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Abstract 

This article generalizes the Nash equilibrium approach to  linear programming to the 
saddle point problem. The problem is shown to be equivalent to a non-zero sum game 
in which objectives of the players are obtained by partial regularization of the original 
function. Based on that,  a solution method is developed in which the players improve 
their decisions while anticipating the steps of their opponents. Strong convergence of 
the method is proved and application to convex optimization is discussed. 

K e y  words: Saddle point, regularization, augmented Lagrangian, decomposition. 



1. Introduction 

Let L : Rn x Rm + R be a finite convex-concave function and let X c Rn and Y c Rm 
be closed convex sets. The objective of this paper is to develop a method for finding a 
saddle point of L over X x Y, i.e., a point (j.,c) E X x Y such that 

This is one of fundamental problems of convex programming and game theory (for a 
thorough treatment of the theory of saddle functions we refer the reader to [8]). There 
were many at tempts to develop saddle point seeking procedures; the simplest algorithm 
(see, e.g., [I]) has the form 

where L , ( x ~ ,  y k )  and L , ( x ~ ,  y k )  are some subgradients of L at (xk,  yk)  with respect 
to x and y, and IIx(.) and IIy(.) denote orthogonal projections on X and Y, respec- 
tively. Such methods are convergent only under special conditions (like strict convexity- 
concavity) and with special stepsizes for primal and dual updates: r k  + 0, Cp=,rk = 
oc (cf. [7]). 

One possibility to overcome these difficulties is the use of the proximal point method 
[6, 101. Its idea is to  replace (1.1) by a sequence of saddle-point problems for regularized 
functions 

P P 
Ak(t7 7) = L(t, 7) + 511t - ~ ~ 1 1 '  - 5 1 1 ~  - Y ~ I I ' *  (I.2) 

A saddle point (tk,qk) of Ak is substituted for (xk+', yk+') at the next iteration, etc. 
A variation of this approach is the alternating direction method [3, 21. 

We are going to develop an iterative method for (1.1) which does not have saddle- 
point subproblems. The key idea, which generalizes and simplifies the concept used for 
linear programming in a recent work [4] of Kallio and ours, is to replace the regularized 
function (1.2) by two convex-concave functions: a primal and a dual one, and to make 
steps in x and in y using subgradients of these functions. We shall develop the basic 
concept in section 2, and in section 3 we describe the method. Next, in section 4 we 
prove its strong convergence to a saddle point of L. Finally, in section 5 we discuss the 
application of this approach to some convex optimization problems of special structure. 

For a convex set X c Rn,  the cone of feasible directions at x E X is denoted 
by Kx(x)  = { d  E Rn : 3(7 > 0) x + r d  E X ) .  The conjugate (negative of the 
polar) of a cone I( c Rn is defined to be I(* = { d  E Rn : V(x E 11') (d,x)  > 0). 
For a convex-concave function L : Rn x Rm + R we use d,L(x, y) and d,L(x, y) to 
denote its subdifferentials with respect to x and y. Elements of these subdifferentials 
(subgradients) will be denoted by L,(x, y) and L, (x, y). 



2. The game 

Let us define a non-cooperative game with two players: P and D. The objective of P 
is to minimize in the variables x E X the regularized primal function: 

where p > 0 is some parameter. The objective of D is to maximize with respect to  the 
variables y E Y the regularized dual function: 

D(x,Y) = z$ [L(E,Y) + $(I( - x112] . (2.2) 

A Nash equilibrium of the game is defined as a point (i, 6) E X x Y such that 

i E arg min P(x ,  c ) ,  
x EX 

(2.3) 

and 
6 E arg max D(2 ,  y). 

Y€Y 

We define the proximal mappings ((x, y) and ~ ( x ,  y) as the solutions of the subproblems 
in (2.2) and (2.1). We also introduce the error functions 

and 

A(x,  Y )  = It - x112 + ( 1 7  - Y 1 1 2 ,  
where ( = ((x, y) and 17 = ~ ( x ,  9).  They satisfy the following relations. 

Lemma 1. For all x E X and y E Y, 

pA(x, Y )  I E(x ,  Y )  I L(x, 17(x, Y ) )  - L( t (x ,  Y ) ,  Y). 

Proof. By the definition of ( = ((x, y), there exists a subgradient Lx((, y) such that 

As x - ( E Kx (0,  we have 

In a symmetric way, from the definition of 7 = ~ ( x ,  y) it follows that 

L(x,  Y )  - L(x,  17) 5 hEg-$;,rl)(h, Y - 17) I (Ly(x7 171, Y - 17) I -PI117 - Y /I2. 

Subtracting the last two inequalities, we obtain the required result. 

We can now prove the equivalence of (1.1) and our game. 



Theorem 1. The following three statements are equivalent: 

(a) ( i , i j )  is a Nash equilibrium of the game (2.3)-(2.4); 

(c) (i, ij) is a saddle point of L over X x Y .  

Proof. We denote [ = ((i, 9) and ij = q ( i ,  ij). 

( a ) j ( b ) .  Since p > 0, the function q(x, y) is continuous. Therefore d,P(x, y) = 
dxL(x, q(x, y)).  Using this equality in the optimality conditions for (2.3), we deduce 
that there exists a subgradient L,(i, Ij) E K i  (i). Thus 

Analogously, optimality conditions for (2.4) yield -L,(t, ij) E Iit(6) for some subgra- 
dient L, (i, ij), so 

L([, $1 - ~ ( t ,  i) 2 0. 

By Lemma 1, 
~ ( i ,  6) - ~ ( t ,  6) 2 E(i,  6). 

Adding the last three inequalities, we obtain (b). 

( b ) j ( c ) .  Lemma 1 implies that A( i , i j )  = 0, so ( = i and ij = ij. By (2.5), L,(i , i j)  E 
Ii'/; (i) for some L,(i, 6). This is equivalent to  the right inequality in (1.1). Similarly, 
-L,(i ,  ij) E Ii';(ij) for some L,( i ,  ij), which completes the proof of (c). 

(c)+(a). The left inequality in (1.1) implies 

P L(i , i j )  = max L ( i ,  q)  = max [L(i, q) - 211q - ij112] = P(i, $1. 
ll EY ll EY 

On the other hand, for every x E X, from the right inequality in (1.1) we get 

Consequently, P(i ,  ij) 5 P ( x ,  ij) for all x E X .  In the same manner we prove D ( i ,  ij) 2 
D( i ,  y) for all y E Y. 

3. The method 

Let us now describe in detail a method for finding a saddle point of L. It is, in fact, 
an algorithm for solving the game (2.3)-(2.4). It can also be interpreted as a method 
in which both players try to  predict the moves of their opponents to  calculate the best 
response. 



Initialization. Choose z0 E X, yo E Y and y E (0,2). Set k = 0. 

k k  Prediction. Calculate 77k = 7(xk, yk) and tk = [(z , y ). 

Stopping test. If Ek = E ( z k ,  yk) = 0, then stop. 

Direction finding. Find subgradients L,(xk, v k )  and Ly( tk ,  yk) and define 

where C$ and Cj! are closed convex cones such that C$ > KX(zk)  and Cj! > 
KY ( y k, - 

Stepsize calculation. Determine - 

Step. Update the points 

increase k by one and go to Prediction. 

Our method resembles in some way the extragradient method of [ 5 ] ,  but our prediction 
step uses proximal operators, not just a linear Jacobi step. Owing to that,  we can solve 
nonsmooth problems. We also have a constructive stepsize rule, although calculation 
of directions and stepsizes is somewhat unusual. Still, the use of C i  = cl ICX(zk), 
Cj! = cl ICy(yk) and of (3.1) is easy in some clases of problems (like polyhedral ones) 
and yields larger stepsizes. If such choices are not implementable, we may set C$ = Rn 
and Cj! = Rm and replace Ek with L(zk, v k )  - L( tk ,  yk) or pA(zk, yk) (see the remarks 
after the proof of convergence). 

4. Convergence 

To avoid obscuring the main idea, we shall now prove convergence of the method in 
its basic form, presented in the previous section. Various modifications and extensions 
will be discussed after the proof. 

Theorem 2. Assume that a saddle point of L on X x Y exists. Then the method 
generates a sequence k k r n  

o x  ,!I ))k=o convergent to a saddle point of L on X x Y .  

Proof. Let (z*, y*) be a saddle point of L on X x Y. We define 

k Wk = 111 - f * 1 I 2  + I1yk - y*1I2- (4.1) 



Since the projection on X is non-expansive, 

Using the formula h = IIc(h) + II-c.(h), which holds for any closed convex cone C 
(cf. [12]), with h = -LX(xk,vk) and C = C$, we obtain 

Multiplying both sides of this equation by x* -xk E I(x(xk) c C$ we get the inequality 

k k  - x*) > L(x , v  ) - ~ ( x * ,  vk)  (d;, X* - xk) L (Lx(x 17 ) r  x 

Substituting the above estimate into (4.2) yields 

Likewise, by obvious symmetry, we obtain 

Adding the last two inequalities we conclude that 

k k  The saddle point conditions imply that L(x*, vk )  I L( tk ,  y *). By Lemma 1, L(x , v  ) - 
L(Jk, yk) 2 Ek. Therefore (4.3) can be rewritten as follows: 

Substituting (3.1) we get 

Thus the sequence {Wk} is non-increasing and 

E;4 lim - = 0. 
k-rm lldkl12 

Since Wk is bounded, the sequence {(xk,yk)} has an accumulation point ( i ,  6). Thus 
{dk} is bounded and, by (4.6), limk,, Ek = 0. Therefore E ( i ,  ij) = 0. By Theorem 1, 
( i ,  ij) is a saddle point of L and we can use it instead of (x*, y*) in (4.1). Then, from 
(4.5) we see that the distance to  ( i ,  ij) is non-increasing. Consequently, ( i ,  ij) is the 

k k  only accumulation point of the sequence {(x , y )}. 

It is clear from the proof that we may replace the stepsize rule (3.1) with a more flexible 
requirement, 

k k  

XpAk < r < Y(L(x , v  ) - L(Jk, yk)) 
Ildk1)2 - * - Ildkl/2 7 



with Ak = n ( x k ,  yk) and 0 < X 5 y < 2. Indeed, (4.3) implies 

The rest of the proof is the same, but with Ak instead of Ek. We can also have iteration- 
dependent parameters pk > 0 and 0 < X k  < yk < 2, provided that CT=Jk(2 - yk)pi  = 
oo, because (4.7) still implies lim infk,, Ak  = 0. 

5. Application to decomposable problems 

Let us consider a convex programming problem of the form 

We assume that the functions fj and gij are convex and the sets Xj are convex and 
closed. As usual, we introduce multipliers y E Ry and the Lagrangian 

Under the constraint qualification condition (see, e.g., [8]), problem (5.1)-(5.3) is equiv- 
alent to finding a saddle point of L on the product of X = X1 x . . . x Xn and Y = RY. 
Our method, when applied to this problem, takes a rather simple form. 

Indeed, the prediction step in the dual variables can be carried out analytically, 
separately for each constraint: 

The resulting regularized primal function (2.1.) is the augmented Lagrangian (cf. [9]) 
for (5.1)-(5.3): 

Consequently, the update of primal variables is a projected subgradient step for the 
augmented Lagrangian function. It is clearly decomposable. Note that in a related 
work [ll] of ours, we used here a whole sequence of nonlinear Jacobi-type steps. 



The prediction step in primal variables is decomposable into subproblems 

Their results ti are then used in the dual update, which is just an under-relaxed step 
of the multiplier method, very similar to (5.4): 

In some cases, subproblems (5.5) can be quite easy to solve. The simplest example 
is the standard linear programming problem with fj(xj) = cjxj, g;j(xj) = a;jxj and 
Xj = [Ij, uj]. Then (5.5) has a closed-form solution, which can be calculated in parallel 
for each j = 1, . . . , n. It is worth noting that the regularized dual function D(x,  y ) 
becomes the augmented Lagrangian function for the dual problem. Properties of our 
method in the case of linear programming are analyzed in detail in [4], with limit 
properties of the stepsizes ~ k ,  with the analysis of the rate of convergence, and with 
some numerical results. In fact, the highly encouraging properties discovered in [4] 
motivated the research reported in the present paper. 
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