them may belong into one of the following four categories: 

free variable (Ij = - co and u j  = +co), 

non-negative variable (Ij > -co and u j  = +co), 

bounded variable (Ij > -co and u j  < +co) and 

fixed variable (-co < l j  = u j  < +co). 

2.2 Linear problem scaling 

It is common practice to  scale a linear problem in order to improve its numerical properties. 
There exist many different definitions of a well (or badly) scaled problem. There are also quite 
a few different scaling schemes (see e.g. Tomlin [16]). Our approach is a simple one: we consider 
a problem well scaled if the absolute values of non-zeroes in each row and each column of the 
constraint matrix are distributed evenly around unity. To this end we find the smallest and the 
largest non-zero (with respect to  absolute value) of each matrix row (or column) and divide this 
row (or column) by its geometric average. 

We define a scaling quality estimate c~ for the constraint matrix A as: 

where i E (1, .  . . , m) and j E (1 , .  . . , n). We consider the matrix well scaled if c~ < 2. 

3 ~ h i s  roughly corresponds to  the format allowed by MPS standard for linear problem formulation - see 
section 4. 



A .  swie  tanowski - 3 -  SIMPLEX v. 2.1 7 User's Guide 

If the constraint matrix A is well scaled, scaling is not performed. Otherwise two consecutive 
passes of row and column scaling are performed. Scaling factors are computed so as not to  
introduce any roundoff errors. To this end we compute "ideal" scaling factors and then use their 
approximation by an integral power of two (for details see [15]). 

2.3 Construction of a feasible initial basis 

After converting the problem t o  standard (equality) form, there's a need t o  find an initial solution 
to the problem. From now on, A will refer to  the constraint matrix of the problem in standard 
form (i.e. with slack variables added). 

The algorithm used for initial basis construction is a variant of Bixby's [2] idea of dividing 
the variables into so-called preference sets, and then building the basis using as many columns 
of the original constraint matrix as possible. Our algorithm is simplified by requirement that  a 
(permuted) triangular basis always has to  be found. Since our basis inversion routines are not 
capable of recovery from numerical difficulties, the basis has to  be invertible. For that  reason, 
a numerical tolerance for initial basis pivot is also introduced. When the process is finished 
without producing a complete basis, the missing places are filled with unity columns and their 
corresponding artificial variables are added. 

A solution XN = 0,  xg = B-'b obtained with this basis B is not necessarily feasible. We 
deal with this problem by modifying the initial problem t o  one, in which the basis we just found 
would provide a feasible initial solution. The new problem takes the following form: 

min cTx + Mt  

subject to  constraints 

where X denotes a column for which the solution xg = B- 'b ,  XN = 0 and t = 1 is feasible 
(see section 2.6 for details of recovering the optimal solution of the original problem from the 
solution of the modified problem). M  denotes a large positive penalty for non-zero values of 
the so-called super-artificial variable t .  It is obvious that  any infeasibility of the initial basic 
solution found by the crashing algorithm may be disposed of by adding a single column A ,  which 
is computed as 

X = b - A x = b - B x g - N x N = b - B x g  

and thus may also be called a signed residual vector. 
Some efficiency considerations (see [15]) have led us to believe that  it is advantageous to  

create a single super-artificial variable and its corresponding constraint matrix column for each 
row infeasibility (represented by a non-zero in the X vector above). As you will see later, the 
number of row infeasibilities is reported by the program as a number of super-artificial variables. 

2.4 Pricing and pivoting 

Pricing and pivoting schemes used are fairly standard. We use a certain combination of partial 
and multiple pricing which has a nice property of being as effective (in terms of total number of 
iterations) as full pricing, but nearly five times faster. This is achieved by remembering a few 
"next best" candidates from the previous iteration and checking their reduced costs in addition 
to  the reduced costs of the columns belonging t o  the part of the constraint matrix that  is to  
be scanned in current iteration. The reduced costs are not updated - both they and the dual 
variables are computed anew a t  each iteration4. 

4Future releases of SIMPLEX will most likely employ either Goldfarb's [7] steepest edge algorithm, or at least 
some kind of reduced costs updating technique. 



A .  ~wietanowski - 4 -  SIMPLEX v. 2.17 User's Guide 

During pivoting we employ Hariss' [lo] technique for finding a numerically stable pivot that  
would not violate feasibility by more than a prescribed feasibility tolerance. 

2.5 Dynamic numerical tolerances 

Our algorithm is equipped with a set of numerical tolerances, that  are adjusted on the run as 
the numerical stability of the consecutive simplex bases changes. The tolerances include: 

Zero tolerance S s .  Numbers with absolute value not larger than S s  are considered zero. 

Feasibility tolerance S F .  We allow the solution to  violate the simple bounds on variables 
by no more than 6 ~ .  

Optimality tolerance So .  We consider a move in direction r! profitable only if the 
reduced cost cTV for this direction is smaller than -So .  

Pivot tolerance S p .  During a search for a basic column about to  leave the basis, we 
consider only pivots with absolute values larger than S p  to be actually non-zero (and thus 
eligible pivots). 

Inverse pivot tolerance p. A non-zero is eligible to  become a pivot in the basis inverse 
representation only if it is equal a t  least p times the absolute value of the largest non-zero 
of its row. 

Minimum refactorization frequency fRmin .  The basis is inverted anew after at  most 
f R  min updates. 

Maximum non-zero growth factor NGROWTH. The basis is reinverted if the largest 
absolute value of its factors exceeds NGRoWTH times corresponding value from the latest 
factorization. 

Maximum non-zero number factor NNUMBER.  The basis is reinverted if the total 
length (number of non-zeros) of its factors exceeds NNUMBER times their number after 
the latest factorization. 

The values of NNUMBER and NGRoWTH remain unchanged throughout all iterations of the 
algorithm. Other values are subject to change whenever some serious numerical difficulties arise, 
or - conversely - the problem appears to  be easier than a t  some earlier stage. When the program 
detects it is close t o  optimum, very strict numerical tolerances are taken in order to  provide the 
user with an accurate solution. 

To allow a reasonable level of control over the dynamic tolerances, they are all adjusted 
together, which is usually reported by the program - see section 3. 

2.6 Detecting optimality and infeasibility 

Our technique for obtaining the initial feasible basis is paid for by a certain complication of 
the method used for detecting optimality. As noted in section 2.3, the modified problem either 
is unbounded or has a feasible optimal solution. We may say that the modified problem is a 
relaxed version of the original one, therefore its unboundedness may still be detected in the 
standard manner and will not be the subject of this section. Indeed, we will (until the end of 
the current section) assume that  the original problem is either bounded or infeasible. 

When all artificial variables are equal to zero, an optimal solution to  the modified problem 
(see section 2.3 for the modified problem formulation) is also an optimal solution to  the original 
problem. If, however, some of them should be non-zero, it may mean that  either the penalty M 
for their non-zero value is too small, or the original problem is infeasible. To decide what the 
actual reason is for the non-zero values of those variables, we increase the penalty M tenfold. 



A.  ~ w i ~ t a n o w s k i  - 5 -  SIMPLEX v. 2.1 7 User's G u i d e  

If the solution still appears to  be optimal after ten such operations (i.e. after an  increase of 
M by 10l0), we report infeasibility of the original problem. Otherwise we continue t o  solve the 
problem with increased penalty. As experience with the NETLIB test problems5 has shown, the 
value of penalty M we choose initially is sufficient in almost all cases. 

2.7 Overcoming numerical difficulties 

While most of the test problems that we have worked with so far are solved without encounter- 
ing numerical difficulties, we found it more than worthwhile to  introduce some precautionary 
measures as well as a few strategies aimed at  solving numerically difficult problems. The pre- 
cautionary measures are: 

periodical re-inversion of the basis, 

using threshold pivot tolerance p in inversion routines, 

using pivot tolerance b p  during search for the column leaving basis and 

monitoring the growth of number and size of non-zeros in current basis inverse represen- 
tation. 

Numerical difficulties which have not yet manifested themselves by producing a singular 
basis, may still be detected by periodically checking the primal and dual residuals and primal 
infeasibility. Large residuals cause the program to assume the problem is numerically difficult 
and adjust tolerances accordingly6. 

Even bigger residuals will eventually lead to  backing out of a number of iterations7. The 
purpose of such an action will be to go back to  a basis which is presumed to be numerically 
stable. The columns introduced into the basis between that  stable basis and the moment when 
the difficulties were detected are marked as dangerous and are not allowed t o  go back into the 
basis until they are the only ones with favorable reduced costs. If - despite the precautions - a 
basis singularity occurs, we also back out of some of the last iterations (as described above). 

3 Using the program 

The simplex algorithm described (with its modifications) in section 2 of this paper has been 
implemented as a large scale, sparse linear problem optimizer SIMPLEX. 

The program is primarily designed to  work under control of the UNIX System V operating 
system. However only the time measuring functions are dependent on the operating system 
function calls. Thus porting the program to e.g. VMS environment should not pose any problem. 

It is also possible to  compile and run the program in the DOS operating system environment 
with DOS version 3.30 or later. As PC-based computers are not particularly well suited for truly 
large scale computations, there are many limitations when SIMPLEX is run on a PC equipped 
with a DOS system. For example, its time measuring functions and binary input in LP-DIT 
format are not available. For more details on this topic consult appendix A.3. 

The program accepts a fixed MPS format input file in which the linear problem is defined 
(see also section 4). Current version solves only minimization problems. Alternatively, a binary 
input file in LP-DIT format may be used8. At runtime the program may generate a report of 
its activity and store it either in a log file, or display it on the screen, or do both. 

5A collection of standard test problems for linear programming codes' evaluation was proposed by Gay [ 5 ] .  
Currently a so called NETLIB test collection is available by f t p  from r e s e a r c h .  a t t .  corn when using anonymous 
user account n e t l i b .  

'Appropriate message is put in the report file, or on the screen, or both. 
7Program reports such an action using term "backtracking". 
'For more information on LP-DIT's origin and purpose as well as it 's operating characteristics and specifica- 

tions, see [12]. A brief description may also be found in section 4.2. 



A .  ~ w i ~ t a n o w s k i  - 6 -  SIMPLEX v. 2.1 7 User's Guide 

If an optimal solution t o  the problem is found or the problem is deemed unbounded or 
infeasible, a file with the solution may be created. The file will contain the optimal solution 
found, or the primal and dual variables and reduced costs a t  the moment, where the infeasibility 
or unboundedness was detected. The file may either be stored in text form or in LP-DIT format. 
On request, the optimal basis may be output for use by other programs. The basis output format 
will be described in section 4.4. 

In case the program is unable t o  find a solution and stops for another reason, the solution 
file is not created. There are three situations when the program may stop without arriving a t  
any solution to the problem: 

1. numerical difficulties were encountered that  could not be overcome, 

2. the iteration limit for the current problem was exceeded or, 

3. a severe internal error has occurred in the program. 

The last two reasons why the program may be aborted require an  explanation. Since the 
program is essentially an experimental code, we had to  take into account that  in some cases 
it may fail to provide a solution. It is therefore equipped with a mechanism for breaking 
the computation process when stalling occurs. If an iteration limit of C(m + n)  (where m. 
and n denote number of binding rows of the constraint matrix and the number of structural 
variables respectively, and C denotes a positive constant number specified by a user in one of 
the configuration files - see appendix A) is reached, the program aborts. It  is also possible for 
the program to  try to  detect the results of some programming errors and as soon as such an 
error is detected, break the computations with an appropriate message. For more information 
on iteration limit setting, self debugging and related issues, see appendix A. 

3.1 Command line syntax 

The command line syntax of the SIMPLEX program is: 
simplex [<options>] < i n p u t 2  i l e >  [ -b [ < b a s i s 2  i l e > l  1 
Currently available options are: 

1. -v <verb> 

This option allows one to set the desired report verbosity level (see section 3.2 for the 
meaning of the verbosity levels as well as report file formats). 

Recognized values of <verb>: none, l i n e ,  low, high. 

2. -t < b i n s o l u t i o n 2  i l e >  

< b i n - s o l u t i o n 2  i l e >  specifies a name of a binary (LP-DlT format) solution file t o  be 
created. Since LP-DIT functions perform random disk reads and writes, stream output is 
not possible. 

Depending on the value of < t e x t s o l u t i o n 2  i l e >  the solution will be output to  standard 
output stream or t o  a named file. 

Recognized values of < s o l u t  i o n 2  i l e > :  

f i l e n a m e  Solution will be written to  a file called f i l e n a m e .  The program does not 
check if such a file already exists. In case the file cannot be opened, the program will 
terminate with an  error message. 

= Solution will be output to  the standard output stream. 



A .  swie tanowski - 7 -  SIMPLEX v. 2.1 7 User's Guide 

At rutime the program may inform the user about the current state of computations by 
printing a report on the standard output (typically a screen) or to  a file. The length and 
detail of the report depends on the setting of verbosity level (see point 1 above). 

The -r option tells the program to  store the report in a file named < r e p o r t 2  i l e >  in 
addition t o  printing it on the screen. 

At ten t ion :  If verbosity level "none" is specified, this option is meaningless, since no report 
will be produced. 

5. -b (appearing before < i n p u t 2  i l e > )  

This option takes no arguments. It allows you to  turn off report output to the standard 
output stream ("b" stands for "blank"). This may be useful when the program is run in 
a batch (or in background) with all output directed to  files. 

At ten t ion :  If verbosity level "none" is specified, this option is meaningless, since no report 
will be produced. 

6. - d i t  

If this switch is specified, the < i n p u t 2  i l e >  is assumed to be an LP-DIT binary file. Fixed 
MPS format file is expected otherwise. 

7. -b (appearing after < i n p u t 2  i l e > )  

The optional last argument -b [ < b a s i s 2  i l e > ]  may be used to  indicate to  the program 
that  - if an  optimal solution is found - the optimal basis should be output to a file. 

Recognized values of  < b a s i s 3  i l e > :  

If you specify -b = the basis file is output to the standard output stream. Otherwise the 
basis is stored in a file named < b a s i s 3  i l e > .  

Defau l t  va lue  of  < b a s i s 2  i l e > :  

If < b a s i s 2  i l e >  name is omitted, a name built of the problem name (e.g. as found in 
NAME section of the MPS input file) and " .basn extension is assumed. If the option is 
altogether omitted, basis is not output at all. 

If the program is run in DOS environment period ("  .") characters in problem names are 
converted t o  underlines ( "-" ). 

Parameters <verb>,  < b i n - s o l u t i o n 2  i l e > ,  < t e x t - s o l u t i o n 2  i l e > ,  < r e p o r t 2  i l e >  and 
< b a s i s 2  i l e >  may be optionally separated from their option specifiers (respectively -v, -s ,  
- t ,  -r, -b) by whitespace. Character case in options is insignificant (except for file names, 
which are taken literally). Options may be given in any order (except, of course, the -b option), 
but may not be repeated. Repeated option is treated as a serious error and causes the program 
to  be aborted. 

By default: 

verbosity level is low, 

a fixed MPS format file is read, 

a binary solution file is not created, 

a text solution file is not created, 

a report is generated and output to the screen and 

the optimal basis is not output. 



A. ~ w i ~ t a n o w s k i  - 8 -  SIMPLEX v. 2.17 User's Guide 

At least one input parameter ( < i n p u t 3  i l e > )  is required. It may either be the name of an 
input file (see also section 4),  or "=" which tells the program to  read input from its standard 
input stream. As was noted before, only MPS file may be read from a stream. 

Additional arguments following the part of the list that  was successfully parsed, are con- 
sidered a serious error. In case of any error in the argument list, the program will produce 
appropriate error messages and a concise usage note (including command line syntax) and ter- 
minate. 

Here are some examples of command lines together with their interpretation: 

simplex -s a f i r o . s o 1  a f i r o  
Input file: Fixed MPS read from file af i r o .  
Report verbosity: Set to  default low. 
Report file: Written only to  standard output. 
Solution file: Written to  text file af i r o .  s o l .  
Basis file: Not created. 

z c a t  af i r o  .Z I s implex -t a f i r o . s o 1  = 
Input file: Fixed MPS read from standard input (by a pipe). 
Report verbosity: Set to  default low. 
Report file: Written only to standard output. 
Solution file: Written to  binary file af i r o .  s o l .  
Basis file: Not created. 

simplex -vHigh -s s o l u t i o n  -r r e p o r t  -b a f i r o  
Input file: Fixed MPS read from file af i r o .  
Report verbosity: Set to  high. 
Report file: Written only t o  file r e p o r t .  
Solution file: Written t o  a text file named s o l u t i o n .  
Basis file: Not created. 

simplex -t -sol  - d i t  af i r o  -b af i r o . b a s  
Input file: LP-DIT format read from file af i r o .  
Report verbosity: Set to  default low. 
Report file: Written only to standard output. 
Solution file: Text file not created, binary file -sol  written. 
Basis file: Written to a file named af i r o  .bas.  

3.2 Solver report file 

Depending on the verbosity level, the program generates a report in one of three possible formats. 
Each type of report serves a different purpose. A report will not be generated a t  all if verbosity 
level is set to  none. In all other cases, a report will be produced. For information on setting 
verbosity level see section 3.1. 

Figure 1: Example of SIMPLEX report in l i n e  verbosity mode. 

af i r o  1 271 321 831 9.60611.356E+001Unscaled! 1 
27 I 0  I 0  I 131 -4+647531428571E+021 
0.051 0.021 0.001 0.051 0.12 

When verbosity level is set to  l i n e ,  the whole report will be printed in one line with all 
information aligned t o  form a single line of a table. This form of report is useful when a series of 



- 9 -  SIMPLEX v. 2.1 7 User's Guide 

Table 1: Contents of the report line in l i n e  verbosity mode. 

in consecutive 

test problems is being optimized and a table of results will be needed. Each solved problem will 
add one row to  the table. After manual addition of a table header, the table is ready. Figure 1 
presents an example of one line report for NETLIB problem af i rog .  

Table 1 describes the contents of a single line report. As it can easily be seen, only the most 
essential information about the problem and its solution is presented. If the problem was not 
solved, or was found infeasible or unbounded, one of the following messages will appear in place 
of the objective function value: Unsolved!, S t a l l e d ! ,  I n f e a s i b l e !  or Unbounded!. 

Figure 2: Various messages produced by SIMPLEX in low verbosity mode. 

Numerical d i f f i c u l t i e s  : success fu l  r e f  a c t o r i z a t  ion .  
Numerical d i f f i c u l t i e s  : r e f  a c t o r i z a t i o n  f a i l e d .  
Column r e t r y !  
I t e r :  100 Resu l t :  3 . 7 9 E - 0 2 I n f e a s i b i l i t y  = 3.15E-04 
I t e r :  100 Resu l t :  3.79E-02 Primal Residuals = 3.15E-04 
I t e r :  100 Resu l t :  3.79E-02 Dual Residuals = 3.15E-04 
I t e r :  100 Resul t  : 3.79E-02 Tolerances f o r  ha rder  LP 
I t e r :  100 Resu l t :  3.79E-02 Tolerances f o r  e a s i e r  LP 
I t e r :  100 Resu l t :  3.79E-02 Taking f i n a l  t o l e r a n c e s  

A short report (output when verbosity level is set to low) is the default. It provides the user 
with essentially the same information as the single line report does, but in a much more readable 
form. The report begins with the header information, which presents the program. Next, an  
input file format and a linear problem name are given. Next, information about the results of 
scaling and crashing are shown. The main part reports all numerical difficulties encountered 
and how they were handled. It also informs about all adjustments to numerical tolerances. In 
the best case scenario (that is in case of easy problems), this part may consist of one line stating 

'As the output line is over 150 characters long it can only be printed here broken into three lines. 



A. ~ w i ~ t a n o w s k i  - 10 - SIMPLEX v. 2.17 User's Guide  

Figure 3: Example of output produced by SIMPLEX in low verbosity mode. 

............................................................................ 
SIMPLEX v .  2.17 (c)  1992, 1993 Artur Swietanowski 
Developed i n  Warsaw University of Technology, I n s t i t u t e  of Automatic Control 
............................................................................ 
Reading input f i l e  i n  f i x e d  MPS format.  
Linear problem name is  AFIRO. 

I n i t  cond. = 1.356E+00 No scal ing!  
Cols : 27 o r i g .  0 a r t  i f .  2 s u p . - a r t i f .  
I t e r :  11 Resul t :  -4.44E+02 Taking f i n a l  to le rances  

Optimum reached. I t e r :  11 Result:  -4.647531428571E+02 

Times: Reading LP To standard I n i t .  bas i s  Solut ion Tot a1 
0.05 0.02 0.02 0.05 0.13 

that  the final tolerances are taken. Finally, the time spent in different parts of the program are 
given1'. 

Figure 2 presents all possible messages that  you can encounter in the main part of this type of 
SIMPLEX activity report. Whenever residuals trigger some kind of alarm, or when tolerances are 
adjusted (which quite often goes together - see sections 2.5 and 2.7 for more details) the user 
is also provided with current value of objective function and the number of simplex iteration. 

Figure 3 presents a full report in low verbosity mode. It is a report from the solution of a 
linear problem af i r o  from the NETLIB test problem collection. The first line under the header 
informs the user what is the value of the initial scaling quality estimate. The next line says 
that  the initial basis was built using 27 original columns with no artificial columns added. The 
initial basis found was infeasible (2 super-artificial columns). Since it is a very simple problem, 
no difficulties were encountered and after 11 iterations, the problem was solved. Then follows 
the solution time broken up into four stages. 

The fullest report possible is produced in high verbosity mode. It contains all the information 
presented by the short report presented before, additionally some problem statistics and - what's 
more important - a report line for each simplex iteration. Figure 4 presents an example of high 
verbosity mode report for the same NETLIB problem af i ro .  The information not seen in the 
previous example includes: 

statistics of the linear problem constraint matrix: 

- number of rows, 

- number of columns, 

- number of non-zeros and 

- density in per cent 

statistics for constraint matrix rows: 

- number of rows with ranges", 

''All times were measured using times0 system function specific to UNIX System V environment. If the 
program is compiled and run under control of a different operating system, time measuring will not be performed 
and this part of report will be absent. For more details on time measuring in different operating systems see 
appendix A. 

11 Each range row is counted both here and in the count of rows of the type corresponding t o  its type. 



SIMPLEX v. 2.17 User's Guide 

- number of equality rows, 

- number of "less than" rows and 

- number of "greater than" rows. 

statistics for constraint matrix variables: 

- number of fixed variables, 

- number of free variables, 

- number of bounded variables and 

- number of normal variables. 

information about  each iteration: 

- number of iteration I t e r ,  

- reduced cost of the column entering the basis RC, 

- length of the step made in the direction implied by the entering column STEP, 

- number of the entering column C I N ,  

- number of the column leaving the basis C OUT (this field may be empty during iter- 
ation, in which a bounded variable moves between its bounds and the basis is not 
changed), 

- space between the two last columns, in which an asterisk may appear t o  mark the 
iteration in which the  basis was re-inverted, 

- the current objective function value (COST). 

The  messages signaling numerical difficulties are similar t o  those of the short report, only 
tha t  there is no need t o  prefix them with the iteration number and the current objective function 
value. 

4 Input and output file formats 

This section deals with formats of input and output files of SIMPLEX. While the text input file 
format conforms t o  a well known standard, that  does not need t o  be described in detail, the 
output files require a full description. The  following sub-sections will provide the reader with 
all information necessary t o  produce input files as well as interpret the program output .  

4.1 Text input file format - fixed MPS 

Fixed MPS file is so well known, tha t  we will only list the simplifying assumptions we have 
taken when implementing source file reading. Readers not familiar with the MPS file format are 
referred t o  book [14] by Murtagh, as well as t o  description of IBM's MPSX/370 linear algebra 
package [l :Ill. 

A list of main differences between the MPS fixed format described there and the  format 
SIMPLEX actually recognizes follows: 

all characters t ha t  stay outside of the fixed length fields are ignored without a warning, 

all labels in COLUMNS section are required, 

vector labels in RHS, BOUNDS and RANGES sections are ignored (consequently presence of 
only one vector in each of those sections is assumed), 

comments are not recognized (except full line comments starting with an  asterisk "*" 
character in the line's first column), 



A .  ~ w i ~ t a n o w s k i  - 12 - SIMPLEX v. 2.1 7 User's Guide 

first free row is considered to  represent the objective function, others are ignored, 

rows that  are linear combinations of some other rows are not recognized, 

BV is recognized in bounds section and is interpreted as "binary variable" with lower bound 
of 0 and upper of 1, 

RHS section is optional (as it may be empty), 

negative values in RANGES section are converted to  positive absolute values without a 
warning. 

4.2 Binary input and output using LP-DIT data transfer protocol 

Presently, one of the major uses of the SIMPLEX optimizer is solving of linear relaxations of mixed 
integer problems generated in binary form and passed to  solver via LP-DIT protocols12. Format 
of the binary files is not a part of LP-DIT specification, which only defines access methods. 

Whenever required, the linear problem is read from a named binary file (see also section 3.1 
on command line syntax). This form of problem input is significantly faster and more reliable - 
it does not depend on text parsing and conversion to  numerical values. Note, however, that  two 
identical problems, one read in LP-DIT format and one read in MPS format will have slightly 
different optimal objective values and - in case of larger and more difficult problems - SIMPLEX 
may follow a different path towards the optimum. These slight differences result directly from 
roundoff errors which are caused by the fact, that  LP-DIT passes floating point numbers in 
single precision, and SIMPLEX reads and stores numbers in double precision 13. 

Problem solution may also be produced in a binary format (see also section 3.1) using similar 
techniques. Again file format is irrelevant - LP-DIT user is only provided with a data  interchange 
interface. 

4.3 Text solution file format 

When requested SIMPLEX may produce a text solution file, which contains five sections: 

1. Header section: contains linear problem name (as read from the input file) and solution 
status, which may be OPTIMAL, UNBOUNDED or INFEASIBLE. 

2. Equations section: presents binding (i.e. non-free) rows of the constraint matrix in a 
table. The columns of the table contain: 

row number (free rows are not counted), 

row label, 

constraint type (as read from the input file), 

lower limit on row activity (or blank if there is none), 

upper limit on row activity (or blank if there is none), 

row activity and 

slack value for this row (or blank for equality rows). 

3. Dual variables section: lists values of dual variables for all non-free rows of the con- 
straint matrix. The first two columns of the table are identical to  the previous section, 
the third one contains the value of the dual variable. 

4. Columns section: presents a table with the final values of all primal variables together 
with some data  read from the input file. The table contains: 

12 For further information concerning LP-DIT see [12]. 
I3For more information on SIMPLEX data types see also appendix A.  



SIMPLEX v. 2.17 User's Guide 

column number, 

column label, 

variable type (as read from the input file), 

lower limit on variable value (- inf  denotes infinite lower bound), 

upper limit on variable value ( in f  denotes infinite upper bound), 

variable value and 

reduced cost (or dual slack) for this variable. 

5. O b j e c t i v e  section:  gives the final value of the objective function together with an esti- 
mate of the quality of the solution in form of infeasibility (computed as Euclidean norm of 
a vector of violation of primal variables' box constraints), primal residuals (an Euclidean 

norm of residual vector [ A i  - b]) and dual residuals (a norm of [ B T ~  - cg] vector). 

Figure 5 presents an example solution file for a simple linear problem named example. 

4.4 Final (optimal) basis file format 

As some programs may wish t o  use optimal basis found by SIMPLEX optimizer, it is possible for 
SIMPLEX t o  produce a text file in which the final basis is defined. For the sake of readability and 
portability between different computers, we have decided to  use a text format similar to  fixed 
MPS. 

The basis is defined in terms of basic columns and rows. A row is basic if its slack variable 
belongs in the optimal basis. Equality rows are also assumed to  contain slack variables, which 
are fixed a t  zero. Each section begins with an indicator line - one which has a keyword starting 
in the first column. The three sections of the basis file are interpreted as follows: 

1. BASIS section: 

It consists of a single indicator line starting with word "BASIS" in the first column. 
Columns 15 to  22 are occupied by problem name (as read from the input file and truncated 
to  8 characters). A word describing the status of the solution begins in column 25. It may 
be one of: 

OPTIMAL for a problem for which an optimal solution has been found, 

INFEASIBLE for a problem deemed infeasible, 

UNBOUNDED for a problem which has been found to  be unbounded and 

UNSOLVED for a problem that  has not been solved (see also section 3 for an explanation 
when this may happen). 

If a problem has not been solved, this section is also the last section of the basis file. If the 
problem was infeasible or unbounded, the basis is simply the last simplex basis produced 
during the simplex iterations. 

2. COLUMNS section: 

It starts with an  indicator line with word COLUMNS. In columns 25 to  36 of the indicator 
line, the number of columns of the problem may be found. After the indicator line, data  
lines follow. Each one consists of: 

"BA" (for a basic variable), 

"UP" (for a non-basic variable placed on its upper bound) or 

"LO" (for a non-basic variable placed on its lower bound) 

in columns 2 and 3, followed by the variable's label in columns 5 to  12. 



A. ~ w i ~ t a n o w s k i  - 1 4  - SIMPLEX v. 2.1 7 User's Guide 

3. ROWS section: 

It starts with ROWS indicator line. In columns 25 to 36 of this line, the number of problem's 
rows is found. After the indicator line, data lines follow. Each one consists of 

"BA" (for a constraint for which a slack is found in the final basis), 

"UP" (for a constraint, which was active in the last iteration with activity on upper 
bound) or 

"LO" (for a constraint, which was active in the last iteration with activity on lower 
bound) 

in columns 2 and 3, followed by the row's label in columns 5 to  12. 

The file ends with an "ENDATA" indicator line. An example optimal basis file for the same 
linear problem example, for which a solution was given in figure 5, is shown in figure 6. 

5 Numerical results 

We shall present in this section some computational results that  demonstrate the efficiency and 
reliability of our experimental simplex method implementation on some linear programs from 
the NETLIB test collection of Gay [5]. A more comprehensive overview and discussion of those 
results may be found in Gondzio et al. [8]. 

Table 2 first lists dimensions of the LP tests used in our analysis. The first four columns of the 
table contain: problem name, number of constraints m, number of variables (excluding slacks) 
n and number of non-zero elements of the constraint matrix (excluding free rows and right-hand 
side vector) n,,. Then comes comparison of the performance of our code with those of two 
well-known commercial simplex implementations: CPLEX v. 1.0 of Bixby [2] and MINOS 5.3 
of Murtagh and Saunders [14]. 

Efficiency of all three codes compared is represented by iteration counts and (where avail- 
able) computation times. For MINOS, only iteration counts are given (data collected in this 
column was repeated after Table 3 of Gill et al. [6]). For CPLEX and SIMPLEX both iteration 
counts and computation times on the same SUN SparcStation are reported14. Both CPLEX 
and SIMPLEX were run with default settings of parameters controlling stability (see Bixby [2] 
and ~ w i ~ t a n o w s k i  [15] respectively for details). 

The results of the tables show that  the simplex implementation described in this paper is 
reasonably efficient, a t  least in terms of the number of iterations needed to  solve an LP problem. 
With default settings of parameters controlling stability, our code succeeded for all but one of 
53 NETLIB tests, which we consider a satisfactory result. For all 52 problems, an exact optimal 
solution (with a t  least 8 digits of accuracy) was found. Due to  excessive numerical difficulties 
we were not able to  solve a problem called PILOT. 

Data  collected in the tables shows that  our code needs up to  an order of magnitude more 
time than CPLEX t o  solve a given problem, nevertheless iteration counts are comparable. We 
have t o  comment on it to  avoid straightforward conclusion that could be drawn after analyzing 
the results from table 2. CPLEX is a commercial LP system (one of the best currently available) 
with linear algebra dedicated t o  a given computer. Its level of efficiency cannot easily be reached. 
We made the comparison to  demonstrate our code's true efficiency, but we are aware that  a lot 
of work still has to  be done for SIMPLEX to  reach the speed of commercial software. 

14Since the test results have been gathered in June 1993, the code has overgone some changes. Both iteration 
counts and times are different, if they are measured now. Notably average time per iteration has been lately 
decreased twofold, while the iteration counts have not (on the average) increased. 



SIMPLEX v. 2.17 User's Guide 

6 Conclusions 

We treat the code as a good starting point in search for more effective methods for linear program 
solution. We are currently working on implementation of several enhancements that  will improve 
SIMPLEX'S efficiency. The most important of them are the use of steepest-edge pricing (see e.g. 
Goldfarb and Reid [7]) and presolving (see e.g. [I]). The experience with SIMPLEX has also led us 
to  believe that  a new data  storage scheme needs to be developed in order to  increase method's 
speed (especially when steepest edge pricing or reduced cost updates are performed). 

Independently, we shall use SIMPLEX as a basis for experiments with new simplex and simplex- 
like approaches (as e.g. method of Wierzbicki [17]) that  aim at  exploiting possibilities of parallel 
and/or distributed computations. 

7 Acknowledgements 

The author wishes to thank Dr Jacek Gondzio for his continuous support and guidance during the 
development of the SIMPLEX optimizer. I also would like to  express my gratitude to  Prof. Andrzej 
Ruszczyriski from the Warsaw University of Technology, Institute of Control and Computation 
Engineering, who provided the initial versions of all factorization routines, as well as most of 
the linear problem input procedures. 

A Compiling and linking SIMPLEX 

SIMPLEX was compiled and run in a few UNIX System V environments, including SUN Sparc- 
Station, DEC workstation series 5000 with a MIPS processor, and 386 and 486 PC's running 
BSD 4.3 or SCO UNIX. In all cases, GNU C++ compilers versions 2.4 to  2.5.7 were used. Al- 
though an executable version is available only for a SUN SparcStation computer, we believe that  
porting the solver to  other environments should be relatively easy. In this section, the reader 
will find instructions describing how this can be done. 

As was mentioned in the preceding sections, it is possible to  define some of the operating 
characteristics a t  compile time. We will now explain what can be changed in this manner. 
Finally, some remarks on running SIMPLEX in a PC-based environment will be presented. 

A.1 Data types 

Since C++ programming language does not define exactly integral and floating point data  types7 
precision, for the sake of portability it had to  be assumed, that  instead of standard data  types, 
we will use a set of user defined data  types, for which representation and precision will be known. 
To that  end we define in "machine .h" header file a set of five data  types specially suited for a 
few computer - operating system - compiler combinations. 

Currently, the GNU C++ compiler versions 2.4 to  2.5.7 are supported on the following 
computers running listed operating systems15: 

In the header file, you will find definitions of the following data types: 

Int-T is used for row and column indexing operations. Thus its range limits the maximum 
number of rows and columns. It has to  be a signed type. 

R e c o m m e n d e d :  a t  least 16 bits long signed integral type. 

15The table does not list the (also already defined) data types' set for a PC based DOS system and a Borland 
C++ v.  3.1 (or later) compiler. For reasons - see appendix A.3. 



A .  ~ w i ~ t a n o w s k i  - 16 - SIMPLEX v. 2.1 7 User's Guide 

Long-T is used during Markowitz pricing and limits the number of non-zeros in constraint 
matrix and basis factorization. It has to  hold numbers a t  least two times longer than 
Int-T. Since it is used in indexing operations, it may not be longer than predefined s i z e - t  
C++ (and C) type. 

R e c o m m e n d e d :  a t  least 32 bits signed integral type. 

Real-T is a type for all floating point arithmetic and data storage. 

R e c o m m e n d e d :  64 bits long floating point type. 

Unsigned-T will soon become obsolete, but is still needed now. Should be an unsigned 
integral type of the same length as Int-T. 

Short-T is used to  hold signed data, that are never longer than 8 bits. 

R e c o m m e n d e d :  a signed integral type exactly 8 bit long. 

If the "machine.h7' header file does not include data definition for a computer system on 
which the program is compiled, an error message will be issued during compilation. Following 
the above mentioned guidelines you may easily add necessary definitions to  the header file. 

A.2 Compile time reconfiguration 

In SIMPLEX, not all configuration changes may be done via command line options or configuration 
files. A few of the configurable features may only be changed a t  compile time. To make such 
changes as easy as possible, the author provided a configuration header file "compile. h". By 
defining or failing to  define certain macros, you decide which parts of code should be compiled, 
or select values of some constants used a t  runtime. 

Last, but not least, the SIMPLEX program is equipped with a large number of safeguards 
against common programming errors. When configured to  do so, it will check its internal data  
integrity and, whenever an anomaly is found, issue an error message and terminate. A message 
of this kind could look like this: 

FATAL ERROR: s o 1 v e r . c ~ :  Solve:  I n t e r n a l  e r r o r  #11. 

In the "compile . h" file, there are several commented macro definitions containing the word 
"DEBUG". Each one of them is responsible for detecting errors belonging to  one category, or errors 
detected in one source file. If one should ever experience problems that one suspects may be a 
result of a programming error, one ought to  try running the program compiled with all "DEBUG" 
macros not commented, then contact the author of the code. Additionally, "COMP_ERRORABORTn 
macro lets one decide whether a fatal error (see example above) will call ANSI C function 
a b o r t  0 before terminating. Calling a b o r t  0 may result in producing a c o r e  file, which will 
make post mortem debugging possible. 

Meanings of all other macro definitions that you may wish to modify are explained in com- 
ments in "compi1e.h" file. Those include: 

SCALEROWS which determines, whether the scaling algorithm will scale constraint matrix 
rows, 

SCALE-COLS which determines, whether the scaling algorithm will scale columns, 

PASSES denotes number of passes to be performed by the scaling routine16, 

TIMER-ON allows to  switch the time measuring functions on or off, 

16This is meaningful only when both rows and columns of the constraint matrix are scaled 



A .  ~ w i ~ t a n o w s k i  - 1 7 -  SIMPLEX v. 2.1 7 User's G u i d e  

ITERLIMIULT is used to  specify the iteration limit relative to  linear problem dimension as 
C ( m  + n),  where m and n denote number of constraint matrix binding rows and columns 
respectively, and C is a positive constant given by the user. 

INCLUDELPDITSUPPORT decides if LP-DIT support functions will be available. 

A.3 Compiling the solver on a PC-based computer 

PC-based computers' capabilities are seriously limited by 64 KB memory segments and an idea 
of memory models 1 7 .  The author has not yet had a chance to  work with a C++ compiler 
that  would make those ideas obsolete, but has chosen t o  ignore the problem. It is therefore 
possible to  compile and run SIMPLEX on a PC-based system, but responsibility to  choose an 
appropriate memory model for the sizes of problems that are t o  be solved, rests with the user. 
The program worked successfully when compiled with a Borland C++ compiler version 3.1 in a 
"large" memory model. The size of MPS source file containing the largest solvable problems is 
approximately 200 KB. 

Since t imes ( ) function (which we use to measure time spent in different parts of the program) 
is available only in UNIX System V environment, time measuring is not performed in DOS. 
Likewise LP-DIT library for DOS was not available a t  the time the code was written. Both 
time measuring functions and LP-DIT support are automatically excluded from compilation 
and linking when the program is compiled in DOS environment. 

References 

[I] Andersen E. D., Andersen K. D. (1993) Presolving in Linear Programming, Technical Re- 
port, Departament of Mathematics and Computer Sciences, Odense University, Denmark. 

[2] Bixby R. (1992) Implementing the simplex method: the initial basis, ORSA Journal on 
Computing 4, No 3, pages 267-284. 

[3] Dantzig G. B. (1963) Linear Programming And Extensions, Princeton 1963. 

[4] Forrest J .  J .  H., Tomlin J .  A. (1992) Implementing the simplex method for the Optimisation 
Subroutine Library, IBM Systems Journal 31, No 2, pages 11-25. 

[5] Gay D. M. (1985) Electronic mail distribution of linear programming test problems, Math- 
ematical Programming Society COAL Newsletter. 

[6] Gill P. E. Murray W. Saunders M. A. Wright M. H. (1989) A practical anti-cycling proce- 
dure for linearly constrained optimization, Mathematical Programming 45, pages 437-474. 

[7] Goldfarb D., Reid J. K. (1977) A practicable steepest-edge simplex algorithm, Mathematical 
Programming 12, pages 361-371. 

[8] Gondzio J . ,  Ruszczyriski A., ~ w i ~ t a n o w s k i  A. (1993) Towards Another Eficient Implemen- 
tation of the Simplex Method, to  appear as a technical report of the Institute of Automatic 
Control, Warsaw University of Technology. 

[9] Gould N. I. M., Reid J .  K. (1989) New crash procedures for large systems of linear con- 
straints, Mathematical Programming 45, pages 475-501. 

[lo] Harris P. M. J. (1973) Pivoting selection methods of the Devex L P  code, Mathematical 
Programming 5, pages 30-57. 

1 7 ~ o n s u l t  your compiler's documentation for details on the concept of memory models, the size of largest 
memory block that can be allocated for one vector and other memory-related limitations. 



A. ~ w i ~ t a n o w s k i  - 18- SIMPLEX v. 2.1 7 User's Guide 

[ll] IBM Mathematical Programming System Extended/37O (MPSX/37O): Program Reference 
Manual, IBM SH19-1127. 

[12] Makowski M. (1994) LP-DIT Data Interchange Tool for Linear Programming Problems 
(version 1.20), IIASA Working Paper No WP-94-36, Laxenburg, Austria. 

[13] Murtagh B. (1981) Advanced Linear Programming, Computation and Practice, McGraw- 
Bill, New York. 

[14] Murtagh B., Saunders M. A. (1987) MINOS 5.1 User's guide, Technical Report SOL 83- 
20R, Department of Operations Research, Stanford University, Stanford, California 1983 
(revised 1987). 

[15] ~ w i ~ t a n o w s k i  A. (1993) A modern implementation of the revised simplex method for large 
scale linear programming, MSc. Thesis, Institute of Automatic Control, Warsaw University 
of Technology, Warsaw 1993 (in Polish). 

[16] Tomlin J. A. (1975) On Scaling Linear Programming Problems, Mathemal Programming 
Study 4, pages 146-166. 

[17] Wierzbicki A. P. (1993) Augmented simplex: a modified and parallel version of simplex 
method based on multiple objective and subdiflerential optimization approach, Manuscript, 
Institute of Automatic Control, Warsaw University of Technology, Warsaw 1993. 



SIMPLEX v. 2.1 7 User's Guide 

Figure 4: Example of output in high verbosity mode. 

SIMPLEX v .  2.17 ( c )  1992, 1993 Artur Swietanowski 
Developed i n  Warsaw Univers i ty  of Technology, I n s t i t u t e  of Automatic Control  
............................................................................ 
Reading input  f i l e  i n  f i x e d  MPS format .  
Reading NAME. 
Reading ROWS. 
Reading COLUMNS. 
Reading RHS. 
Reading ENDATA. 

Linear  problem name is AFIRO. 

Problem S t a t  i s t i c s  Rows Cols Non-zeros Density 
27 32 83 9.606 

Ranges E rows L rows G rows Fixed Free Bounded Normal 
0 8 19 0 0 0 0 3 2 

I n i t  cond. = 1.356E+00 No s c a l i n g !  
Cols : 27 o r i g .  0 a r t i f .  2 sup.  - a r t i f .  

I t e r  RC 
1 -3.8E-01 
2 -1.4E+00 
3 -7.3E-01 
4 -l.lE+OO 
5 -4.8E-01 
6 3.2E+02 
7 3.2E+02 
8 -1.2E+01 
9 -3.OE-01 
10 -8.7E-01 

STEP 
7.OE-06 
7.9E-06 
1.8E-05 
7.9E-06 
4.4E+01 
6.2E+01 
6.2E+01 
2.6E+00 
5.9E+01 
4.8E+02 

C I N  C OUT COST 
3 47 3.94451E+04 
19 45 3.94451E+04 
17 16 3.94451E+04 
30 46 3.94451E+04 
29 39 3.94240E+04 
52 1+97120E+04 
5 1 2.11200E+01 
2 32 -9.83011E+00 
14 33 -2.75159E+01 
16 38 -4.43633E+02 

Taking f i n a l  t o l e r a n c e s  

Optimum reached.  I t e r :  11 Resu l t :  -4.647531428571E+02 

Times : Reading LP To s tandard  I n i t .  b a s i s  So lu t ion  T o t a l  
0.07 0.00 0.00 0.08 0.15 



- 20 - SIMPLEX v. 2.1 7 User's Guide 

Figure 5: Example solution file format. 
LP PROBLEM NAME: example 
STATUS : OPTIMAL 

EqUATIONS 
Row No Label Type Lower limit Upper limit Value Slack 
------ -------- ---- ------------- ------------- ------------- ------------- 
0 ROW1 LE -2.000000E+00 4.000000E+00 -2.000000E+00 6.000000E+00 
1 ROW2 GE 5.000000E+00 6.000000E+00 -1.000000E+00 
2 ROW3 Eq 8.000000E+00 8.000000E+00 8.000000E+00 
3 ROW4 LE 4.000000E+00 -8.000000E+00 1.200000E+01 

DUAL VARIABLES 
Row No Label Dual variable 
------ -------- ------------- 
0 ROW 1 2.000000E+00 
1 ROW2 0.000000E+00 
2 ROW3 0.000000E+00 
3 ROW4 0.000000E+00 

COLUMNS SECTION 
Index Label Type Lower bound Upper bound Primal value Reduced cost 
------ -------- ---- ------------- ------------- ------------- ------------- 
0 X 1 PL 0.000000E+00 inf 2.000000E+00 0.000000E+00 
1 X2 MI -inf -2.000000E+00 -2.000000E+00 -1.000000E+00 
2 X3 FX 2.000000E+00 2.000000E+00 2.000000E+00 -1.000000E+00 
3 X4 F R - inf inf 1.000000E+01 0.000000E+00 
4 X5 UP -2.000000E+00 2.000000E+00 -2.000000E+00 1.000000E+00 

OBJECTIVE: -6.000000000000E+00 
PRIMAL RESIDUALS: 0.000000E+00 
DUAL RESIDUALS : 0.000000E+00 
INFEASIBILITY: 0.000000E+00 

Figure 6: Example optimal basis file format. 

BASIS 
COLUMNS 
BA X1 
UP X2 
LO X3 
BA X4 
LO X5 
ROWS 
LO ROWl 
BA ROW2 
LO ROW3 
BA ROW4 
ENDATA 

example OPTIMAL 
5 



SIMPLEX v. 2.1 7 User's Guide 

Table 2: Numerical results - comparison with MINOS and CPLEX commercial codes. 

Name 

25FV47 
80BAU3B 
ADLITTLE 
AFIRO 
BANDM 
BEACONFD 
BORE3D 
BRANDY 
CAPRI  
CZPROB 
E226 
ETAMACRO 
FFFFF8OO 
GANGES 
GFRD-PNC 
GROW7 
GROW15 
GROW22 
ISRAEL 
NESM 
PILOT 
PILOT4 
PILOT. JA 
PILOT.WE 
RECIPE 
SC105 
SC205 
SCAGR7 
SCAGR25 
SCFXMl 
SCFXM2 
SCFXM3 
SCORPION 
SCRS8 
SCSDl 
SCSD6 
SCSD8 
SCTAPl  
SCTAP2 
SCTAP3 
SEBA 
SHARElB 
SHARE2B 
SHELL 
SHIP04L 
SHIP04S 
SHIP08L 
SHIP08S 
SHIPl2L 
SHIP12S 
SIERRA 
STAIR 
STANDATA 
VTP.BASE 

Rows 

821 
2262 

5 6 
2 7 

305 
173 
233 
220 
271 
929 
223 
400 
524 

1309 
616 
140 
300 
440 
174 
662 

1441 
410 
940 
722 

9 1 
105 
205 
129 
471 
330 
660 
990 
388 
490 

77 
147 
397 
300 

1090 
1480 
515 
117 
96 

536 
402 
402 
778 
778 

1151 
1151 
1227 
356 
359 
198 

Columns 

32 
472 
262 
315 
249 
353 

3523 
282 
688 
854 

1681 
1092 
301 
645 
946 
142 

2923 
3652 
1000 
1988 
2789 

180 
103 
203 
140 
500 
457 
914 

1371 
358 

1169 
760 

1350 
2750 
480 

1880 
2480 
1028 
225 

79 
1775 
2118 
1458 
4283 
2387 
5427 
2763 
2036 
467 

1075 
203 

MINOS 
iter. 

6646 
10166 

121 
9 

457 
91 

144 
369 
271 

1694 
545 
567 
796 
757 
672 
184 
425 
634 
251 

3228 
13723 

1543 
6487 
5458 

27 
457 
141 
9 8 

338 
375 
670 

1008 
178 
74 3 
303 

1306 
3138 

264 
76 1 
904 
351 
266 
173 
299 
291 
163 
474 
254 
959 
437 
648 
577 
65 

152 

CPLEX 
iter. 
2679 

10635 
94 
10 

283 
31 

113 
174 
438 

1178 
361 
718 
683 
605 
525 
275 
621 
892 
204 

4094 
7402 
1015 
4365 
2652 

41 
56 

129 
87 

400 
324 
669 

1050 
168 
561 
161 
427 

1320 
207 
548 
786 
234 
175 
111 
494 
353 
276 
804 
429 
969 
528 
455 
417 
153 
114 

time 
65.1 

166.2 
0.1 
0.0 
1.9 
0.1 
0.4 
1.1 
2.2 

10.8 
1.9 
3.7 
4.5 
9.6 
3.1 
2.5 

11.3 
21.8 

1.0 
31.0 

768.3 
14.6 

139.0 
76.2 

0.1 
0.2 
0.7 
0.2 
3.3 
1.5 
5.3 

11.6 
0.8 
4.6 
0.5 
1.4 
8.2 
0.9 
4.7 
9.2 
1.4 
0.6 
0.2 
3.0 
1.6 
1.2 
6.6 
3.6 

12.5 
6.3 
4.4 
6.6 
0.7 
0.3 

iter. 
6758 

11319 
97 
13 

620 
24 

204 
1218 

565 
1272 
785 

1744 
858 
500 
884 
176 
363 
500 
181 

4501 
- 

2213 
13590 
8226 

33 
6 2 

144 
166 
675 
505 

1024 
1595 

339 
859 
292 
655 

1321 
383 
966 

1319 
29 

273 
143 
626 
236 
179 
495 
281 
963 
509 
805 

1230 
145 
455 

simplex 
time 
393.4 

2485.9 
0.4 
0.0 

17.2 
0.4 
3.9 

29.0 
8.2 

53.7 
14.6 
36.7 
23.0 
17.5 
16.1 
3.0 

11.3 
21.6 

3.6 
184.5 
- 

127.6 
2088.6 
1148.3 

0.1 
0.4 
2.1 
1.2 

15.7 
9.5 

32.4 
71.1 

5.0 
23.3 

3.1 
12.2 
50.8 

5.1 
36.6 
67.3 

1.0 
2.5 
0.9 

11.7 
5.9 
3.6 

22.6 
9.3 

52.7 
20.4 
33.3 
76.9 

2.2 
4.3 


