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Abstract 

Consider a group of individuals who must rank a set of decisions or choices. If the members 
of the group disagree, how should their opinions be reconciled into a group ordering? His- 
torically we may discern two ways of answering this question. The "relativist" approach, 
which is the dominant one in the modern social choice literature, holds that differences 
of opinion arise largely from differences in preferences or values. Hence the objective 
should be to  strike a fair compromise between differences of opinion. The "rationalist" 
approach, which was an article of faith among the eighteenth-century founders of voting 
theory, holds that differences of opinion arise from misperceptions about the true merit 
of different decisions. For them the goal was to find the ordering that is most likely to 
be "correct" or "true". These two positions are not incompatible. Under suitable con- 
ditions, in fact, they yield the same method, which was first proposed in a rudimentary 
form by Condorcet. We show that it can be characterized by a slight weakening of the 
independence of irrelevant alternative condition. 



Optimal Group Decisions 

Peyton Young 

Simvle maiority rule 

"Democracy," said E. B. White, "is the recurrent suspicion that more than half the people 

are right more than half the time" (White, 1946). The suspicion has been around for a 

long time. It is, in fact, the central thesis of a remarkable work published in 1785 by the 

French mathematician and political philosopher, Jean Antoine Nicholas Caritat, Marquis 

de Condorcet.] Condorcet set out to prove that majority rule is not only a fair way to 

make political choices, it is actually the best way to do so -- the way most likely to yield 

"optimal" results. Though this notion may at first sound strange to modern ears, it turns 

out to be a surprisingly fruitful way of thinking about the design of voting rules. 

Condorcet begins with the premise that the object of government is to make decisions 

that are in the best interest of society. This leads naturally to the question: what voting 

rules are most likely to yield good outcomes? To analyze this problem he applied the 

then-novel science of probability theory. Imagine that a group of voters must decide 

between two alternatives, one of which is objectively best. (Whether this is a meaningful 

assumption will be considered below.) Each individual makes a judgment about this 

question and registers his opinion. Sometimes, of course, people judge incorrectly. But 

let us assume -- perhaps too optimistically -- that each voter is more likely to make the 

right choice than the wrong choice in any given situation. Condorcet showed that, if the 

voters make their choices independently, then the laws of probability imply that the 

choice with the most votes is the one most likely to be correct. In other words, majority 

rule is an optimal method of group decision making. 

Consider the following example: there are one hundred individuals choosing between two 

alternatives a and b. Let the outcome be 55 votes for a and 45 votes for b. Assume that 

each of these individuals is right 60 percent of the time. Now there are two possibilities : 

either a is really the best choice or b is the best choice. In the first case the observed 

An Essay on the Application of Probability Theor). to Pluraliy Decisiorl Making, 1785. 
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voting pattern (55 for a, 45 for b) would occur with probability (loo! / 55! 45!) .655 ,445, 

while in the second case it would occur with probability (loo! / 45! 55!) .645 .455. As 

the former is about 58 times more probable than the latter, we conclude that a is more 

likely to be correct than b. This style of reasoning is known in statistics as maximum 

likelihood estimation. It is somewhat analogous to Bayesian inference with uniform 

priors, though formally it does not rely on the notion of priors at a11.2 

Why should we buy the idea, though, that there really is such a thing as a best choice? 

Aren't values relative, and isn't the point of voting to determine a compromise between 

conflicting opinions, all of which are equally entitled to a hearing? This relativistic point 

of view, which has reigned supreme in social choice theory (indeed in economic theory 

generally) for most of this century, seems completely at odds with Condorcet's basic 

premises. Yet Condorcet's point of view is not nearly as absurd as it might seem at first 

blush. Consider a trial by jury. Let a be the proposition that the defendant is guilty, b 

that she is innocent. If all twelve members of the jury vote for conviction, and if the 

probability that each is correct is 0.60, then the probability that the defendant is in fact 

innocent is less than one in fifty thousand (assuming equal prior probability of guilt or 

innocence). 

This "unanimity rule" is called for if a false conviction is deemed much worse than letting 

a guilty party go free. But if the objective is simply to reach the correct decision with 

highest probability, then clearly this is not the best one can do. The probability of 

making the correct choice under unanimity rule is only slightly greater than one-half 

(about S o l ) .  But under simple majority rule the probability of a correct choice is about 

.665. More generally, it can be shown that, among all group decision rules on two 

alternatives, simple majority rule is most likely to yield the correct outcome.3 

Furthermore, as the size of group becomes larger, the probability that the majority 

decision is correct approaches unity -- a result first proved by Condorcet.4 

A Bayesian analysis of the situation would proceed as follows. Suppose that a and b are equally likely to 
be best a priori. Let p be the conditional probability that the vote would occur given that a is best, and let q 
be the conditional probability that it would occur given that b is best. Then the posterior probability that a 
is best is p/(p + q) = .983, while the posterior probability that b is best is q/(p + q)  = .017. Thus we would 
choose a rather than b. 

For this result we assume that the number of voters is odd, that each makes his judgment independently, 
and that each chooses correctly with probability p, where 112 < p < 1. See Nitzan and Paroush (1982) and 
Shapley and Grofman (1984). 

For related work see Poisson (1837). Urken and Traflet (1974), Grofman, Owen, and Feld (1983). and 
Grofman and Feld (1988). 



This result reaches far beyond jury trials. It applies, in fact, to any choice problem in 

which people agree about the objective, but there is disagreement about the best means to 

achieve that objective. For example, the members of the Federal Reserve Board may all 

want to maximize the long-run rate of economic growth, but at any given moment they 

may be uncertain whether lowering or raising interest rates is the best way to achieve this. 

Similarly, the directors of a corporation may agree that their task is to maximize the 

firm's long-run profitability, but they may have different views about which candidate for 

chief executive is most likely to realize this goal. In these situations Condorcet's 

premises make perfect sense, and simple majority rule is the best way to estimate the 

optimal choice. Moreover, this is how such decisions are usually made in practice. 

Weighted majority rule 

Suppose, however, that some voters are known to have better judgment than others. 

Should we still give all votes equal weight, or should we perhaps ignore all voters except 

those whose judgment has proven to be best in the past? In fact neither answer is 

correct. To see why, consider a situation in which the five members of a central bank are 

voting whether to raise interest rates. Assume that each member votes to raise rates if 

and only if she believes that not increasing rates will cause inflation to exceed the target 

set by the bank. Assume further that the track record of each member of the committee 

-- how often she has been right about the effect of interest rates on inflation -- is known 

from past experience. Perhaps A and B have been right 90 percent of the time, while C, 

D, and E have been right only 60 percent of the time. If we give all votes equal weight, 

we ignore the fact that A's and B's opinions convey more accurate information than the 

others. But if we set aside all opinions except those of A and B, we are losing 

information from the others that is accurate on the whole. There is value in having more 

rather than fewer independent judgments. Thus it stands to reason that the opinions of A 

and B should be given more weight than the others, but not all the weight. It turns out 

that the optimal decision rule is to use a weighted majority, where the weight on each 

member's vote is log (pi/(l - pi)) and 112 < pi < 1 is the probability that individual i makes 

correct judgments (Nitzan and Paroush, 1982; Shapley and Grofman, 1984). In the 

present case this means that each of A and B should have about 5.4 times the number of 

votes that each of D, E, and F has. This amounts to saying that a "majority" is a group 

that contains both A 2nd B, or A plus at least two of the weak members, or B plus at least 

two of the weak members. 



Extension to three or more alternatives 

When we try to extend this reasoning to three or more alternatives, however, matters 

become more complicated. For, as Condorcet was the first to show, there is no direct 

analog of simple majority rule in this case. The difficulty is that there are situations in 

which no alternative obtains a simple majority over every other. Consider the following 

example from Condorcet's Essay involving three alternatives and sixty voters. Here 

majority rule comes up empty-handed because it leads to a voting cycle: a beats b by 33 

to 27, b beats c by 42 to 18, and c beats a by 35 to 25. 

Example 1 

The problem that Condorcet set himself was to determine the voting rule that is optimal 

under these circumstances. To make the example concrete, let us suppose that a stands 

for the policy "hire more police," b stands for the policy "increase prison sentences," and 

c is the policy "offer training programs for ex-convicts." Each of these policies aims at 

reducing crime, and we shall suppose that the voters are trying to judge which will be the 

most effective, i.e., which will reduce the crime rate most per dollar spent. In other 

words, there really is a correct ranking of the policies, but there are differences of opinion 

about what that ranking might be. 

Assume that, given any two of the policies to compare, each voter has a fixed probability 

p > 112 of choosing the right one (i.e., the most effective one). Assume further that each 

voter's judgment about any pair is independent of the other voters' judgments, and that his 

judgment about a given pair is independent of his judgment about the other pairs. (One 

can quibble with the realism of these assumptions but they merely serve to simplify the 

calculations.) 

For each possible ranking of the alternatives, we want to compute the conditional 

probability that the above voting pattern would occur given that the ranking is correct. 

Suppose, for instance, that the correct ranking is a b c. Now the probability of the above 



vote is the product of three terms: the probability that a gets 33 votes over b, the 

probability that b gets 42 votes over c, and the probability that a gets 25 votes over c. 

Hence the probability of the vote in Example 1 is proportional to p33(1 - P)27 x 

p42(1 - p)18 x p25(1 - p)35 = plo0 (1 - P)~O. In general, the larger the exponent of p, the 

higher the likelihood that the given ranking is the correct one. Thus we will have solved 

the problem once we compute the exponent of p for each of the six possible rankings. 

A convenient way to visualize the problem to draw a vote graph like that shown in 

Figure 1. 
a 

Figure 1. 

There is one vertex for each alternative, and between every pair of vertices there are two 

edges, one in each direction. The weight on an edge is the number of votes that the 

alternative at its base gets over the alternative at its tip. To evaluate the probability of a 

ranking such as a b c, consider the three pairwise propositions: a is above b, b is above c, 

and a is above c. These correspond to the three directed edges a -t b, b + c, and 

a + c, which have weights 33, 42, and 25 respectively. Thus the total support for the 

ranking a b c is 33 + 42 + 25 = 100. The support for the other rankings is found in like 

fashion. Namely, each ranking corresponds to a set of three directed edges that do not 

form a cycle, and the corresponding exponent on p equals the total weight on these edges. 

The results are given below, and they show that b c a is most likely to be correct in this 

case. 

a b c  100 b c a  104 

a c b  76 c a b  86 

b a c  94 c b a  80 



In general, whenever there is a voting cycle among three alternatives, the maximum 

likelihood ranking is obtained by breaking the cycle at its weakest link, that is, by 

deleting the edge in the cycle that has the smallest majority. (In the above example, the 

cycle a -+ b + c 4 a would be broken at the link a t b.) When there is no voting cycle, 

the maximum likelihood ranking is the one that accords with simple majority rule on all 

pairs of alternatives. This identifies the maximum likelihood ranking when there are 

exactly three alternatives, and is known as Condorcet's rule of three. 

The case of more than three alternatives 

Unfortunately, when there are more than three alternatives, Condorcet seems to have 

become confused; at any rate he did not get the correct answer.5 Nevertheless the 

solution can be found by a straightforward extension of the previous argument. Given a 

voting outcome and a ranhng R of the alternatives, the conditional probability of 

observing the vote, given that the true ranhng is R, is proportional to ps(R) (1 - p)M - s(R) 

where M = nm(m - 1)/2 and s(R) is the total number of pairwise votes that higher 

alternatives get over lower alternatives in R. We shall call s(R) the support for the 

ranking R. The maximum likelihood rankings are precisely the ones with maximum 

support. To compute them, it suffices to find the maximum weight set of edges in the 

vote graph that does not contain a cycle. This maximum likelihood rule is the solution to 

Condorcet's p r ~ b l e m . ~  

Borda's rule 

At this point we need to pick up a second strand in our story that actually begins 

somewhat earlier. In 1770, some fifteen years before Condorcet published his work on 

voting theory, his colleague Jean-Charles de Borda read a paper on the design of voting 

procedures to the French Academy of Sciences. Like Condorcet, Borda was a prominent 

figure in scientific circles with interests that spanned a wide variety of subjects. Unlike 

For a discussion of Condorcet's somewhat obscure argument in this case, see Young (1988) and Crepe1 
( 1 990). 

Young (1986, 1988). The maximum likelihood rule can be formulated as an integer programming 
problem. Define a variable xi, for each directed edge i 3 j  in  the vote graph, that is, one variable for each 
ordered pair of alternatives. Let Wij be the weight on edge i +j, that is, the number of votes for alternative 
i over alternative j. A maximum likelihood ranking corresponds to a solution x that maximizes~wijxij 
subject to xij + Xji = 1, Xij + Xjk + xki i. 2, and all xi, = 0 or 1. If the voters have different competences, 
individual i's vote IS weighted by log (piI(l-pi), where pi is the probability that i is correct and 112 < pi < I .  



Condorcet, he had a strong practical bent. In addition to doing important research in 

mechanics, hydraulics, and optics, he was one of the leading lights in developing the 

metric system. This put him in the applied faction of the Academy, which was often at 

loggerheads with purists like Condorcet. This rivalry seems to have spilled over into 

their work on voting theory, as we shall see later on. 

Borda began by observing that, when there are three or more alternatives, the one that 

achieves the most first-place votes is not necessarily the one that has the most overall 

support. As an example, consider the following situation. There are three alternatives 

and twenty-one voters who rank them as follows: 

7 7 6 1  

b a c  a 

c c b b 

a b a c  

Example 2 

Under the conventional plurality method, a gets 8 votes, b 7, and c 6. But this fails to 

take into account that all but one of the people who prefer a like c better than b, and 

everyone who prefers b likes c better than a. One could therefore argue that c is the most 

natural compromise candidate even though it receives the fewest first-place votes. To 

assess the true strength of the various candidates, said Borda, one must look at their 

overall standing in the individual rankings. This led him to propose the following rule. 

Let each voter strictly rank-order the candidates. (For simplicity of exposition we assume 

no indifference.) In each voter's list, assign a score of 0 to the alternative ranked last, a 

score of 1 to the alternative ranked next-to-last, a score of 2 to the alternative next above 

that, and so forth. The Borda score of an alternative is its total score summed over all 

voter lists, and Borda's rule is to rank the alternatives from highest to lowest Borda score. 

In the above example the scores are 26 for c, 21 for b, and 16 for a. Thus, according to 

Borda's rule, the proper ordering of the alternatives is c b a, which is exactly the opposite 

of the one implied by the number of first-place votes. 

Although it may not be obvious at first, Borda's rule (like Condorcet's) actually depends 

only on the painvise votes between the various alternatives. The simplest way to see this 

is to observe that the Borda score of an alternative within a particular voter's list is just 

the number of alternatives ranked below it. It follows that the total Borda score of an 



alternative x is the total number of times that x beats other alternatives, summed over all 

of the voter lists. 

A convenient way of computing the Borda solution is to construct a matrix indicating the 

pairwise votes. For each ordered pair of alternatives a, b, let vat, denote the total number 

of times that a is ranked above b in the voter lists. In other words, vat, is the number of 

votes that a would get over b in a pairwise contest between the two, assuming that 

everyone votes according to his preferences. (This is the weight on the edge directed 

from a to b in the vote graph.) The m x m matrix (vat,) is called the vote matrix. It 

follows from the above discussion that the Borda score of each alternative x is just the 

sum of the entries in x's row. In terms of the vote graph, it is the sum of the weights on 

all edges directed away from the vertex corresponding to x. The vote matrix for 

Example 2 is shown below, together with the row sums. 

a b  c Row sum 

a -- 8 8 16 

b 13 -- 8 2 1 

c 13 13 -- 26 

Condorcet's critiaue of Borda: independence of irrelevant alternatives 

Borda's paper was not published until 1784, one year before Condorcet's treatise on 

voting appeared. Condorcet took strong exception to Borda's method on the merits; 

moreover he added a certain amount of personal venom to the attack. (Throughout the 

Essay Condorcet refers sarcastically to the "method of a famous mathematician" but fails 

to mention him by name. The implication is that the method is not worthy of a 

mathematician.) 

Condorcet's contemptuous view of Borda is borne out in  his private correspondence. For example, in  a 
letter to Turgot he wrote: "[M. Malesherbes] makes a great case for Borda, not because of his memoirs, 
some of which suggest talent (although nothing will ever come of them, and no one has ever spoken of 
them or ever will) but because he is what one calls a good academician, that is to say, because he speaks in 
meetings of the Academy and asks for nothing better than to waste his time doing prospectuses, examining 
machines, etc., and above all because, feeling eclipsed by other mathematicians, he, like d'Arcy, has 
abandoned mathematics for petty physics." (Henry, 1883)- 



To illustrate his objections to Borda's method, Condorcet introduced the following 

example. There are three candidates named Peter, Paul, and Jack, and eighty-one voters 

with the following preferences: 

30 1 29 10 10 1 

Peter Peter Paul Paul Jack Jack 

Paul Jack Peter Jack Peter Paul 

Jack Paul Jack Peter Paul Peter 

According to Borda's rule the proper ordering is Paul, Peter, Jack. But this is absurd, 

said Condorcet, because Peter obtains a simple majority over both Paul and Jack. Surely 

this means that Peter is stronger than Paul. More generally, Condorcet formulated the 

majority principle, which states that if there exists an alternative that obtains a simple 

majority over every other alternative, then it should be rankedfirst. Such an alternative is 

known as a Condorcet alternative or a majority alternative. Condorcet went on to 

examine why Borda's rule gives the "wrong" result in this case. 

"[Hlow is it that Paul is not the clear winner when the only difference 

between himself and Peter is that Peter got 31 first places and 39 second, 

while Paul got 39 first and 31 second? Well, out of the 39 voters who put 

Peter second, 10 preferred him to Paul, whereas only one of the 3 1 voters 

who put Paul second preferred him to Peter. The points method [of Borda] 

confuses votes comparing Peter and Paul with those comparing either 

Peter or Paul to Jack and uses them to judge the relative merits of Peter 

and Paul. As long as it relies on irrelevant factors to form its judgments, it 

is bound to lead to error, and that is the real reason why this method is 

defective for a great many voting patterns, regardless of the particular 

values assigned to each place. The conventional method [plurality] is 

flawed because it ignores elements which should be taken into account and 

the new one [Borda's] because it takes into account elements which should 

be ignored" (italics added). 

This passage is from a later paper of Condorcet's entitled "On the Constitution and the Functions of 
Provincial Assemblies" (Condorcet, 1788). The translation is by Sommerlad and McLean (1989), who 
were the first to call attention to its connection with independence of irrelevant alternatives. 



In other words, Condorcet is saying that the comparison between Peter and Paul should 

depend only on the relative ordering of these two candidates in the voters' lists, not on 

their relation to other candidates. Here is a clear forerunner of Arrow's principle of the 

independence of irrelevant alternatives! 

Condorcet noted the remarkable fact that any scoring system leads to the same outcome 

as Borda's rule in this example, and is therefore subject to the same criticism. In general, 

a scoring method is defined by a sequence of real numbers sl > s2 > . . . > s,, one for 

each alternative. Given an individual's ranking of the alternatives, assign a score of sl to 

the alternative that occupies first position, a score of s2 to the alternative in second 

position, and so forth. The total score of each alternative is the sum of its scores over all 

voter lists, and the alternatives are ordered according to their total scores. Borda's rule 

corresponds to the scoring system Si = m - i; in fact, it is equivalent to any scoring system 

in which the successive differences Si - Si+l are equal and positive. 

Consider now any scoring system for three alternatives with descending scores sl > s2 > 

s3. In example 3, the score for Peter is 31sl + 39s2 + 1 Is3 whereas the score for Paul is 

39sl + 31s2 + 1 ls3. Therefore, Paul obtains a higher score than Peter, even though Peter 

is the majority candidate. From this we conclude that any scoring system violates the 

majority principle. Moreover, it shows that any scoring system yields outcomes that are 

based on "irrelevant factors." 

Local inde~endence of irrelevant alternatives 

Condorcet's broadside against Borda is fine as far as it goes. But exactly how far does it 

go? We know from Arrow's theorem that independence of irrelevant alternatives is 
violated by every reasonable decision rule when there are more than two alternatives. 

Why then should we believe that Condorcet's approach is any better than Borda's? In this 

section we shall show that it is, in fact, considerably better. 

To motivate the discussion, let us first consider why a condition like independence of 

irrelevant alternatives is worth having at all. Essentially it says that the way a given 

group of alternatives is ordered should depend only on opinions about those alternatives9 

There are at least two reasons why this is desirable from a practical standpoint. First, if it 

I neglect various fine distinctions in the way that one formulates the independence condition. 

10 



does not hold, then it is possible to manipulate the outcome by introducing extraneous 

alternatives (Gibbard, 1973; Satterthwaite, 1975). Second, independence allows the 

electorate to make sensible decisions within a restricted range of choices without 

worrying about the universe of all possible choices. It is desirable to know, for example, 

that the relative ranking of candidates for political office would not be changed if purely 

hypothetical candidates were included on the ballot. 

While Arrow's theorem shows that independence cannot be fully realized by any 

democratic rule, we shall show that it can be realized to a significant extent. Consider 

Example 3 again. The real contest here is between Peter and Paul; Jack is a distinctly 

weaker alternative. We could argue that Jack ought to be "irrelevant" to the choice 

between Peter and Paul because Jack is inferior to both. Moreover, under Condorcet's 

rule of three, this is actually the case. 

The key point here is that Peter and Paul occur together in the consensus ranking; they 

are not separated by other alternatives. More generally, an interval of an ordering is any 

subset of alternatives that occurs in succession in that ordering. Suppose we insist that, 

whenever a set of alternatives forms an interval of the consensus preference ordering, 

then independence of irrelevant alternatives applies -- that is, the ordering within the 

interval remains fixed when alternatives outside the interval are ignored. In particular, 

the ordering of alternatives toward the top of the list is unaffected by the removal of those 

at the bottom. Similarly, the ranlung of the alternatives toward the bottom of the list is 

unaffected by the removal of those at the top, and so forth. We shall say that such a 

ranking rule satisfies local independence of irrelevant alternatives (LIIA). It is a 

remarkable fact that the maximum likelihood method satisfies LIIA.10 Moreover, as we 

shall argue in a later section, it is the only reasonable ranking rule that does so. 

To further illustrate this idea, consider the following vote matrix involving six 

alternatives and one hundred voters. 

See Young (1988), where the LIIA condition was called local s tabi l i~.  
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a b c d e f Sum - - - -  - - - - - - - - - _ _  
a 1 -- 

I 
5 1 54 1 58 60 6 2 285 

Example 4 

Here we may think of a, b, and c as being the real choices under discussion, while d, e, 

and f are red herrings that have been dragged in by political strategists to attempt to 

manipulate the outcome. (Note that each of a, b, c has a majority over each of d, e, f, so 

the latter three are weaker than the former.) Moreover, this attempt will succeed if 

Borda's rule is used. The row sums determine the Borda ordering c a b d e f. Now 

suppose that the three red herrings had not been introduced into the debate. Then the 

vote matrix would be the one enclosed by the dashed lines. The Borda scores for this 

three-alternative situation are 105 for a, 117 for b, and 78 for c. Hence, in the absence of 

d, e, f, that top three alternatives would be ordered b a c. But this is exactly the reverse 

of how they are ordered when all six alternatives are considered together. This example 

shows why Borda's rule is highly susceptible to manipulative practices, just as Condorcet 

alleged. 

Now consider the maximum likelihood (ML) solution to this problem. We begin by 

observing an important property of this rule: if some alternative has a simple majority 

over every other, then the M L  rule must rank itfirst. The reason is simple. Suppose that 

x (the majority alternative) were not ranked first. Then it must be ranked immediately 

below some other alternative y. By assumption, x defeats y by a simple majority. 

Therefore, if we switch the positions of x and y, we obtain a new ranking that is 

supported by more pairwise votes. But then the new ranking is more likely than the 

original ranking, which is a contradiction. 

This simple fact can be used to deduce the ML solution to the above problem almost 

immediately. Since a is the majority alternative, it must be ranked first. Among the 



remaining alternatives, b obtains a simple majority over c, d, e, and f. Hence a similar 

argument shows that b comes next. Then comes c by the same argument. As for d, e, 

and f, they will be ordered relative to one another as if they were tlte only three 

alternatives. (Since they form an interval of the consensus ordering, LIIA applies). It is 

easy to see that the ML solution for these three alternatives is d f e. Putting all of this 

together, we conclude that the ML solution to the whole problem is a b c d f e. This 

example shows that the ML solution is often quite easy to calculate even when there is 

more than a handful of alternatives. 

At this point we can also see more clearly why the method satisfies LIIA, that is, why any 

interval of alternatives is ranked as it would be in the absence of the otl~ers. The reason 

is this: if it were not, then one could shuffle the alternatives witlzin tlze interval and obtain 

an ordering that is supported by a larger number of pairwise votes, hence an ordering that 

has greater likelihood. This contradiction shows that the maximum likelihood rule 

satisfies local independence of irrelevant alternatives. In particular, it cannot be 

manipulated from below by introducing inferior alternatives, nor can it be manipulated 

from above by introducing utopian (i.e., attractive but infeasible) alternatives. 

The maximum likelihood method as a form of compromise 

So far we have proceeded on the premise that there really is a best ordering to be 

estimated. Moreover we have argued that this is often the right way to think about group 

choice problems. But it is not always the right way to think about them. There are 

many situations in which differences of opinion do not arise from erroneous judgments, 

but from differences in values. In this case it seems better to adopt the view that group 

choice is an exercise in defining consensus, that is, in finding a compromise between 

conflicting opinions. Arrow's axiomatic approach is one way of analyzing this issue, and 

we shall pick up this scent again in the next section. First, however, I want to draw 

attention to another interesting approach along these lines that was pioneered by John 

Kemeny (1 959). 

Kemeny viewed the voters' opinions as data, and asked for the ordering that best 

represents or averages the data. For the notion of average to make sense, of course, we 

must have some way of measuring how far apart one ranking is from another, that is, we 

need a metric defined on the set of rankings. Kemeny proposed the following natural 

metric: the distance between two rankings R and R' is the number of puirs of alternatives 



on which they difler. Thus if R' is obtained from R by interchanging two adjacent 

alternatives, then d(R, R') = 1. If R' is obtained from R by reversing the order of all 

alternatives, then d(R, R') = m(m - 1)/2, and so forth.] 

Suppose now that each member of a group of n voters submits a ranking of the 

alternatives. Given these n data points, what is the best definition of a compromise 

ordering? A statistician would say there are two obvious answers: the mean and the 

median. The mean is the ranking (or rankings) that minimize the sum of squares of 

distances from the n given rankings. The median is the ranking (or rankings) that 

minimize the sum of distances from the n given rankings. It is not difficult to show that 

the median is equivalent to the maximum likelihood method, whereas the mean yields a 

quite different scheme. 

Kemeny left open the question of whether the mean or the median was to be preferred. 

There can be little doubt, however, that the median is the better choice under the 

circumstances. To see why, consider the following example with 41 voters and three 

alternatives. 

21 5 4 11 

a b c c 

b c a b  

c a b a  

Example 4 

Alternative a has an absolute majority of first-place votes, so afortiori it is the majority 

alternative. Indeed, the ranking a b c is supported by a majority, so it has maximum 

likelihood, that is, it is the median ranking. (It may be checked that Borda's rule yields 

the same result.) A simple calculation shows, however, that the mean ranking is b a c. 

This seems to be a less credible conception of consensus than does a b c. The problem 

with the mean is that it places a lot of weight on extreme observations. In the present 

case, the voters who announce the ordering c b a shift the outcome in favor of b, not 

because they are especially attached to b, but because their top candidate is c, which is at 

Actually, Kemeny defined the distance between two rankings to be twice the number of pairs on which 
they differ. He also defined the distance between ordering with indifference. For simplicity of exposition 
we ignore this case. 



odds with the views of most of the other voters. In other words, their opinion about b 

versus a is heavily weighted because their opinions about something else (namely c) 

differs from the opinion of the majority. This does not seem very sensible. We conclude 

that, if the object is to find a compromise between the various rankings reported by the 

voters, then the median is, in a statistical sense, the most appropriate solution. This 

reinforces the argument for the maximum likelihood rule, but from a different (and more 

modem) point of view. 

An axiomatic iustification 

Pursuing this point of view a bit further, one might wonder whether the ML rule can be 

justified from purely axiomatic principles. We shall show that it can. Indeed, it is the 

unique ranking rule that satisfies three standard axioms in the social choice literature plus 

local independence of irrelevant alternatives. 

Define a ranking rule to be a function that associates one or more consensus ranlungs 

with every set of rankings reported by a group of individuals on a finite set of 

alternatives. The rule is anonymous if it treats all voters alike. It is neutral if it treats all 

alternatives alike. It is Pareto if, whenever everyone ranks one alternative above another, 

then so does the consensus ranking. Finally, a rule satisfies reinforcement if, whenever 

two distinct groups of voters reach the same consensus ordering under separate votes, this 

ordering is also the consensus for the two groups merged together. For example, if the 

House of Representatives orders three choices a b c, and the Senate also orders these 

choices a b c (using the same voting rule), then a b c is the outcome when the rule is 

applied to both houses together and the votes remain as before.12 (In practice almost all 

rules have this property.) It may then be shown that the maximum likelihood rule is the 

unique ranking rule that is anonymous, neutral, Pareto, satisfies reinforcement, and local 

independence of irrelevant alternatives. 

l 2  This idea was introduced by Young and Levenglick (1978). In the case of ties, reinforcement states that 
the rankings chosen by both groups separately (if any such exist) are precisely the rankings that result when 
the votes of the two groups are pooled. A variation of the concept characterizes scoring methods (Smith, 
1973; Young. 1974, 1975). 
l 3  This follows from Young and Levenglick (1978), Theorem 3. 



Conclusion 

We conclude that the maximum likelihood method for ranking alternatives can be 

justified from several different points of view. On the one hand it is arguably the best 

method if we think of voting as a collective quest for truth, that is, as a way of estimating 

what decisions are most likely to be "correct" or most likely to meet a given objective. 

This is quite a common situation, especially when the decision is being taken by a group 

of experts. But it also applies to many forms of political decision making -- what bill is 

most likely to reduce crime, what foreign policy will minimize the prospect of war, and 

so forth. 

On the other hand, there are surely situations where i t  is more natural to think of voting as 

a way of compromising between conflicting values. Here again the ML rule makes 

sense, because it represents the median opinion. Alternatively, one might want a method 

that is resistant to strategic manipulation. As we know from the Gibbard- Satterthwaite 

theorem, almost no method has this property, which is intimately connected with 

independence of irrelevant alternatives. It is possible, however, to design ranking rules 

that are immune to manipulation from above by utopian alternatives, and from below by 

inferior alternatives. Moreover, the ML rule is the only rule that satisfies this local 

independence of irrelevant alternatives property plus other standard conditions. 

The one remaining question is whether the maximum likelihood method is really 

practical. Compared with more traditional methods like plurality voting, single 

transferable vote, or even Borda's rule, it is more complicated to calculate. It even seems 

to have eluded Condorcet's considerable computational skills. Given our present 

understanding of the problem and modem computing capabilities, however, the issue is 

largely moot. To find the maximum likelihood solution for six or fewer alternatives, for 

example, is a near triviality. Even for much larger numbers of alternatives, the method 

can be implemented in about the same amount of time that it takes people to cast their 

votes. The more important issue is whether the method is intuitively easy to grasp, and 

whether it improves on methods currently in use. On both of these counts I think that the 

answer is affirmative, and I predict that the time will come when it is considered a 

standard tool for political and group decision making. 
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